
© March 2021| IJIRT | Volume 7 Issue 10 | ISSN: 2349-6002

IJIRT 150859 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 176

Automatic Music Generation using Long Short-Term

Memory Neural Networks

 Mannmay Vinze1, Jeevan Danve2, Srijan Shankar3, Meraz Khan4, Nilima Kulkarni5

 1,2,3,4,5Department of Computer Science and Engineering, MIT School of Engineering,

 MIT Arts Design and Technology University, Pune, 412201, India

Abstract - Recent developments in neural networks and

sequential models has produced state of the art results in

eld signal processing and sequential data generation. For

us, music is a pleasing sound, and everyone listens to

music very frequently, but computers represent it as an

sequential data and all sequential data generation model

can be used to generate music. Our work focuses on

generating music using LSTMs. LSTMs have good

capability to remember previous data, they have

memory unlike general RNNs. A good music must not be

abruptly changing tones and themes, it must be

consistent and for this purpose our model must

remember what was generated previously. So, LSTMs

are the perfect choice for this context-based data

generation. We used Keras[2], an open-source software

library that provides a Python interface for artificial

neural networks, to create and train model. Most

impressive results were produced by Multi-layered

Char-RNN with LSTM Cell.

The data is represented with ABC le format for easier

access and better understanding. We preprocess the data

to make it more robust and understandable for neural

network and decode it back for human interpretation,

the preprocessing algorithms and data representation is

thoroughly discussed. The model used in this paper learn

the sequences of polyphonic musical notes over a

Stacked-Multilayered Char-RNN with LSTM cell. The

model required and do have have the potential to recall

past details of a musical sequence and its structure for

better learning because of memory cells present in LSTM

cells. The whole architecture with data ow and training

and testing scores are explained.

1.INTRODUCTION

This paper focuses on generating music automatically

using Sequence to Sequence Recurrent Neural

Network (RNN) Models [4].

Even someone who is not a musician but good at deep

learning can try to generate quality music using RNN.

Our task here is to train some neural network models

to generate music. The model will lean to produce

human pleasing sound from training data provided to

it. We also expect our model add some innovation to

the music, we do not want it to create some already

created music because that will be just equivalent to

remixing the music, which surely is not the task here.

So, our aim is to produce original and consistent

music.

1.1Recurrent Neural Networks

Recurrent Neural Networks are a category of

Sequential Models, they work on sequential data/time

series data. Since music can be represented as a

sequential signal in time for computer, sequential

models are perfect choice to work on music. RNNs use

concept of weight sharing over time, they will use

same weights/cell for each timestep. The general

architecture of RNN and how it unfolds in time is

represent in Figure 1.

RNNs have many variants and one of the most used

variant of RNN is Long Short-Term Memory Network

(LSTM)[1]. A general RNN does not have any

memory cell and performs bad in long dependency

tasks, LSTM resolve this problem by introducing

memory cells. RNNs also su er with vanishing

gradient problems, this problem is also resolved by

LSTM.

Figure 1: Unfolding of Recurrent Neural Network with

each timestep. [from Reference 1: [1] - Sepp

Hochreiter, Jurgen Schmidhuber. LONG SHORT-

TERM MEMORY. Neural Computation 9(8):1735-

1780, 1997]

© March 2021| IJIRT | Volume 7 Issue 10 | ISSN: 2349-6002

IJIRT 150859 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 177

1.2 Long Short-Term Memory Networks

LSTM [1] was originally proposed by Sepp

Hochreiter, Jurgen Schmidhuber in 1997, a lot

theoretical and experimental works have been

published on the subject of this type of an RNN, many

of them produced astounding results achieved across a

wide variety of application domains which involved

sequential data. The impact of the LSTM network has

been quite signi cant in language modeling, speech-to-

text transcription, machine translation, and other

applications which involve time series or sequential

data. The LSTM resolve problem of vanishing

gradient and handles long term dependencies by

introducing memory cells. The architecture of a

general LSTM Cell is described in gure 2.

Figure 2: LSTM Cell

[from Reference 1: [1] - Sepp Hochreiter, Jurgen

Schmidhuber. LONG SHORT-TERM MEMORY.

