
© May 2021| IJIRT | Volume 7 Issue 12 | ISSN: 2349-6002

IJIRT 151127 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 98

A simple security policy enforcement system for an

institution using SDN controller

Harsh Jain1, Paritosh Dhotre2, Anurag Kothari3, Suresh Babu K. S4

1,2,3,4Department of Information Technology, PCE, Navi Mumbai, India - 410206

Abstract - Basically, as we know (SDN) software-defined

networking architectural framework eases the work of

the n/w administrators by separating the data plane from

the control plane. This provides easy network

configuration by supporting a programmable interface

for applications development related to security,

management etc. and the centralized logical controller

provides more control over the total network, which has

complete network visibility. These SDN advantages

exposes the network to vulnerabilities and the impact of

the attacks is much severe when compared to traditional

networks, where the network devices have protection

from the attacks and limits the occurrence of attacks.

Basically, Distributed Denial of Service (DDoS) attack is

a DoS attack which utilizes multiple distributed attack

sources. We know that every network in the system has

an entropy and increase in the randomness causes

entropy to decrease. For preventing this DDoS threat, we

want to use POX for attack detection and want to provide

a solution that is effective in terms of the resources used.

More precisely, this project shows how DDoS attacks can

consume controller resources and provide a solution to

detect such attacks based on the entropy variation of the

destination IP address. Now based on this entropy value,

we shall block that specific port in the switch if it drops

below certain threshold value, and then bring the port

down.

Index Terms - DDoS, POX, SDN

1.INTRODUCTION

Now-a-days cloud services are expanding, and large

organizations are migrating towards SDN-based

implementations of network. These virtual

technologies provide manageability, predictability and

quality of service. Security provision importance is

relevant for centralized managed network and has

become one of the concerns. Considering a centralized

virtual server running as a controller, which installs

and manages the flows in data plane through

OpenFlow communication protocol. The use of

OpenFlow makes the controller a primary victim for

the attacker because of the following reasons.

1. In OpenFlow protocol there is no standard for

security implementation and developers of

products are implementing their own proprietary

methods.

2. The programmable aspect of SDN also makes

them much more vulnerable to numerous

malicious attacks and code exploits.

3. The southbound interface can be targeted with

denial of service and side channel attacks.

4. Errors related to configuration of SDN can be

more serious than traditional network errors.

5. Establishment of trust is also crucial.

We worked on creating a DDoS attack and detection

of the attack on the entropy base. And preventing the

DDoS to occur.

2. PROPOSED WORK

What is a DDoS attack?

Basically, is a type of flood attack. Here many packets

are sent to a network device for stopping the service or

decreasing the performance of such a device. If the

source addresses of incoming are spoofed, then the

switch would not find a match and the packet needs to

be forwarded to the controller. The collection of DDoS

spoofed packets and legitimate packets can bind the

controller into continuous processing, which exhausts

them. Due to this, the controller is unreachable for the

new incoming legitimate packets. This will bring the

controller down causing loss to the SDN architecture.

For a backup controller, the same challenge is to be

faced. Such kind of attacks can be detected in the early

stage by monitoring few hundred of packets

considering changes in entropy. The early detection of

DDoS attacks stops the controller from going down.

The term ‘early’ is related to tolerance level and traffic

being handled by the controller. Due to this, the impact

of malicious packets flooding can be controlled. Such

© May 2021| IJIRT | Volume 7 Issue 12 | ISSN: 2349-6002

IJIRT 151127 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 99

a mechanism needs to be lightweight and high

response time. The high response time saves the

controller during the attack period for regaining the

control by terminating the DDoS attack.

Why entropy?

The main reason for considering entropy is it's ability

for measuring randomness in a network. The higher

the randomness the higher is the entropy and vice

versa. So, whenever the entropy is less than a threshold

value we can say that a DDoS attack is occurred.

3. PROJECT IMPLEMENTATION

Basically, an OpenFlow controller is connected to a

network. We then observe the entropy of the traffic

related to the controller under normal and attack

conditions. We used the POX controller for this

project, because it runs on Python. The network

emulator used is Mininet for creation of network

topology. Packet generation is done with the help of

Scapy. Where Scapy is used for generation of packets,

sniffing, scanning, forging of packet and attacking.

Scapy is used for generation of UDP packets and

spoofing the source IP address of the packets. Here

first we create a Mininet topology of 9 switches and

64 hosts as in fig below.

