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Abstract - There is always a need to modernize energy 

delivery of traditional power grids, using intelligent 

devices and big data technologies, this make them smart. 

The modernization is performed by deploying 

equipment such as sensors, smart meters, and 

communication devices, and by invoking procedures 

such as real-time data processing and big data analysis. 

A large data is generated by Smart grids all the time 

which needs to be analysed. This paper presents 

definitions and background of smart grid and big data. 

There are many challenges faced in collecting and 

analysing this data. In this paper current studies and 

research developments of big data applications in smart 

grid are discussed. This paper also summarizes the 

application leveraged by big data technologies, 

challenges and opportunities are pointed out in this 

paper as well. 

 

Index Terms - Big data, Smart grid, Big data analytical 

applications, Cloud platform, Data mining. 

 

I.INTRODUCTION 

 

Smart Grid (SG) is an important research and 

development direction in the energy industry. It 

modifies the conventional power grid by integrating 

advanced communication and computing methods to 

improve the entire system control, efficiency, 

reliability, and safety [1]. Smart grid carries electricity 

and information between suppliers and consumers, 

which creates a bidirectional power and information 

flow system [2]. Many countries have recently 

adopted smart grid renovation plans [3]. As an 

example, the ENEL Telegestore project in Italy is the 

first commercial project utilizing smart grid 

technology which brings annual savings of 

approximately 500 million Euros [4, 5]. Smart grids 

offer several benefits to electric consumers, producers, 

and operators. SG improves the efficiency, 

dependability, sustainability, and economics of 

electric services [6]. Despite its numerous benefits, 

smart grid is mainly utilized in small regions [6]. There 

are several roadblocks preventing smart grids from 

being used in larger regions such as information 

gathering, storing, processing, and management [7 - 

9]. Smart grid requires the capability for processing 

large volumes of real-time data. For example, in the 

past, utility companies read meters monthly, but with 

the Advanced Meter Infrastructure (AMI), meters 

report data  themselves. 

  

II.OVERVIEW OF SMART GRID AND BIG DATA 

 

Smart Grid 

The deployment of smart meters and sensors 

throughout the grid results in massive amounts of data. 

This includes generation side data (wind farms and 

photovoltaic plants), consumption side data 

(residential homes, factories and electric vehicle 

charging stations), prosumers data (residential 

photovoltaic panels and vehicle-to-grid) and weather 

and natural disasters data can be included in the smart 

grid system. Also, images and video footage could be 

included to detect physical attacks (California 

transmission substation sniper attack [23]) or 

investigate power outages. The smart grid data is 

considered to be large in volume, high in velocity and 

wide in variety. The value of this smart grid big data 

becomes useful when integrated with multi-sourced 

existing smart grid data in an analytics environment, 

and can potentially enhance the functionality of the 

smart grid. Fig. (1) shows the structure of traditional 

and smart grids [16]. The traditional power grid 

includes unidirectional transmission, meaning that 

power flows from power generators to consumers 

[17]. Smart grid systems, on the other hand include 

bidirectional transmission, data driven system, and 

renewable energy resources to offer additional utilities 

to customers, distributers, and providers [17]. Despite 

all its benefits, smart grids have difficulty in handling 

large volume of data within an acceptable time limit 

and hardware resources. 
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A. Benefits from big data analytics in smart grid 

1)Increasing System Stability & Reliability: 

Wellbeing is constantly positioned in the first place in 

the need of force network and can be enveloped two 

significant angles: dependability and unwavering 

quality, which can be further sub-isolated into some 

sub-viewpoints like swaying identification, voltage 

soundness, occasion recognition and rebuilding, It is 

commendable pointing that, with the rise of the huge 

information and progressed information insightful 

innovation, it is feasible to investigate some new 

abilities or to improve the obsolete checking and 

discovery strategies. For example, as revealed in, a 

swaying in a breeze ranch was identified through PMU 

however inconspicuous by SCADA, this is a common 

benefit from the enormous information investigation 

in the wellbeing of shrewd framework. 