Neural Computation 9(8):1735-1780, 1997]

LSTM is augmented by recurrent gates known as

\forget gates". LSTM, as mentioned, prevents

backpropagated errors from vanishing or exploding.

Instead, errors can ow backwards through unlimited

numbers of virtual layers unfolded in space. That is,

LSTM can learn tasks that require memories of events

that happened thousands or even millions of discrete

time steps earlier. LSTM works very well with long

delays between signi can’t events and can handle

signals that mix low and high frequency components.

Figure 3: Sequence to Sequence Model [from

Reference 5: [5] - Cedric De Boom, Thomas

Demeester, Bart Dhoedt. Character-level Recurrent

Neural Networks in Practice: Comparing Training and

Sampling Schemes]

1.3 Sequence to Sequence Models

Generally, when dealing with sequential models, there

are three possible input-output combinations. First,

input is a sequence, and we need to predict some score

or one scalar/categorical value. Second, input is a

sequence and output are also a sequence, popularly

known as Sequence to Sequence (Seq2Seq) models

[4]. Third, input is a scalar and output are a scalar.

Our use case involves second model, Sequence to

Sequence model. As the name suggests, we feed a

sequence to the model and the model produces

equivalents sequence in other domain (like language

translation) or extrapolates/generate next part of the

sequence. Figure 3 represents a normal sequence to

sequence model for language translation.

1.4 Char-RNN Model

The char-RNN [5] produces the output character by

character. It predicts the probability of next character

out of all possible characters based on previously

produced character. We can represent each tone of

music as a character a feed to it. Figure 4 show

architecture of char RNN.

Figure 4: Architecture of Char RNN

[from Reference 6 –[6]- Zhiyong Cui, Ruimin Ke,

Ziyuan Pu, Yinhai Wang. Stacked Bidirectional and

Unidirectional LSTM Recurrent Neural Network for

Network-wide Traffic Speed Prediction]

2.METHOD

Now, we discuss the preprocessing of data and model

architecture. There are various ways to represent the

music (ABC, MIDI). But here we are using char RNN

© March 2021| IJIRT | Volume 7 Issue 10 | ISSN: 2349-6002

IJIRT 150859 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 178

for music generation, so our input or representation

should be compatible with our model architecture. So,

we used ABC representation of music, it uses

characters to represent tones of music, which the

format of data accepted by Char-RNN Architecture.

After completion of prediction, we convert the data to

MIDI format and then to an mp3 le.

2.1Input Data

The data is taken from ABC Version of Nottingham

Music Database 1. We trained our model on Jigs and

Hornpipes datasets from all datasets available on the

collection. The jigs dataset contains 340 tunes and

Hornpipes data contains 60 tunes. So, there are 400

datapoints in our datasets.

2.2 Data Preprocessing

The data is fed into model in batches to prevent

memory over ow. We will feed batch of sequences at

once into our model.

Following are the details of one batch:

Batch Size = 16

Sequence Length = 64

Figure 5: Stacked LSTM layer

There are total of 155222 characters in our data and

total number of unique characters are 87. We have

assigned a numerical index to each unique character.

We have created a dictionary where key belongs to a

character and its value is it’s index.

2.3 Model Architecture and Training

As described in figure 4 we have stacked RNN and

then using output of last RNN layer we produce

probability distribution for next character. We use

LSTM RNN so it can handle long term dependencies

and produce consistent and pleasant music. Our model

contains following layers.

2.3.1 Stacked LSTM Layer

Instead of using one LSTM cell, we use stacked

LSTMs, which means we send output of a LSTM to

another LSTM and do it few times and then send it

generate probablities. Figure 5 describes architecture

of stacked LSTM.

2.3.2 Dense Layer

Dense layer is a layer of fully connected neural

networks. Dense layer works on output of stacked

LSTM layer.

2.3.3 Softmax Layer

Softmax layer assigns decimal probabilities to each

class in a multi-class problem. Those decimal

probabilities add up to 1.0. This additional constraint

helps training converge more quickly than it otherwise

would. Figure 6 shows softmax layer and activation

function used in it.

