
© May 2021| IJIRT | Volume 7 Issue 12 | ISSN: 2349-6002

IJIRT 151230 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 241

TANDOM: A Serverless SPA Using React and AWS

Aparajita Gogoi1, Mr. Vignesh S.2

1MCA Scholar, School of CS & IT, Dept of MCA, Jain (Deemed-to-be) University, Bangalore, India.
2Assistant Professor, School of CS & IT, Dept of MCA, Jain (Deemed-to-be) University, Bangalore, India

Abstract - Serverless computing has gained prominence

in being the most compelling archetype in the

deployment of various services and applications. Of late

there has been a tremendous change in cloud

technologies such as programming models, services and

abstractions which is brought about through

implementing serverless computing architectures in

different products by cloud practitioners such as

software application architects, or developers and end

users. Since it is a relatively new technology and also due

to its high architectural effect, its acquisition is lacking

quite behind, and it is not being utilized to its maximum

capacity as it should have been. And as such most

developers or engineers might be aware that now cloud

computing is not synonymous to only backend

developments and devOps but due to rise in backend-as-

a-service, the barrier to entry into cloud computing has

been significantly lowered for frontend developers. In

this project we will try bridging the gap between

frontend and backend development by leveraging a new

generation of services and tools provided by the AWS

Amplify Framework, we will verify how such a serverless

application can be adopted in running a business like an

“hotel app” rather than using traditional web

technologies. This serverless technology gives us a new

opportunity to govern the reduction of some amount of

operational costs by efficient optimization and

management of cloud resources, or managing scalable

cloud applications or entire development stack, one such

ecosystem is that of React and Aws. We shall be using

React to develop the front-end part of the website while

the backend will be taken care of by using AWS Amplify

services and other Aws services like DynamoDB or

Lambda to maintain the database or some API’s.

Index Terms - Amplify, AWS, Dynamo, Lambda, SPA

I.INTRODUCTION

Serverless computing permits us to fabricate and run

various types of applications and services without

even having to contemplate about servers. In

serverless computing, servers are still present, but the

key difference is that AWS will handle all the server

management.

AWS Lambda has acquired a ton of fame all

throughout the most recent couple of years, with

numerous architects/developers embracing it to

function microservices and APIs for a negligible part

of the expenses of traditionally facilitated hosted

systems with predominant scaling abilities. Nowadays

we can run fully functional Node.js web applications

with React frontends on AWS Lambda without the

requirement for any dedicated EC2 instances. With

Lambda, architects are utilizing serverless

infrastructure with Amazon functioning as a delegate

between the client and code execution in a software

containerization. environment, AWS Lambda does the

following: Gives rules architects to be followed when

submitting the code and how to enter the code into

containers by means of automated measures, thus the

whole backend development process becomes a well-

managed service for the end users.

One of the popular front-end frameworks is React

which can be implemented to create single-page

applications (SPAs). React has recently emerged as

one of the indispensable technologies upon which the

building of the new and modern web development is

being done on. In this project, we have tried to

configure how a complete a web development

environment in association with React is utilized to

create an ecosystem which enables us in building

applications. We went through all the vital and

essential steps in getting our React app already which

included deploying, connecting the frontend and the

backend, and finally the react app being supported.

Next, we went through as to how we can create certain

React components to categorize and show our

application. After that we configured how to add cloud

services, for example like a database using JSON data

and performed several checks in order to that ensure

our code works on the cloud platform that we have

selected. AWS and DynamoDB are interacted through

© May 2021| IJIRT | Volume 7 Issue 12 | ISSN: 2349-6002

IJIRT 151230 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 242

the command line for example to create and use a

DynamoDB table. Performing a lot of checks like how

to create, load, and test a new role that can execute

Lambda functions and interact with DynamoDB was

part of this project. At last, we created and deployed

an API gateway and concluded the project by

configuring how to connect our React code to an API

Gateway endpoint.

Software has become part of our daily lives now.