 

2)Increasing Asset Utilization & Efficiency: 

Practically speaking, the enormous information 

investigation can expand resource use and efficiency, 

particularly in better comprehension of the working 

attributes and actual restrictions of the resources, 

better approving and adjusting of the models, and 

better incorporating the inexhaustible assets with huge 

information instruments. For example, in, the creators 

utilize the voltages estimated by savvy meters and Geo 

Information framework (GIS) information to direct 

transformer exhaustion investigation, which mindful 

the administrators to upgrade or change the 

transformer ahead of time. What's more, numerous 

works have additionally been completed to explore the 

use of enormous information for model approval and 

alignment in. 

 

3)Better Customer Experience & Satisfaction: As of 

late, significant advances have been made for 

conveying shrewd meters at homes, offices or different 

premises around the world. The mass rollout 

empowers simpler charging, misrepresentation 

identification, admonishing of power outages, shrewd 

constant evaluating plans, request reaction and 

efficient energy usage. Be that as it may, all the above 

applications need high examining rate by the meters 

and progressed information investigation, just as the 

data correspondence advances. 

 

Main contributions 

Up to this moment, the smart grid and the big data are 

usually reported separately. However, the analysis of 

the big data in smart grid is rarely reported. To the best 

of our knowledge, K Zhou et al. reviewed the big data 

driven smart energy management in, which mainly 

illustrates the architecture and industrial applied 

energy management tools. BA Schuelke-Leech et al. 

reviewed the opportunities of the big data in electric 

utilities. However, this work cannot be extended to 

smart grid. Hu and Vasilakos presented a 

comprehensive review of the big data application in 

energy taxonomy and security. In order to get the full 

utilization of the big data in smart grid, this paper 

presents a holistically review of the big data issues in 

smart grid. 

 

In general, the contributions of this paper are manifold 

and can be summarized as follows: 

• It provides a first comprehensive survey covering 

both smart grid and energy big data analytics. To 

the best of our knowledge, this is the first attempt 

to systematically look into the big data issues in 

smart grid. 

• It points out  some  the  latest  applications  or  

methods  in  power system empowered by big data 

technology. For instance, the data-based approach 

for fault detection and classification in Micro-

grid, which results in a much better performance 

than the conventional model-based approach; the 

measurement-based estimation the power flow 

Jacobian matrix which is proved to be more 

efficient for inferring the pertinent information 

about the system topology in near real-time. 

• Both implemented data-driven applications by 

utilities and practical used data analytic methods 

worldwide have been listed in this paper. 
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III.BIG DATA APPLICATIONS IN SMART GRID 

 

Wide area situational awareness 

In the real-world scenario of wide area situational 

awareness application, there are two issues need to be 

solved: the limitation of the installed PMUs and the 

latency brought by the decision-making algorithms. 

Due to the expensive cost and complicated factors of 

deploying PMUs in the grid, the number of the 

synchrophasor sensors is limited and need to be 

optimally placed. Many optimal PMU placement 

(OPP) methods are raised, such as mixed-integer 

programming, model- based OPP, zero-injection 

bused for further reducing [36], generic algorithm 

[37], etc. [38–40]. Sodhi et al. [41] proposed an 

improved OPP framework using five applications viz., 

improving state estimation, assessing voltage /angular 

stability, monitoring tie-line oscillations and the 

availability of communication infrastructure, to assess 

the potential PMU sites. 

For transient issue, the response time is typically 

inside 100 ms with which programmed assurance 

gadgets make a move without human choice; while for 

long haul dependability, control room administrators 

have sufficient opportunity to become familiar with 

the circumstance by reproductions or encounters. 

Notwithstanding, for the circumstance between those 

two situations, choice in a moderately brief timeframe 

is fundamental. Regardless of that the clumping 

handling artificial insight (AI) could help the dynamic 

interaction, the inactivity suffered by numerical 

estimations is grievous. Choice tree glances promising 

in managing moderate information measure, while 

steam digging is fit for huge information measure for 

dynamic. A decision tree built from data stream using 

Hoeffding bound was proposed by Domingos and 

Hulten [42]. A main tree classifier and a cache-based 

classifier which can handle high-speed data streams 

are used to facilitate the intelligent decision making. 

