
© June 2021| IJIRT | Volume 8 Issue 1 | ISSN: 2349-6002

IJIRT 151837 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 958

Simulation of Autonomous Car using Deep Learning

Nidhi Gupta1, Rishabh Kumar2, Raju Patel3, Raghvendra Kumar4, Shivam Rathour5

1Assisstant Professor, CSE Department, Raj Kumar Goel Institute of Technology
2,3,4,5Student, Raj Kumar Goel Institute of Technology

Abstract - In this world of rapid advancement of

computer technologies, like CNN, open-cv etc., Deep

learning has grown tremendously in the field of artificial

intelligence and can be used to automate almost

anything, that includes modern technologies. These

technologies can be applied to the car so that it requires

minimum interaction with driver to run on the road or

we can say that to program a car in such way that it

drives in self-governing mode. With help of existing

simulator, we can use it to generate the enormous

amount of data that includes images and csv containing

car details. We train the network with generated images

(left, right, center) to predict the required steer angle to

keep the car on track. This approach decreases down the

resolution of images to train the network very rapidly.

Before sending the data to network it is preprocessed

which is very much beneficial. After the preprocessing

data is send to convolutional neural network in form of

fixed size batches formed by random collection of images

with their corresponding steering angle within the

dataset generated to train and predict the steering angle

as a final result. The Model achieved better performance

when it is provided even more dataset. Here, we observe

many Convolutional neural network architectures to

obtain better performance with lesser load.

Index Terms - Autonomous car, CNN, Multilayer.

I.INTRODUCTION

Autonomous cars are the cars that require no

interaction with driver to run on the track.

Autonomous car relies on central processing unit,

Graphics processing unit and sensors to run car

without the occurrence of faults.

If a person wants to go hospital or to some other place

but he or she not able to drive or don’t know how to

drive, in this case the person will have to hire a driver

which may be costly for person to afford. That

situation might be unpleasant for the car owner. To

avoid such type of unwanted situations autonomous

car can play a key role and can be affordable for the

person.

Here, with the help of simulator we are creating an

autonomous car that has capability to sense its

surrounding environment through the three-camera

placed in front the car. And to compute the steer angle

by which the car have to turn to keep itself on track.

This will save the people’s lives by avoiding accident

like drunk and drive and it will keep car on track by

avoiding running of the road With the rapid

development of various types of sensors such as radar,

camera systems and wireless communications,

autonomous driving assistance systems have come a

long way in past years. Self-driving cars or

autonomous vehicles are reaching a point where

they’re as good, or better than human drivers.

Companies like Google, Tesla, and Uber are each

pushing the limits of innovation to dominate the space.

The main requirements for autonomous vehicles are to

reduce the incidence of accidents and traffic jams, to

respect traffic regulations and to be able to drive

longer distances more safely. All of these without

human intervention.

Autonomous car uses the supervised learning as it

takes steering angle as target value along with the

images. Prediction of the steering angle can be made

possible using multi-layer convolutional neural

network architecture because single layer CNN cannot

process the highly complexed images and cannot

predict the desired target value.

The purpose of the paper is to reduce the loss function

between the actual and predicted values of the target

value so that that the accuracy of the model can be

increased on the given large dataset generated by

simulator. By generating the large amount of dataset,

we can use it to train the CNN model to predicted

steering angle. Our primary goal is studying the three

different CNN architecture to choose well

sophisticated architecture that captures and mimic the

driving scenario of a driver in real life.

II. REALATED WORK

© June 2021| IJIRT | Volume 8 Issue 1 | ISSN: 2349-6002

IJIRT 151837 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 959

In past few years Deep learning networks are very

helpful in automation filed. Convolutional neural

networks (CNN) are the most important for image

processing. CNN is used in enormous number of

technical fields like handwriting recognition, face

recognition and various application in computer

vision. They are introduced by Yann LeCun, a

postdoctoral computer science researcher, to create a

very basic of image recognition network. CNN is very

important neural network. These are used recognition,

segmentation and prediction of target value.

The DARPA (Defense Advance Research Project

Agent) created an autonomous driving system known

as DAVE which used images captured from the two

front cameras along with steering angle to train the

system to drive.

The Autonomous Land Vehicle in a neural network

(ALVINN) is multilayer backpropagation network

developed by researchers at Carnegie Melion

University. It uses images captured by camera and

distance measure by laser to train the machine to

predict the direction in which car should move to keep

the car on track.

There are many pre-trained networks for image

recognition. Among from them VGG16 have show

very good results but it contains huge number of

parameters, thus it requires enormous number of

resources to train the machine and can lead to

overfitting of data which may predict the wrong

steering angles and can led the car run into an accident.