Fig. 1 Network Topology

We then started pox controller from another terminal

and then we can see 9 openflow links are connected

for 9 open switches.

Fig. 2 Launching Controller

Now the project is divided into two parts

1) Packet generation and Detection

2) Attack and Detection.

1. Packet generation: At first run the packet

generation program from one of the host which

generates random source ip and send the packets

to random destinations. We then able to see the

entropy in controller terminal.

2. Attack: Here we run the attack from few selected

hosts to a selected target. Now the entropy value

in the controller decreases. After that for every 5

sets of process i.e., 250 packets entropy is below

the threshold value then DDoS is detected and

those ip’s are blocked.

A. Launch traffic code: (Packet Generation)

Action: In the launch traffic code, we basically,

generates random source IP and send the packets to

random destinations between the host. We generally

give start and end value from the command prompt of

one of the node for example h1.

Modules imported:

We import sys module of Python for accessing system

specific parameters and functions. The getopt module

helps scripts to parse the command line arguments. We

use os module to import Popen to fetches shell

commands into python program. Scapy module is used

to import functions such as sendp, IP, UDP, Ethernet

and TCP. The random module is used to import

randrange function.

© May 2021| IJIRT | Volume 7 Issue 12 | ISSN: 2349-6002

IJIRT 151127 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 100

B. Launch attack code:

Action: Here we run the attack from few selected hosts

to a selected target. Now the entropy value in the

controller decreases. Here we give the target ip address

from the command prompt of the hosts which are

acting like a botnet.

Modules used:

The Launch Attack code is like Launch Traffic code.

The time module provides various time related

functions. The logging module helps implement

logging system for applications. The logging getlogger

function will suppress all messages that have a lower

level of seriousness than error messages, before

importing scapy.

Code explanation:

Here we get the IP address of target from the command

prompt of the bonet armies. As in the same way of

traffic launch we create the packet with the random src

ip and the send it out through the eth0 with help of

sendp function of scapy.

C. Attack Detection: -

Action: here first we make a count of 50 packets in the

window and then we calculate the entropy and

compare it with threshold that we set and make a count

of consecutive entropy value lower than threshold. If

this count reaches 5 then we can say that DDoS had

occurred otherwise not. For this we written a code for

detection and did some changes in the l3_learning

module of the pox controller so that it can detect the

ddos. These changes are explained below.

Entropy formula: -

Here we detect the entropy with the help of 2 factors:

1. Destination IP and

2. No. of the times it repeated.

Here we used the window size to be 50 and Probability

of a destination ip occurred in the window is given as

pi :

pi=(xi)/n

where x is no. of event in the set and n to be the

window size.

Now,

entropy H= - sum of all (pi)log(pi)

Where i is from o to n. The sequence of steps we use

in the detection code is given as a flow below.

Fig. 3 Flow Diagram

Modules imported in detection:

In the Detection Code, math module is imported for

performing mathematical functions such as finding log

values. The pox.core module comprises of POX’s core

API and functionalities. The core.getlogger function

returns a logger, which is the root logger of the

hierarchy.

Code explanation:

Here in the class Entropy, we defined the entropy

dictionary, IP list and destination entropy are as null.

The count and value are assigned values as 0 and 1

respectively. In the statcolect function, we basically

collect statistics related to the detection of attack i.e.

entropy. Here every packet in message is collected into

iplist and count is incremented for every packet in.

When the count value reaches 50, the 50 Packet_In

messages would be parsed for their destination IP

addresses in the hash table. If it is present in the table

its value increments otherwise it is listed with 1.

Entropy is calculated using this hash table values. In

the entropy function we calculate the probability of

destination ip occurred in the window and then we

calculate the entropy by the formula

© May 2021| IJIRT | Volume 7 Issue 12 | ISSN: 2349-6002

IJIRT 151127 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 101

entropy H= - sum of all (pi)log(pi)

Then we store this value in entropy dictionary which

is used in l3_learning module of pox to compare and

say whether attack had occurred or not.