The stream mining techniques require no model 

information but achieve on-line SA with reasonable 

accuracy, processing time and computational 

resources [43–45]. 

There are some examples of WASA application. The 

situational system SMDA (ver5.0) was used for wide-

area monitoring and event detection in Hydro-Quebec 

[46]. NYISO used the real-time and off-line data to 

display the information on the dashboard which alerts 

operators of anomalies including voltage drop, 

transient oscillation, line tripping [7]. Peppanen et al. 

[47] developed a distribution system state estimation 

(DSSE) and situational awareness system to monitor 

Georgia Tech campus distribution system and 

deployed the 3-D graphical user interface to enhance 

situational awareness. The data collected by 

Oklahoma Gas & Electric via PMUs to conduct 

WASA in Oklahoma and western Arkansas 

 

IV.OTHER APPLICATIONS 

 

Table 1. Big Data Applications in Smart Grids – Methods and Case Studies. 

Application Ref. 

# 

Method(s) Case Studies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Renewable 

 

[28] 

The means of communications through 

long distance or remote stations using 

energy efficient cellular communication 

networks. 

Off-grid or standalone base stations powered by local 

small-scale renewables to not require grid power for 

communication. 

 

[29] 

Multiple models for current, future, and 

virtual energy markets used to optimize 

PV integration into a micro grid. 

A 65 solar panel array with 15 kWH energy storage is 

simulated. The system operation is evaluated without any 

energy sales, with sales restricted to local users, and sales to 

both local users and the grid.  

 

 

 

[31] 

An enhanced K-means algorithm, named 

Time Series Clustering (T.S.C) K-means, 

combined with Multilayer Perceptron 

Neural Networks (MLPNN) for solar 

radiation forecasting. 

Several meteorological time-series datasets are used to assess 

the performance of the proposed T.S.C K-means clustering 

method and its comparison with other clustering techniques 

including K-means*, K- means++, K-means, self-organizing 

map (SOM), fuzzy C-means (FCM), and K-Medoids. 

Solar radiation datasets from different US states are used to 

evaluate the accuracy performance of the developed hybrid 

forecasting method and its comparison with state-of-the-art 

forecasting techniques. 
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energy  

 

 

[32] 

A novel time-series based K-means 

clustering method, named T.S.B K-means, 

combined with discrete Wavelet 

Transform (DWT), Harmonic Analysis 

Time Series (HANTS), and MLPNN for 

wind power forecasting. 

Wind speed, wind power, wind direction, and air temperature 

data from National Renewable Energy Laboratory (NREL) are 

used to evaluate the novel clustering and hybrid forecasting 

methods. A comparative analysis of the proposed hybrid 

method with other well- established forecasting models 

including Persistence, New Reference (NR), Adaptive 

Wavelet Neural Network (AWNN), and Phase Space 

Reconstruction (PSR) are also performed. 

 

 

[33] 

A Transformation-based K-means 

algorithm, named TB K-means, 

combined with MLPNN for solar 

radiation forecasting. 

Several different datasets are used to evaluate the proposed 

TB K- means clustering and compare it with different 

variants of K-means algorithm. 

Solar radiation time series with different characteristics are 

used to provide a comparative analysis between the proposed 

hybrid forecasting and benchmark forecasting models. 

 

 

[34] 

A novel Game Theoretic Self-organizing 

Map (GTSOM), combined with Neural 

gas (NG) and Competitive Hebbian 

Learning (CHL), DWT and Bayesian 

Neural Network (BNN) for solar 

radiation forecasting. 

Historical solar radiation data are used to assess the performance 

of the hybrid forecasting with the proposed GTSOM and other 

clustering methods. 

Demand 

response 

[39], 

[40] 

An extended framework of the 

Stackelberg game model for 

demand response optimization. 

Homogeneous and heterogeneous generation supply quantities, 

generator profit and consumer welfare are evaluated in 

scenarios with few and many generation units and a large 

consumer population. 