III. METHODS

A. Data gathering and simulator

We used the term 1 Udacity simulator to generate the

data. This Udacity simulator is build with the help of

Unity and it is open sourced for everyone to use it. we

can easily generate the data by using simulator. The

data is generated in form of csv log file containing

state of vehicle (steer angle, brake, throttle and name

of the images (left, centre, right) captured by cameras

(left, centre, right) at an instance) and it also contain

folder containing those images mention in CSV log

file.

We collected nearly 30000 images collectively from

all three cameras (left, centre, right) in 1920X1050

resolution along with vehicle data when the car is

driven around the track.

Fig. 3.1.1 Centre camera image

Fig. 3.1.2 Left camera image

Fig. 3.1.3 Right camera image

B. Avoiding overfitting

To avoid the overfitting of the model on any value

during the training we need to remove some of the data

on that value. In the dataset, there are enormous

number of data entries of the steering angle are very

close to zero. So, we deleted some of the entries in

dataset to spread the values across the range and to

avoid the overfitting.

Fig. 3.2.1 Data before.

© June 2021| IJIRT | Volume 8 Issue 1 | ISSN: 2349-6002

IJIRT 151837 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 960

Fig 3.2.2 Data after.

C. Lowering the resolution

The images generated by the simulator are in high

resolution (1400X1050), so to reduce the training time

we lowered the resolution of the captured images.

Thus, in this way, we have prevented the machine

from training with noisy data present in the image that

could affect the performance of the model. And by

downsizing and cropping we remove the unwanted

object present in the image like road side trees, pole

and sky etc. and keeps only the main parts like track in

the centre of the image.

D. Image Flip

The chosen random image is flipped horizontally in

the process along with its steer angle by multiplying it

by -1. After the image is chosen then it is decided with

the constant probability to whether to flip the image or

not. This helps to add new data to the dataset if the

image is flipped so that model can be trained in every

possible steering angle more accurately.

Fig. 3.4.1 Original image

Fig. 3.4.2 Flipped image

E. Image processing

After the downsizing and cropping of the image, it is

converted from RGB image to YUV image. YUV is a

colour coding system that is commonly used in colour

image pipeline. The main reason is that brightness is

important than the image colour, so you can lower the

resolution of V and U while keeping Y resolution

same. Therefore, the u and v resolutions can be

lowered, they are compatible with CNNs, and CNNs

can be trained with the same precision many times

faster than traditional RGB models. After the

conversion we normalise the pixel values of whole

image by dividing it by 255 and then store it into

multidimensional array to feed it to network.

Fig 3.5 Processed image ready for input.

F. Convolutional neural network architectures

We have designed three multilayer CNN architecture

with the aim of comparing these architectural models

to get maximum accuracy model and to minimise the

loss while training the model.

The first architecture consists of five Convolutional

layers along with varying filter layers like

Maxpooling, Dropout, Flatten, and Dense layer. In this

last Dense layer output only one value which is

considered the predicted steering angle for processed

input image passed to first convolutional layer as

shown below in Fig. 3.6.

Fig. 3.6 Architecture of first model.

© June 2021| IJIRT | Volume 8 Issue 1 | ISSN: 2349-6002

IJIRT 151837 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 961

In this architectural model we use small kernel size of

(3,3) because it reduces computational costs and

Weight sharing that ultimately leads to lesser weights

for back-propagation. And in this architecture, we use

the RELU activation function.

Fig 3.7 The graph of RELU activation function.

f (x)=max(0,x)

In the second architecture, there are four convolutional

layers and also along with varying no. of filter layers

Maxpooling, Dropout, Flatten, and Dense layer. The

output of last Dense layer is the steering angle

calculated for the input image. The architecture

second of the CNN model is shown in Fig. 3.8.

Fig. 3.8 Architecture of second model

we use the ELU activation function. And also, we took

set the strides to (2,2) and kernel size to (5,5) for the

first three convolutional layers and for the rest

convolutional layers we set kernel size to (3,3) to

increase the performance of the architecture. And

expectedly the training parameter were decreased to

train the model in less time.

Fig 3.9 the graph of ELU function.

In the third architecture, we have Five convolutional

layers, with some more regulators to increase the

accuracy the architecture. In this architecture we there

are large no. of trainable parameter because it extracts

very large features from the images which help it to

predict more accurate steer angle. In this we use the

ELU activation function to predict continuous value in

range of {-1, 1}.

This model should be able to predict more accurate

value with the reduced loss over the epochs. This

architecture takes much time to train the model.

Fig 3.10 Architecture of third model.

G. Training and validation

By using the train_test_split function from the sklearn

we split the total image dataset of 31845 images

between training set and the validation set like 80%

© June 2021| IJIRT | Volume 8 Issue 1 | ISSN: 2349-6002

IJIRT 151837 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 962

goes to training set and remaining 20% goes to

validation set randomly. We set the batch size to 300

images for training and to 150 images for validating.

