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Abstract - Recent developments in neural networks and 

sequential models has produced state of the art results in 

eld signal processing and sequential data generation. For 

us, music is a pleasing sound, and everyone listens to 

music very frequently, but computers represent it as an 

sequential data and all sequential data generation model 

can be used to generate music. Our work focuses on 

generating music using LSTMs. LSTMs have good 

capability to remember previous data, they have 

memory unlike general RNNs. A good music must not be 

abruptly changing tones and themes, it must be 

consistent and for this purpose our model must 

remember what was generated previously. So, LSTMs 

are the perfect choice for this context-based data 

generation. We used Keras[2], an open-source software 

library that provides a Python interface for artificial 

neural networks, to create and train model. Most 

impressive results were produced by Multi-layered 

Char-RNN with LSTM Cell. 

The data is represented with ABC le format for easier 

access and better understanding. We preprocess the data 

to make it more robust and understandable for neural 

network and decode it back for human interpretation, 

the preprocessing algorithms and data representation is 

thoroughly discussed. The model used in this paper learn 

the sequences of polyphonic musical notes over a 

Stacked-Multilayered Char-RNN with LSTM cell. The 

model required and do have have the potential to recall 

past details of a musical sequence and its structure for 

better learning because of memory cells present in LSTM 

cells. The whole architecture with data ow and training 

and testing scores are explained. 

 

1.INTRODUCTION 

 

This paper focuses on generating music automatically 

using Sequence to Sequence Recurrent Neural 

Network (RNN) Models [4]. 

Even someone who is not a musician but good at deep 

learning can try to generate quality music using RNN. 

 

Our task here is to train some neural network models 

to generate music. The model will lean to produce 

human pleasing sound from training data provided to 

it. We also expect our model add some innovation to 

the music, we do not want it to create some already 

created music because that will be just equivalent to 

remixing the music, which surely is not the task here. 

So, our aim is to produce original and consistent 

music. 

1.1Recurrent Neural Networks 

Recurrent Neural Networks are a category of 

Sequential Models, they work on sequential data/time 

series data. Since music can be represented as a 

sequential signal in time for computer, sequential 

models are perfect choice to work on music. RNNs use 

concept of weight sharing over time, they will use 

same weights/cell for each timestep. The general 

architecture of RNN and how it unfolds in time is 

represent in Figure 1. 

RNNs have many variants and one of the most used 

variant of RNN is Long Short-Term Memory Network 

(LSTM)[1]. A general RNN does not have any 

memory cell and performs bad in long dependency 

tasks, LSTM resolve this problem by introducing 

memory cells. RNNs also su er with vanishing 

gradient problems, this problem is also resolved by 

LSTM. 

  
Figure 1: Unfolding of Recurrent Neural Network with 

each timestep. [from Reference 1: [1] - Sepp 

Hochreiter, Jurgen Schmidhuber. LONG SHORT-

TERM MEMORY. Neural Computation 9(8):1735-

1780, 1997] 
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1.2 Long Short-Term Memory Networks 

LSTM [1] was originally proposed by Sepp 

Hochreiter, Jurgen Schmidhuber in 1997, a lot 

theoretical and experimental works have been 

published on the subject of this type of an RNN, many 

of them produced astounding results achieved across a 

wide variety of application domains which involved 

sequential data. The impact of the LSTM network has 

been quite signi cant in language modeling, speech-to-

text transcription, machine translation, and other 

applications which involve time series or sequential 

data. The LSTM resolve problem of vanishing 

gradient and handles long term dependencies by 

introducing memory cells. The architecture of a 

general LSTM Cell is described in gure 2. 

 
Figure 2: LSTM Cell 

[from Reference 1: [1] - Sepp Hochreiter, Jurgen 

Schmidhuber. LONG SHORT-TERM MEMORY. 

Neural Computation 9(8):1735-1780, 1997] 

LSTM is augmented by recurrent gates known as 

\forget gates". LSTM, as mentioned, prevents 

backpropagated errors from vanishing or exploding. 

Instead, errors can ow backwards through unlimited 

numbers of virtual layers unfolded in space. That is, 

LSTM can learn tasks that require memories of events 

that happened thousands or even millions of discrete 

time steps earlier. LSTM works very well with long 

delays between signi can’t events and can handle 

signals that mix low and high frequency components. 

 
Figure 3: Sequence to Sequence Model [from 

Reference 5: [5] - Cedric De Boom, Thomas 

Demeester, Bart Dhoedt. Character-level Recurrent 

Neural Networks in Practice: Comparing Training and 

Sampling Schemes] 

 

1.3 Sequence to Sequence Models 

Generally, when dealing with sequential models, there 

are three possible input-output combinations. First, 

input is a sequence, and we need to predict some score 

or one scalar/categorical value. Second, input is a 

sequence and output are also a sequence, popularly 

known as Sequence to Sequence (Seq2Seq) models 

[4]. Third, input is a scalar and output are a scalar. 

Our use case involves second model, Sequence to 

Sequence model. As the name suggests, we feed a 

sequence to the model and the model produces 

equivalents sequence in other domain (like language 

translation) or extrapolates/generate next part of the 

sequence. Figure 3 represents a normal sequence to 

sequence model for language translation. 

 

1.4 Char-RNN Model 

The char-RNN [5] produces the output character by 

character. It predicts the probability of next character 

out of all possible characters based on previously 

produced character. We can represent each tone of 

music as a character a feed to it. Figure 4 show 

architecture of char RNN. 