 

 

 

 

 

 

 

 

 

 

 

Electric 

vehicle 

 

[49] 

Method of defining a more accurate 

model of electric consumption by light 

duty Plug-in Electric Vehicles (PEVs). 

Uncontrolled home charging of EVs and uncontrolled 

“opportunistic” charging at public locations are simulated 

based on travel survey data. 

 

[51] 

A fuzzy expert method for online 

management of Evs’ 

charging demand. 

An IEEE 38 bus distribution test feeder including charging 

stations at 4 nodes is simulated. .Different charging 

solutions/scenarios are implemented on the test system and 

compared. 

 

[52] 

A sliding horizon-based method for real-

time data management and optimal 

coordination of EV charging with 

photovoltaic (PV) generation. 

A 33 bus system including DG units and EV charging 

stations is simulated. EV charging coordination and its 

effect on PV power curtailment is evaluated. 

 

 

 

[55] 

A hybrid of Auto Regressive Moving 

Average (ARMA), Fuzzy C-Means (FCM) 

clustering, Monte Carlo Simulation (MCS), 

and Particle Swarm Optimization (PSO) 

methods for optimal scheduling of Evs to 

increase the use of PV power for EV 

charging while providing economic 

revenues for Evs’ participation in V2G 

services. 

A 12 MW PV system with 424 Evs is simulated. A collaborative 

strategy is developed between the EV aggregators and PV 

producers to minimize the penalty cost of PV over/under-

production by charging the Evs using the PV power in excess of 

the scheduled output and discharging the V2G power to 

compensate the PV power under- production. The system 

performance with and without EV optimal charging/discharging 

are evaluated and compared. 

 

 

[56] 

A hybrid of ARMA, FCM clustering, 

MCS, and Genetic Algorithm (GA) 

methods for optimal scheduling of Evs to 

increase the use of wind power for EV 

charging while providing economic 

revenues for Evs’ participation in V2G 

services. 

A 10 MW wind system with 484 Evs is simulated. A bilateral 

contract is developed between the EV aggregators and wind 

producers to use the extra wind power for EV charging and to 

discharge the V2G power during the periods of wind power 

deficits. The system performance with and without EV optimal 

charging/discharging are evaluated and compared. 

SMART GRID BIG DATA CHALLENGES AND 

PROPOSED SOLUTIONS 

Three main challenges are identified for big data in 

smart grids: security, quality, and processing location.  

 

BIG DATA SECURITY 

The utilization of large information innovation in keen 

lattices considerably improves the organization 

network at the cost of expanded security weaknesses 

[61]. In a major information setting, security openings 
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can be partitioned into three fundamental parts: 

protection, respectability, and validation. 

 
 

Data Privacy 

Shrewd meters can be a fundamental protection 

concern if their information isn’t safely moved and put 

away [62]. Shrewd meters gather power utilization 

information of matrix clients. Savvy matrix suppliers 

break down such information, which gives 

extraordinary instinct about clients’ practices and 

propensities, to offer keen tweaked administrations 

[63]. A few strategies have been proposed to dispense 

with and limit the protection issue. These strategies 

incorporate yet are not restricted to appropriated 

steady information assortment strategy [64] and 

concealing of utilization information inserted data 

[65]. Since the vast majority of the current 

arrangements don’t think about the tradeoff between 

expenses of lost protection and information spread 

(utility), another technique is proposed to fulfill both 

security and utility prerequisites of brilliant, metered 

information [66]. 

 
 

Data Integrity 

Hazard of trustworthiness assaults is a legitimate 

concern on the grounds that any infringement of 

respectability may cause security weaknesses [67]. 

Client and organization information are generally the 

objectives for honesty assaults, and any change of such 

information intrudes on the information 

correspondence trade and diminishes the whole matrix 

usefulness [2]. For instance, aggressors can eliminate 

the more serious level hubs and supplant them with 

higher likelihood hubs in the force organization, which 

influences the respectability of information [67].  