We set the step_per_epoch to 300 and validation_step

to 150 and epoch to 30.

We use Adam optimizer with learning rate of 10-4 and

loss as MSE (mean squared error) which compute the

loss on predicted target value and actual target value.

IV. RESULTS

Fig. 4.1 The loss over epoch during training and

validation for the first architecture.

Fig. 4.4 the accuracy over epoch for second

architecture.

The above fig. 4.1 shows the loss computed by MSE

loss function during every epoch for the first CNN

architecture of. We see the drastic decrement in the

loss over the first few epochs during the training and

validation. And for the rest of the remaining epochs

loss decrease very slowly. Here loss at the 30th epoch

is 0.045 for validation.

The fig 4.2 demonstrate the accuracy for the first CNN

architecture over epochs during training and

validation. This graph shows the average accuracy of

85% for training and validation.

Fig. 4.3 The loss over epoch for second architecture.

Fig. 4.4 the accuracy over epoch for second

architecture.

The Fig 4.3 demonstrate the loss function value over

the 30 epochs during the training and validation. We

see the slight decrease in the loss over every epoch.

The observed loss during the training is 0.062 and

during validation is 0.047.

As shown in the Fig. 4.4 the validation accuracy 94.7%

which is very high. And training accuracy is 79.1%

which is comparatively very low than validation

accuracy.

Fig. 4.5 The loss over epoch for third architecture.

© June 2021| IJIRT | Volume 8 Issue 1 | ISSN: 2349-6002

IJIRT 151837 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 963

Fig. 4.6 the accuracy over epoch for third

architecture.

In the Fig 4.5 for the first few epochs loss has rapidly

decreased then after for remaining epochs less

decrement is seen. The training loss is at 30th epoch is

0.068 and the validation loss is 0.049.

In Fig. 4.6 it is seen that validation accuracy is less

than training accuracy. The validation a accuracy is

75.9% and training accuracy is 84.2%.

By analysing the facts, we see loss over the epoch is

decreasing continuously which mean the model is

computing more accurate target value then before. So

we can say that architecture with more training

parameter will perform better. Hence, neural network

architecture first and neural architecture third will give

better performance than architecture second because

that have large number of trainable parameters.

IV. CONCLUSION

In this research paper, we explained the need of

simulator to generate the data which turn out to be very

effective for the model to train to compute the steering

angle based on input images. The use of simulator save

cost of physical equipments required to collect the

real-world data. And simulator turn out to be very well

efficient for training the model for prediction steering

angle.

The prediction of the steering angle based on the

processed captured images turn out to be fine for CNN

network because it extracts the feature and find the

necessary dependencies required for prediction.

In this paper, we compared the three CNN architecture

to know which architecture can give better

performance. Here we find out that the more parameter

architecture has the better the performance will be.

The first and third architecture the show the better

result than second architecture. The first architecture

shows the accuracy of 85% and it is more than the

other two architectures. The architecture with lesser

trainable parameter should be trained over many more

epochs than epochs in architecture have larger training

parameter to give same performance.

REFERENCES

[1] LeCun, Y., et al. DAVE: Autonomous off-road

vehicle control using end-to-end learning.

Technical Report DARPA-IPTO Final Report,

Courant Institute/CBLL, 2004.

[2] Pomerleau, Dean A. "Alvinn: An autonomous

land vehicle in a neural network." Advances in

neural information processing systems. 1989.

[3] Bojarski, Mariusz, “End to end learning for self-

driving cars." (2016).

[4] A. R. Diana Putri, Litasari and A. Susanto,

"Comparison between colour models in automatic

identification of cane sugar," 2013 IEEE

International Conference on Computational

Intelligence and Cybernetics Yogyakarta, 2013.

[5] “The Effectiveness of Data Augmentation in

Image Classification using Deep Learning” Jason

Wang, Luis Perez.

[6] Visualizing and Understanding Convolutional

Networks by Matthew D. Zeiler, Rob Fergus.

[7] Dropout: A Simple Way to Prevent Neural

Networks from Overfitting by Nitish Srivastava,

Geoffrey Hinton, Alex Krizhevsky, Ilya

Sutskever, Ruslan Salakhutdinov

[8] S. Marra, M. A. Iachino and F. C. Morabito,

"Tanh-like Activation Function Implementation

for High-performance Digital Neural Systems,"

2006 Ph.D. Research in Microelectronics and

Electronics, Otranto, 2006.

[9] “Multi-Layer Neural Network.” Unsupervised

Feature Learning and Deep Learning Tutorial.

Stanford University, n.d. Web.