3.1 L3_learning module changes:

Here we import the entropy function from detection

file and then make set_timer and defend DDoS as false

as pox has a predefined method for defending DDoS

we are making it off. In is instance class of pox we will

extract the entropy values of the windows from

entropy dictionary and compare it with a threshold

value (we used 0.5 here) and whenever entropy is less

than threshold, we implement preventing class

otherwise we will set timer as false. In the preventing

class in handle_openflow_packetin , we create a

diction of switch id and port along with number of

times it appeared. It looks like {switch id, (port,

count)} and we create timer is true here. Now this

diction is used to detect whether a ddos is occurred or

not. In the timer function we check the count value and

if it is greater than equal to 5 then we can say that a

DDoS had occurred and we block the port of the

switch by sending the: -

msg = of.ofp_packet_out(in_port=i)

core.openflow.sendToDPID(dpid ,msg)

3.2 Steps for performing the project task:

Finding the threshold of the usual traffic so first we

will create a Mininet topology by entering the

following command:

A.$ sudo mn --switch ovsk --topo

tree,depth=2,fanout=8--controller=remote,ip=

127.0.0.1, port=6633

B. In the Mininet terminal of virtual box enter the

following command for running the pox controller:

$ python ./pox.py forwarding.l3_edited

C. Now opening xterm for a host by typing the

following command:

mininet> xterm h1

Fig 4. Creating Network

D. In the xterm window of host h1 running the

following command:

-> python launchTraffic.py –s 2 –e 65

Fig 5. Generating Traffic

Detection of DDoS threat using the value of Entropy:

On xterm window of h64 entering the following

commands:

> script h64.txt

> tcpdump –w h64 -eth0

E. Entropy value before the DDoS attack:

© May 2021| IJIRT | Volume 7 Issue 12 | ISSN: 2349-6002

IJIRT 151127 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 102

Fig. 6 Entropy Value Before DDoS attack.

Now repeating step D on h1 and parallelly entering the

following commands to run the attack traffic from h4

and h6 xterm windows to attack on 56

> python launchAttack.py 10.0.0.56

Fig. 7 Attacking the target host.

F. Detection of DDoS: -

The value decreases below the threshold value (which

is equal to 0.5 here) for normal traffic. Thus, we can

detect the attack within the first 250 packets of

malicious type of traffic attacking a host in the SDN

network. After the hosts stop sending attack packets,

the switches are started again by the POX controller.

We can see that controller terminal giving alert that

DDoS is detected in the diagram below.

Fig. 8 Detection of DDoS attack.

4.CONCLUSION

For a network administrator, it is complicated to

enforce security policy, manage updates and access

control on traditional network. Security policy

enforcement in traditional network is time consuming

and error prone. SDN provide an ideal paradigm to

address these challenges of traditional networks and it

will be helpful to avoid masquerading attack. By

blocking the malicious users, we can save our network

form denial of service attack.

5.ACKNOWLEDGEMENT

We would like to thank our guide and mentor, Prof.

Suresh Babu K. S, Pillai College of Engineering who

mentored us throughout our “A simple security policy

enforcement system for an institution using SDN

controller” project and cleared our concepts and

helped us understand all the topics. We would also like

to thank the Head of Department of IT Dr. Satish

Kumar Varma, Pillai College of Engineering for

giving us an opportunity to understand this project,

which helped us a lot in understanding deep concepts

of Internet of Things, and how it works. We thank our

principal Dr.Sandeep Joshi, Pillai College of

Engineering for providing us with all the facilities and

opportunities to explore our domain and for

motivating us to do better.

REFERENCES

© May 2021| IJIRT | Volume 7 Issue 12 | ISSN: 2349-6002

IJIRT 151127 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 103

[1] Kreutz, Diego, et al. "Software-defined

networking: A comprehensive survey."

Proceedings of the IEEE 103.1 (2020).

[2] Antikainen, Markku, Tuomas Aura, and Mikko

Särelä. "Spook in your network: Attacking a sdn

with a compromised openflow switch." Nordic

Conference on Secure IT Systems. Springer,

Cham, 2019.

[3] McKeown, Nick, et al. "OpenFlow: enabling

innovation in campus networks." ACM

SIGCOMM Computer Communication

Review38.2 (2018): 69-74.

[4] Casado, Martin, et al. "SANE: A Protection

Architecture for Enterprise Networks." USENIX

Security Symposium. Vol. 49. 2006.

[5] Casado, Martin, et al. "Ethane: Taking control of

the enterprise." ACM SIGCOMM Computer

Communication Review. Vol. 37. No. 4. ACM,

2007.