 
The information uprightness in shrewd frameworks 

and energy markets has been widely explored. An 

investigation introduced the results of virtual offering, 

which is a strategy for making productive 

trustworthiness assaulting techniques with no or 

negligible discovery in energy markets [68]. Another 

examination showed that information honesty assaults 

can cause undesirable energy ages and routings, which 

increment the lattice working expenses [69]. Market 

incomes and their progressions because of information 

trustworthiness assaults are utilized as a proportion of 

foe effect of such assaults [70, 71]. 

 

Data Authentication 

Clients in savvy networks access the correspondence 

framework through confirmation, a cycle that checks 

the client certifications against the records 

accreditation information base [2]. Confirmation is 

utilized as an apparatus to distinguish substantial 

versus non-legitimate personalities inside most of 

existing security countermeasures [72]. One basic test 

that keen networks face is message infused assaults. 

On the off chance that such assaults are not tended to 

as expected, they can altogether diminish the whole 

savvy matrix execution [73]. To address such 
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difficulties, a gathering of researchers proposed a 

confirmation strategy to get keen network information 

correspondence trade with the utilization of Merkle 

hash-tree methods [73]. Another examination 

proposed a protected message verification instrument 

by incorporating Diffie-Hellman conventions and 

hash-based message confirmation strategies [74]. 

Such construction permits shrewd meters inside the 

savvy lattices to finish shared message confirmation 

undertakings with insignificant sign trade and 

dormancy [74] 

 
V.BIG DATA QUALITY 

 

Data quality refers to identifying and to removing the 

outliers before transferring the data to the system [75]. 

Energy power consumption data should have high 

degrees of quality to ensure correct data analysis and 

ultimately proper decisions. The quality issues of 

energy consumption data are categorized into noise 

data, incomplete data, and outlier data [76]. 

5.1Noise Data 

Generally, any data that is difficult to comprehend 

and/or to decode by computers is considered noise 

data, which degrades the data quality [76]. In a smart 

grid context, logical errors and inconsistent energy 

consumption data are considered noise [77, 78]. 

Logical errors are defined as the data that violates any 

given rules and characteristics [79]. For example, if 

the daily customer energy consumption data includes 

25 hours, it is not logical as it exceeds the maximum 

24 hours [76]. Moreover, inconsistent data occurs 

when data does not follow its previously agreed format 

[80], or it lacks sense when comparing its individual 

features [81, 82]. 

 

5.2 Incomplete Data 

As the smart grid data complexity increases, 

incompleteness is occasionally observed in energy 

consumption data. Several methods such as delete 

tuple and data filing are developed to address 

incomplete data [82]. Delete tuple method simply 

removes the entire record with incomplete data. 

However, this method is not appropriate for cases 

where the data set has several incomplete observations 

[76]. In such cases, the incomplete data will be filled 

using advanced algorithms such as average value, 

artificial value, and regression analysis [82]. 

 

5.3Outlier Data 

In statistics, if a point of data is considerably distant 

from other data points, it is called outlier [83]. In 

energy consumption data, an outlier may be treated as 

noise and removed. However, they may hold valuable 

information and therefore, should be detected to 

preserve the data quality. One method of detection is 

data quality mining, which is to audit the data to 

automatically find outliers [84]. In smart grid systems, 

outliers should be detected, identified, and analyzed as 

they contain critical information such as power 

rationing, device failures, and suspicious indicators 

among others [85]. 

 

 

Big Data Challenges in Smart Grids and Proposed Solutions. 

Challenge Ref. 

# 

Solution Advantage / Disadvantage 

 

 

 

 

 

 

 

 

 

[63] 

A regulatory framework equivalent to Health 

Insurance Portability and Accountability Act 

(HIPPA) for smart grid privacy and consumer fraud 

problems 

Would provide clear legislative and legal avenues should 

problems occur / Bureaucracy would not solve some of the 

problems provided 

 

[64] 

A distributed incremental aggregation framework 

for smart meters to protect users’ privacy by using 

homomorphic encryption 

Unidirectional functionality not allowing for passing 

information back to a specific unit; Time delay of 

communication in possible real time operations; Does not look 

into malicious or fraudulent data acquisition. 
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Security 

 

[65] 

Using a battery connected between the home and 

the grid so that anyone looking at the power usage 

will see a battery charging and not the current 

profiles of the actual items using power 

Makes power usage indistinguishable from one day to the next; 

Overhead of installation and usage and wear and tear costs of a 

battery system in a home; Difficult to hide high power usage 

items such as AC, washer, dryer, etc. 