Sadly, most organizations actually cannot deliver

software effectively in the way that they are supposed

to, significantly less do so as at the speed they are

expected to remain serious. For the individuals who

wish to keep up, not to mention lead, software delivery

and its functionality should be drastically improved.

This is when serverless Architecture comes into the

picture, it’s based on cutting edge public cloud

benefits that auto-scale and charge just when it is

utilized. At the point when it scales, capacity planning,

expense management are automatically done, the

outcome is software that is simpler to set up, keep up,

and mostly up to 99% less expensive.

However, Serverless Architectures are new and hence

require a change by the way we recently pondered

about architectures and work processes. Our objective

was to build and work on a serverless application, in

one basic, incredible, and exquisite experience.

II. PROBLEM STATEMENT

In conventional web environments, the proportion at

which the computing power is squandered is

extremely high. For instance, we were needed to pay

to the service provider while paying little mind to the

way that our servers were utilized or not. In any case,

in the serverless infrastructure model, the valuing is

determined dependent on the execution time and the

occasions your functions are summoned. This can be

bridged by utilizing serverless computing. With the

ascent in managed and serverless administrations, it

has gotten a lot simpler, for generally client-side

designers to use these adaptable back-end services to

fabricate the sorts of applications that, previously,

would be out of their scope. Also, traditional servers

are portrayed as a virtual machine tuning in for

requests on the port number 80. For a long while now,

this has been the norm of web development. Then

again, the serverless model is one of many cloud

computing alternatives which endeavours to remove

the agony of scalability. Instead of running all day,

every week a serverless application adopts an alternate

strategy, it waits that as soon as requests comes in, it

starts up as many instances according to the

requirement depending on the situation to deal with

the requests, closing down once the work is finished.

Having said all this, in this project we will use

different Aws services like Amplify and React

JavaScript to build a practical single page serverless

application on the cloud in order to find out how a

serverless backend environment works and also how

different is this from the traditional process.

III. LITERATURE REVIEW

Some of the methodologies used were:

1. For checking performance: Fast boot (Container

cache, pre-warming, container optimization,

Looking for other abstractions); Communications

(Optimizing the storage server, Optimizing the

communication path), Security issues: abstraction

for function.

2. Configuring AWS Lambda for responding the

notifications from the Auto Scaling Group: AWS

Lambda function was configured in a way in

which snapshot was automatically taken and then

a new AWS EC2 instance was attached that was

launched by the auto scaling group.

3. Survey of serverless commercial platforms like

AWS Lambda, Alpha release, Google Cloud

Functions, Microsoft Azure Functions, IBM

OpenWhisk on the basis of different

characteristics like Cost, performance, limits,

security, deployment, accounting, programming

languages, monitoring and debugging. Also

benefits and drawbacks, workloads, frameworks

etc.

4. Bottle necks and performance were determined on

the basis of the following:

• Serverless Computing

• Performance Testing

• Machine Learning and leveraging it for

performance Validation.

5. An application called ExCamera, which uses

cloud computing in addition with various

workflows to alter, change, and encode recordings

with low latency and cost was utilized to respond

to the inquiries posed by conveying ExCamera

© May 2021| IJIRT | Volume 7 Issue 12 | ISSN: 2349-6002

IJIRT 151230 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 243

utilizing the IaaS model. They inferred that

serverless registering model is on the ascent and

is giving customary cloud foundation a run for

their cash by dividing applications into short-

running, progressively adaptable, and stateless

capacities. However, serverless likewise presents

new issues in both performance and security

regions.

The following conclusions were made:

1. They concluded that serverless computing model

is on the rise and is giving traditional cloud

infrastructure a run for their money by splitting

applications into short-running, dynamically

scalable, and stateless functions. But serverless

also introduces new problems in both

performance and security areas.

2. The paper stated that serverless architectures can

be considered as a new era of computation which

can be adapted for use in much broader sense and

there are possibilities of exploring more research

avenues for the academic and research

community in the arena of serverless computing.