 
Figure 4: Architecture of Char RNN  

[from Reference 6 –[6]- Zhiyong Cui, Ruimin Ke, 

Ziyuan Pu, Yinhai Wang. Stacked Bidirectional and 

Unidirectional LSTM Recurrent Neural Network for 

Network-wide Traffic Speed Prediction] 

 

2.METHOD 

 

Now, we discuss the preprocessing of data and model 

architecture. There are various ways to represent the 

music (ABC, MIDI). But here we are using char RNN 
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for music generation, so our input or representation 

should be compatible with our model architecture. So, 

we used ABC representation of music, it uses 

characters to represent tones of music, which the 

format of data accepted by Char-RNN Architecture. 

After completion of prediction, we convert the data to 

MIDI format and then to an mp3 le. 

2.1Input Data 

The data is taken from ABC Version of Nottingham 

Music Database 1. We trained our model on Jigs and 

Hornpipes datasets from all datasets available on the 

collection. The jigs dataset contains 340 tunes and 

Hornpipes data contains 60 tunes. So, there are 400 

datapoints in our datasets. 

 

2.2 Data Preprocessing 

The data is fed into model in batches to prevent 

memory over ow. We will feed batch of sequences at 

once into our model. 

Following are the details of one batch: 

Batch Size = 16 

Sequence Length = 64 

 
Figure 5: Stacked LSTM layer 

 

There are total of 155222 characters in our data and 

total number of unique characters are 87. We have 

assigned a numerical index to each unique character. 

We have created a dictionary where key belongs to a 

character and its value is it’s index. 

 

2.3 Model Architecture and Training 

As described in figure 4 we have stacked RNN and 

then using output of last RNN layer we produce 

probability distribution for next character. We use 

LSTM RNN so it can handle long term dependencies 

and produce consistent and pleasant music. Our model 

contains following layers. 

2.3.1 Stacked LSTM Layer 

Instead of using one LSTM cell, we use stacked 

LSTMs, which means we send output of a LSTM to 

another LSTM and do it few times and then send it 

generate probablities. Figure 5 describes architecture 

of stacked LSTM. 

2.3.2 Dense Layer 

Dense layer is a layer of fully connected neural 

networks. Dense layer works on output of stacked 

LSTM layer. 

2.3.3 Softmax Layer 

Softmax layer assigns decimal probabilities to each 

class in a multi-class problem. Those decimal 

probabilities add up to 1.0. This additional constraint 

helps training converge more quickly than it otherwise 

would. Figure 6 shows softmax layer and activation 

function used in it. 

Figure 6: Softmax Layer 

[Simpy a mathematical function representation] 

2.3.4 Dropout Layer 

The Dropout layer randomly sets input units to 0 with 

a frequency of rate at each step during training time, 

which helps prevent overfitting. Inputs not set to 0 are 

scaled up by 1/ (1 - rate) such that the sum over all 

inputs is unchanged. It helps with regularization of 

model weights. 

 

2.4 Music Generation 

We trained the model with different combinations of 

hyperparameters and have weights of the one which 

produces best results. Now we are ready to generate 

music using that trained model. For music generation, 

we provide one of the 87 unique characters as input to 

the model and actually generate an 87 probability 

values using softmax layer. From these 87 probability 

values we achieved, we select the next attribute in a 

probabilistic and non-speci c way, and give the 
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selected attribute to the model for next prediction and 

repeat this process. This way we continue to combine 

output characters to produce music with different 

heights. And the end, after combining all outputs we 

get our music. 

3 RESULTS 

 

All the training and testing was done using Keras. We 

tried Adam, RMSProp, Stochastic Gradient, and 

Adagrad with learning rate 0.001. RMSProp worked 

best, the comparison was done on basis of F-Score. 

Number of training epochs were 200. The data was 

splitted with 70-30 split of train and validation sets. 

It has been observed that having many LSTM layers 

made the learning progress slower and less accurate 

than having one or two layers with a sufficient number 

of neurons. This might be because of the ‘Vanishing 

Gradient’ problem where the depth of the network 

prevents the layers near the input to update their 

weights in an e effective manner. We might have been 

able to get a deeper network if we found a way to 

combat this problem. One solution we didn’t get to try 

was using ‘Leaky ReLu’ activation functions. We 

ended up using LSTM layers in the range of 3{4 

layers. 

The size of the LSTM layers had a big impact on the 

result. The bigger the size, the faster it converged, 

however this came with overfitting. We expect this 

was because having more neurons permitted the 

network to save more of the data of the training set into 

the weights instead of optimizing a way to generalize 

the overall patterns of music. 

Figure 7a shows training and testing graph with 

different LSTM layer sizes. Figure 7b shows training 

and testing graph with different dropout values. 

(a) F1 score and loss for different LSTM layer sizes. (b) F1 score and loss for different dropout values. 

Figure 7: F1 score and loss for different LSTM layer sizes and dropout values. 

 

Figure 8a shows training and testing graph with di erent optimizers. Figure 8b shows training and testing graph with 

di erent dropout values. 

Figure 9a shows training and testing graph with di erent batch sizes. Figure 9b shows training and testing graph with 

di erent testing window sizes. 
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(a) F1 score and loss for different optimizers. (b) F1 score and loss for different augmentation values. 

Figure 8: F1 score and loss for different optimizers and augmentation values. 

(a) F1 score and loss for different batch sizes. (b) F1 score and loss for different testing window sizes. 

Figure 9: F1 score and loss for different batch sizes and testing window sizes. 
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