[66] Privacy vs utility: How to get the best of both 

worlds without sacrificing too much on either side. 

Balanced framework / Gives up privacy information of high 

power item usage as well as the price of the battery 

 

[67] 

Targeted attacks vs random attacks to smart grid: 

Building faster and more resilient networks to fend 

off attacks through the communication networks 

Faster networks would entail creating a faster protocol to 

transfer information; Faster connections mean less encryption 

or protections increasing privacy and attacker problems. 

[69] Load Redistribution (LR) attacks: Using Multi-start 

Benders decomposition to find the most damaging 

immediate attack. 

Good attack prevention strategy for this specific type of attack 

[70] Proposing strategies to detect and localize 

malicious attacks 

Capable of detecting attacks on multiple locations / The number 

of locations being attacked expands computation. 

 

1. Techniques used for big data analysis in smart grid 

1.1. The platforms for big data analysis 

 

1. HADOOP 

Big Data is sort of incomplete without Hadoop and 

expert data scientists would know that. An open-

source Big Data analytics tools, Hadoop offers 

massive storage for all kinds of data. With its amazing 

processing power and capability to handle 

innumerable tasks, Hadoop never allows you to 

ponder over hardware failure. Though you need to 

know Java to work with Hadoop, it’s worth every 

effort. Knowing Hadoop will put you ahead in the 

recruitment race 

 
Pros: 

• Hadoop’s core strength is its HDFS (Hadoop 

Distributed File System), which holds all types of 

data, video, images, JSON, XML and plain texts 

across the same file system. 

 

 

Quality 

 

[75] 

The data mining-based and the state 

estimation-based electricity consumption 

outlier data detection methods 

Data mining algorithms are faster and better at detecting 

outliers than traditional methods / Does not account for 

missing or redundant data. 

 

[82] 

Developing a data mining prototype system 

(RMINE) for fault diagnosis or system 

malfunction detection 

Capable of obtaining the minimal diagnostic rule set to 

derive a logical decision in assisting maintenance 

engineers to diagnose faults 

 

[86] 

Introducing a new class of attacks, called 

false data injection attacks against 

monitoring of PMUs or smart grid sensors 

for state estimation 

 

N/A 

 

Processing 

location 

[88] Using embedded neural networks to analyze 

edge-based load information. 

Offers privacy concerns by identifying what is being 

used in a specific area. 

[89] Creating a micro grid out of a smart home Makes a good framework out of the smart home / Lack 

of intelligent connections to the grid makes it unusable. 
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• Very useful for research and development 

purposes. 

• Offers easy data access. 

• Extremely scalable 

Cons: 

• Data redundancy can often cause disk space 

problems. 

• For improved efficiency, I/O operations should 

have been optimized. 

 

Pricing: With the Apache License, this Big Data 

Analytics tool is free to use. 

 

2. XPLENTY 

This cloud-based Big Data Analytics tool for 

integrating, analyzing and preparing data brings all 

data sources together. Its intuitive graphical interface 

allows you with ETL, ELT or replication. Xplenty is a 

full toolkit to create low-code and no-code data 

pipelines. It provides solutions for marketing, 

distribution, and development. 

 
 

Pros: 

• It is a cloud network that is elastic and scalable. 

• You can immediately access a range of data stores 

and a diverse collection of data transformation 

components. 

• By using the rich expression language of Xplenty, 

you can incorporate complex data preparation 

functions. 

• It offers a customized and flexible API 

component. 

Cons: 

• There is no option for monthly subscription. 