3. The Function-as-a-Service (FaaS) model lends

itself well to a number of common distributed

application patterns, including compute-intensive

there a wide variety of problems in this new

technology ranging from infrastructure issues

such as optimizations to the cold start problem to

the design of a composable programming model.

4. The solution to improve performance-based

issues/ bottlenecks and also to be able to measure

is to use different kinds of artificial intelligence

and machine learning for performance

engineering.

5. Fine billing granularity, control and insight, the

ability to run very fine arbitrary functions on

request are offered by the current serverless

technologies to its users however the drawback is

that it works just on a few chosen applications.

IV. PROPOSED SYSTEM

React has recently emerged as one of the indispensable

technologies upon which the building of the new and

modern web development is being done on. In this

project, we have tried to configure how a complete a

web development environment in association with

React is utilized to create a ecosystem which enables

us in building applications. We went through all the

vital and essential steps in getting our React app

already which included deploying, connecting the

frontend and the backend, and finally the react app

being supported. Next, we went through as to how we

can create certain React components to categorize and

show our application. After that we configured how to

add cloud services, for example like a database using

JSON data and performed several checks in order to

that ensure our code works on the cloud platform that

we have selected. AWS and DynamoDB are interacted

through the command line for example to create and

use a DynamoDB table. Performing a lot of checks like

how to create, load, and test a new role that can

execute Lambda functions and interact with

DynamoDB was part of this project. At last, we

created and deployed an API gateway and concluded

the project by configuring how to connect our React

code to an API Gateway endpoint.

Fig 4.1: Proposed Architecture

V. METHODOLOGY

React has rapidly become the trendiest technology for

front-end web and mobile development available.

Along, with its noted use on sites like Facebook. And

Netflix react offers an incredibly rich and flexible

programming model, all built on JavaScript along with

deep integration with cloud and serverless platforms,

like, Amazon web services. The objective of this

project is to show how to take a well, design HTML

and CSS website converted into react, and then

organize and optimize our entire react environment to

manage versions, and deployments, and push it all to

© May 2021| IJIRT | Volume 7 Issue 12 | ISSN: 2349-6002

IJIRT 151230 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 244

a cloud platform. We integrated with an API use, a

NoSQL database and do all of it using well-established

react best practices. React is at its heart, a front-end

technology and while it does a lot of things, its primary

purpose is to give you a programmatic method to build

very rich, front-end interfaces and its only part of a

larger ecosystem. Also, to learn a lot about other

Technologies and both how to set them up on their

own and then how to tie them into the react code.

1.React as the Front-End of an Ecosystem

Setting up our React environment: we're going to need

a tool called npx. And if we have ever used the node

package manager or npm, we may already have npx

and familiarity the easiest way to find out if we have

this tool is simply go out to a terminal and type in npx

and we should see a long line of help text. The next

step is to deploy our React application to check if all

the dependencies have been correctly installed by

using the command npm start by changing into the

directory after which we connect our code to GitHub

so that whenever we make changes it can be reflected

in our repository too. Add AWS support with Amplify

is important to connect to know what commit was

happening, what did the code look like as amplify, this

Is a great way to check that out, we now need to update

our local application and deploy to AWS.

2.Build React Components to Render Structured Data

In this phase we develop our frontend that is basically

building a site based on structured data after which we

must organize your app by taking advantage of data-

driven components using react. Next step is to build a

menu based on dynamic data. At first, we will use

JSON as a Mock for Dynamically Loaded Data (Links

Json to simulate data in a database and then use that

data dynamically in header. There are a number of

other components that have similar cases, where we

really should be using Dynamic data) after which we

shall actually Load JSON as data in our React

component. It is always a good practice to save our

changes to GitHub.

3.Using DynamoDB for simple data storage

So, at this stage, we will download and install the

AWS command line interface. After that is completed,

we need to do is create a user so that our CLI will use

the command line interface to interact with AWS. In

other words, this user will have the permissions given

by the CLI. Now that we have the CLI and an IM user,

we are ready to actually set up our database. For this,

we need to log into AWS, we are going to call this user

Dynamo user and it is going to need programmatic

access. After the user creation is completed, we will

get access ID, and secret, secret access key. Next step

is to create DynamoDB tables for our components. We

will take the help of the AWS console to Load data

into DynamoDB, we can do this by two ways: Loading

single-value data into DynamoDB programmatically

and loading multi-value data into DynamoDB

programmatically.