Figure 6: Softmax Layer

[Simpy a mathematical function representation]

2.3.4 Dropout Layer

The Dropout layer randomly sets input units to 0 with

a frequency of rate at each step during training time,

which helps prevent overfitting. Inputs not set to 0 are

scaled up by 1/ (1 - rate) such that the sum over all

inputs is unchanged. It helps with regularization of

model weights.

2.4 Music Generation

We trained the model with different combinations of

hyperparameters and have weights of the one which

produces best results. Now we are ready to generate

music using that trained model. For music generation,

we provide one of the 87 unique characters as input to

the model and actually generate an 87 probability

values using softmax layer. From these 87 probability

values we achieved, we select the next attribute in a

probabilistic and non-speci c way, and give the

© March 2021| IJIRT | Volume 7 Issue 10 | ISSN: 2349-6002

IJIRT 150859 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 179

selected attribute to the model for next prediction and

repeat this process. This way we continue to combine

output characters to produce music with different

heights. And the end, after combining all outputs we

get our music.

3 RESULTS

All the training and testing was done using Keras. We

tried Adam, RMSProp, Stochastic Gradient, and

Adagrad with learning rate 0.001. RMSProp worked

best, the comparison was done on basis of F-Score.

Number of training epochs were 200. The data was

splitted with 70-30 split of train and validation sets.

It has been observed that having many LSTM layers

made the learning progress slower and less accurate

than having one or two layers with a sufficient number

of neurons. This might be because of the ‘Vanishing

Gradient’ problem where the depth of the network

prevents the layers near the input to update their

weights in an e effective manner. We might have been

able to get a deeper network if we found a way to

combat this problem. One solution we didn’t get to try

was using ‘Leaky ReLu’ activation functions. We

ended up using LSTM layers in the range of 3{4

layers.

The size of the LSTM layers had a big impact on the

result. The bigger the size, the faster it converged,

however this came with overfitting. We expect this

was because having more neurons permitted the

network to save more of the data of the training set into

the weights instead of optimizing a way to generalize

the overall patterns of music.

Figure 7a shows training and testing graph with

different LSTM layer sizes. Figure 7b shows training

and testing graph with different dropout values.

(a) F1 score and loss for different LSTM layer sizes. (b) F1 score and loss for different dropout values.

Figure 7: F1 score and loss for different LSTM layer sizes and dropout values.

Figure 8a shows training and testing graph with di erent optimizers. Figure 8b shows training and testing graph with

di erent dropout values.

Figure 9a shows training and testing graph with di erent batch sizes. Figure 9b shows training and testing graph with

di erent testing window sizes.

© March 2021| IJIRT | Volume 7 Issue 10 | ISSN: 2349-6002

IJIRT 150859 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 180

(a) F1 score and loss for different optimizers. (b) F1 score and loss for different augmentation values.

Figure 8: F1 score and loss for different optimizers and augmentation values.

(a) F1 score and loss for different batch sizes. (b) F1 score and loss for different testing window sizes.

Figure 9: F1 score and loss for different batch sizes and testing window sizes.

REFERENCE

[1] Sepp Hochreiter, Jurgen Schmidhuber. LONG

SHORT-TERM MEMORY. Neural Computation

9(8):1735-1780, 1997

[2] Chollet, F. & others, 2015. Keras. Available at:

https://github.com/fchollet/keras.

[3] Sanidhya Mangal, Rahul Modak, Poorva Joshi.

LSTM Based Music Generation System.

[4] Ilya Sutskever, Oriol Vinyals, Quoc V. Le.

Sequence to Sequence Learning with Neural

Networks.

[5] Cedric De Boom, Thomas Demeester, Bart

Dhoedt. Character-level Recurrent Neural

Networks in Practice: Comparing Training and

Sampling Schemes

[6] Zhiyong Cui, Ruimin Ke, Ziyuan Pu, Yinhai

Wang. Stacked Bidirectional and Unidirectional

LSTM Recurrent Neural Network for Network-

wide Traffic Speed Prediction