 

3. CDH (CLOUDERA DISTRIBUTION FOR 

HADOOP) 

CDH is a complete open-source Big Data Analytics 

tool and includes Apache Hadoop, Apache Spark, 

Apache Impala, and many more on its free distribution 

site. It enables you to acquire, store, manage, discover, 

model and distribute limitless data. 

Pros: 

• Complete and accurate distribution. 

• The Hadoop cluster is very well managed by the 

Cloudera Manager. 

• Simple to deploy. 

• The administration is less complicated. 

• High security and administration 

Cons: 

• Few complicated user interfaces like CM service 

charts. 

• Several suggested installation methods are 

confusing. 

 

4. R 

R is one of the most comprehensive Big Data analytics 

tools for statistical analysis. The software ecosystem 

is open-source, free, multi-paradigm, and diverse. The 

programming languages are C, Fortran, and R. Most 

extensively used by statisticians and data miners; its 

use cases include data processing, data manipulation, 

analysis, and visualization. 

Pros: 

• The greatest value of R is the immensity of the 

ecosystem package. 

• Unparalleled Graphics and charting features. 

 

5. CASSANDRA 

Apache Cassandra is free of cost Big Data analytics 

tools designed to handle large quantities of data across 

many commodity servers, offering high availability. 

The open-source NoSQL DBMS uses CQL 

(Cassandra Structure Language) to interact with the 

database. 
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Pros: 

• There is no single failure point. 

• It manages huge data really quick. 

• It has log-structured storage and linear scalability. 

Cons: 

• Extra troubleshooting and maintenance work is 

required. 

• It could have boosted the clustering. 

• There is no row-level locking feature. 

 

6.  KNIME 

KNIME is an abbreviation for Konstanz Information 

Miner, which is an open-source Big Data Analytics 

tool. It is used for enterprise reporting, integration, 

data mining, data analytics, and business intelligence. 

It supports operating systems such as Linux, and 

Windows X. 

Pros: 

• Quick to use ETL 

• It is very well integrated with other technologies 

and languages. 

• Rich set of algorithms. 

• Workflows are highly functional and structured. 

• A lot of manual tasks are automated. 

• There are no problems with stability. 

• Simple to configure. 

Cons: 

• It covers nearly the whole of RAM. 

• Might have enabled graph database integration. 

 

7. DATAWRAPPER 

Datawrapper is an open-source Big Data Analytics 

tool for data visualization. It enables its users to 

produce clear, accurate, and embedded charts easily. It 

is broadly used in newsrooms across the world. 

Pros: 

• Operates exceptionally well on any type of device 

– smartphone, laptop, or tablet. 

• Rapid and interactive responses. 

• Excellent export and customization options. 

Cons: 

• Has limited options for color palettes. 

 

8. MONGODB 

MongoDB is a contemporary alternative to databases. 

It’s one of the best Big Data Analytics tools for 

working on data sets that vary or change frequently or 

the ones that are semi or unstructured. Some of the best 

uses of MongoDB include storage of data from mobile 

apps, content management systems, product catalogs, 

and more. Like Hadoop, you can’t get started with 

MongoDB instantly. You need to learn the tool from 

scratch and be aware of working on queries. 

Pros: 

• Supports various platforms and technologies. 

• No install and maintenance hiccups. 

• Robust and cost-effective. 

Cons: 

• It has a limited analytics resource. 

 

9. LUMIFY 

Lumify is one of the open-source Big Data Analytics 

tools to analyze and visualize large data. This Big Data 

Analytics tool’s key features include full-text search, 

2-dimensional and 3-dimensional graphical viewings, 

automated templates, multimedia analysis, real-time 

project-or workplace collaboration, to name but a few. 

Pros: 

• Scalable and secure 

• A dedicated full-time development team backs it. 

• Supports the cloud-based environment and works 

excellently with Amazon’s AWS. 

It is a free Big Data Analytics tool. 

 

10. HPCC 

HPCC is an abbreviation for High-Performance 

Computing Cluster. This open-source Big Data 

Analytics tool is a complete Big Data solution over a 

highly scalable supercomputing platform. HPCC is 

also known as DAS (Data Analytics Supercomputer) 

and was developed by LexisNexis Risk Solutions. 