4. Load Dynamic Data into React Components

In this phase we create a role for Lambda and

DynamoDB access and then Load DynamoDB data

from a Lambda function, also perform a test to check

our Lambda functions from AWS. After completion of

that test, we write Lambda functions for all tables in

our database. Next step is to create an API Gateway

and finally create a GET endpoint for services, then

deploy our API Gateway to a new stage. We must

validate that our endpoint is dynamic and then add

more endpoints to your REST API.

5. Connecting React to an API

In this phase we add a React Hook and a state variable,

after that we create a side effect with the use Effect

Hook. We now try to request data from an API

Gateway and finally update CORS headers for our

application. Our Tandom Hotel API calls are now

finished.

We can now view the application we deployed into

AWS using its services

V.RESULTS

© May 2021| IJIRT | Volume 7 Issue 12 | ISSN: 2349-6002

IJIRT 151230 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 245

VI.CONCLUSION

After completion of the implementation, it was found

that although cloud computing is a new concept it

definitely has improved the entire web development

right from deploying the website to maintaining the

database or handling the servers. There were certain

pros as well as cons. Some of the cons I observed were:

Serverless empowers architectures which are event-

based, which a many individuals might not be

acquainted with. In addition to that, serverless is so

relatively new that the tools that are currently available

right now is moderately juvenile. It tends to be difficult

to get things done as basic as stack traces. It has a

heavier dependence on vendor ecosystems, so there's

always that risk of vendor lock-in. Testing and

debugging are often difficult in a serverless

infrastructure. Also, Serverless infrastructures are not

the right fit for long-running processes. On the positive

side the few observations I made are: The server

management is handled by the service provider.

Engineers are only billed for the server space utilized

hence reducing cost to a great extent. The possibility

of quick deployments and updates make it very

efficient. Code runs nearer to the end user client thus

latency is often reduced.

REFERENCE

[1] Mingyu Wu, Zeyu Mi, and Yubin Xia (2020),” A

Survey on Serverless Computing and its

Implications for Joint Cloud Computing”, 2020

IEEE International Conference on Joint Cloud

Computing (JCC)

[2] Dr. R. Arokia Paul Rajan, 2018, “Serverless

Architecture-A Revolution in Cloud Computing “

[3] Ioana Baldini, Paul Castro, Kerry Chang, Perry

Cheng, Stephen Fink, Vatche Ishakian, Nick

Mitchell, Vinod Muthusamy, Rodric Rabbah,

Aleksander Slominski, Philippe Suter, (2017),

“Serverless Computing: Current Trends and Open

Problems”, arXiv:1706.03178v1 [cs.DC] 10 Jun

2017

[4] Deepak Khatri, Sunil Kumar Khatri, Deepti

Mishra, June 2020, “Potential Bottleneck and

Measuring Performance of Serverless

Computing: A Literature Study “, 2020 8th

International Conference on Reliability, Infocom

Technologies and Optimization (Trends and

Future Directions) (ICRITO) Amity University,

Noida, India. June 4-5, 2020

[5] Van Eyk, E., Toader, L., Talluri, S., Versluis, L.,

Uta, A., & Iosup, A. (2018), “Serverless Is More:

From PaaS to Present Cloud Computing”, Delft

University of Technology and Vrije Universiteit

Amsterdam

[6] Comparison of Serverless architectures, Accessed

on 2nd August 2018,https://dzone.com/articles/4-

use-cases-of-serverless-architecture

[7] https://martinfowler.com/articles/serverless.html

[8] https://www.lynda.com/Amazon-Web-Services-

tutorials/Build-React-Application-Using-AWS-

Amplify/2976141-2.html