Written in C++ and ECL (Enterprise Control 

Language), it is based on a Thor architecture that 

enables data parallelism, pipeline parallelism, and 

system parallelism. 

Pros: 

• High performance due to the commodity 

computing clusters-based architecture. 

• Enables parallel data processing. 

• Agile, robust and highly scalable. 

• Cost-effective and comprehensive 

Pricing: It’s a free Big Data Analytics tool. 

 

11. STORM 

Storm is a cross-platform and open-source Big Data 

Analytics tool from Apache. Written in Java and 
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Clojure, Backtype and Twitter are the developers of 

the storm. Several big brands like Yahoo, Alibaba, and 

The Weather Channel, to name a few are organizations 

that use Storm. 

Pros: 

• There are many applications: real-time analysis, 

logging, ETL (Extract Transform Load), 

continuous computation, distributed RPC, 

machine learning. 

• Agile, reliable, and highly  scalable. 

Cons: 

• Difficult to understand and to use. 

• Have debugging complexity. 

Pricing: It’s a free Big Data Analytics tool. 

 

12. RAPIDMINER 

Rapidminer is a cross-platform Big Data Analytics 

tool that provides integrated data science, machine 

learning, and predictive analysis framework.  

Pros: 

• Availability of code-optional GUI. 

• Well integrated with cloud and APIs. 

• Excellent customer support and technical 

assistance. 

Cons: 

• Improvements should be made to online data 

services. 

 
13. QUBOLE 

Qubole Data Service is a Big Data Analytics tool that 

administrates, learns, and optimizes its use 

independently. This helps the data team to focus on 

business performance. 

Pros: 

• Highly flexible and optimized scalability. 

• Improved Big Data Analytics adoption. 

• Simple to use.  

• Accessible worldwide in all AWS domains. 

 

14. TABLEAU 

Tableau is a Big Data Analytics tool that offers various 

integrated solutions that help the world’s biggest 

organizations visualize and understand their data. It 

provides custom dashboards in real-time and can 

manage all the data sizes, and can be easily accessed 

by technical and non-technical professionals. It is one 

of the best Big Data Analytics tools for data 

visualization and exploration. 

Pros: 

• Impeccable Data blending capabilities. 

• Provides a bouquet of intelligent characteristics. 

• Outstanding and quick support for connection 

with most of the databases. 

Cons: 

• Could provide an integrated deployment and 

migration tool between different table servers and 

environments. 

 
15. SAMOA 

SAMOA is an abbreviation for Scalable Advanced 

Massive Online Analysis. It is an open-source  Big 

Data Analytics tool for big data stream mining and 

machine learning. It enables you to build ML 

algorithms and run them on many DSPEs( Distributed 

streaming learning devices (distributed stream 

processing engines). 

Pros:  

• Simple to use, highly scalable and fast. 

• Based on Write Once Run Anywhere (WORA) 

architecture. 

Pricing: It’s a free Big Data Analytics tool. 

 

VI.FUTURE OF BIG DATA IN SMART GRIDS 

 

The future of research in big data use in smart grids is 

diverse. Big data offers many solutions to the bi-

directional flow of information as well as processing 

and analyzing that information. For a smart grid, big 

data will be a necessity for realizing the best possible 

solutions for how we as a society should distribute and 

utilize renewables as well as how to analyze systems 

for abnormal conditions such as faults or power 

outages. The future of the smart grid will depend on 
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building these frameworks such that they can be 

implemented and utilized in a meaningful way. This 

will include the planning to real time operation for 

generators and consumers for current practices to 

those planned for by 2050 [91]. 

 

VII.CONCLUSION 

 

This paper presents the definitions and applications of 

integrating big data technologies in smart grid systems 

based on current studies and research developments. 

Several research articles are reviewed to understand 

the current challenges and solutions of big data 

applications in smart grids and to identify research 

gaps. Thus, this survey provides new directions to 

further investigate such applications and challenges to 

propose innovative solutions for filling the identified 

research gaps. 
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