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Abstract - In this world of rapid advancement of 

computer technologies, like CNN, open-cv etc., Deep 

learning has grown tremendously in the field of artificial 

intelligence and can be used to automate almost 

anything, that includes modern technologies. These 

technologies can be applied to the car so that it requires 

minimum interaction with driver to run on the road or 

we can say that to program a car in such way that it 

drives in self-governing mode. With help of existing 

simulator, we can use it to generate the enormous 

amount of data that includes images and csv containing 

car details. We train the network with generated images 

(left, right, center) to predict the required steer angle to 

keep the car on track. This approach decreases down the 

resolution of images to train the network very rapidly. 

Before sending the data to network it is preprocessed 

which is very much beneficial. After the preprocessing 

data is send to convolutional neural network in form of 

fixed size batches formed by random collection of images 

with their corresponding steering angle within the 

dataset generated to train and predict the steering angle 

as a final result. The Model achieved better performance 

when it is provided even more dataset. Here, we observe 

many Convolutional neural network architectures to 

obtain better performance with lesser load. 

 

Index Terms - Autonomous car, CNN, Multilayer. 

 

I.INTRODUCTION 

 

Autonomous cars are the cars that require no 

interaction with driver to run on the track. 

Autonomous car relies on central processing unit, 

Graphics processing unit and sensors to run car 

without the occurrence of faults. 

If a person wants to go hospital or to some other place 

but he or she not able to drive or don’t know how to 

drive, in this case the person will have to hire a driver 

which may be costly for person to afford. That 

situation might be unpleasant for the car owner. To 

avoid such type of unwanted situations autonomous 

car can play a key role and can be affordable for the 

person. 

Here, with the help of simulator we are creating an 

autonomous car that has capability to sense its 

surrounding environment through the three-camera 

placed in front the car. And to compute the steer angle 

by which the car have to turn to keep itself on track. 

This will save the people’s lives by avoiding accident 

like drunk and drive and it will keep car on track by 

avoiding running of the road With the rapid 

development of various types of sensors such as radar, 

camera systems and wireless communications, 

autonomous driving assistance systems have come a 

long way in past years. Self-driving cars or 

autonomous vehicles are reaching a point where 

they’re as good, or better than human drivers. 

Companies like Google, Tesla, and Uber are each 

pushing the limits of innovation to dominate the space. 

The main requirements for autonomous vehicles are to 

reduce the incidence of accidents and traffic jams, to 

respect traffic regulations and to be able to drive 

longer distances more safely. All of these without 

human intervention. 

Autonomous car uses the supervised learning as it 

takes steering angle as target value along with the 

images. Prediction of the steering angle can be made 

possible using multi-layer convolutional neural 

network architecture because single layer CNN cannot 

process the highly complexed images and cannot 

predict the desired target value. 

The purpose of the paper is to reduce the loss function 

between the actual and predicted values of the target 

value so that that the accuracy of the model can be 

increased on the given large dataset generated by 

simulator. By generating the large amount of dataset, 

we can use it to train the CNN model to predicted 

steering angle. Our primary goal is studying the three 

different CNN architecture to choose well 

sophisticated architecture that captures and mimic the 

driving scenario of a driver in real life. 

 

II. REALATED WORK 
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In past few years Deep learning networks are very 

helpful in automation filed. Convolutional neural 

networks (CNN) are the most important for image 

processing. CNN is used in enormous number of 

technical fields like handwriting recognition, face 

recognition and various application in computer 

vision. They are introduced by Yann LeCun, a 

postdoctoral computer science researcher, to create a 

very basic of image recognition network. CNN is very 

important neural network. These are used recognition, 

segmentation and prediction of target value. 

The DARPA (Defense Advance Research Project 

Agent) created an autonomous driving system known 

as DAVE which used images captured from the two 

front cameras along with steering angle to train the 

system to drive.  

The Autonomous Land Vehicle in a neural network 

(ALVINN) is multilayer backpropagation network 

developed by researchers at Carnegie Melion 

University. It uses images captured by camera and 

distance measure by laser to train the machine to 

predict the direction in which car should move to keep 

the car on track. 

There are many pre-trained networks for image 

recognition. Among from them VGG16 have show 

very good results but it contains huge number of 

parameters, thus it requires enormous number of 

resources to train the machine and can lead to 

overfitting of data which may predict the wrong 

steering angles and can led the car run into an accident. 

 

III. METHODS 

 

A.  Data gathering and simulator 

We used the term 1 Udacity simulator to generate the 

data. This Udacity simulator is build with the help of 

Unity and it is open sourced for everyone to use it. we 

can easily generate the data by using simulator. The 

data is generated in form of csv log file containing 

state of vehicle (steer angle, brake, throttle and name 

of the images (left, centre, right) captured by cameras 

(left, centre, right) at an instance) and it also contain 

folder containing those images mention in CSV log 

file.  

We collected nearly 30000 images collectively from 

all three cameras (left, centre, right) in 1920X1050 

resolution along with vehicle data when the car is 

driven around the track. 

 
Fig. 3.1.1 Centre camera image 

  
Fig. 3.1.2 Left camera image 

  
Fig. 3.1.3 Right camera image 

 

B.  Avoiding overfitting 

To avoid the overfitting of the model on any value 

during the training we need to remove some of the data 

on that value. In the dataset, there are enormous 

number of data entries of the steering angle are very 

close to zero. So, we deleted some of the entries in 

dataset to spread the values across the range and to 

avoid the overfitting. 

 
Fig. 3.2.1 Data before. 



© June 2021| IJIRT | Volume 8 Issue 1 | ISSN: 2349-6002 

IJIRT 151837 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 960 

 

 
Fig 3.2.2 Data after. 

 

C.  Lowering the resolution 

The images generated by the simulator are in high 

resolution (1400X1050), so to reduce the training time 

we lowered the resolution of the captured images. 

Thus, in this way, we have prevented the machine 

from training with noisy data present in the image that 

could affect the performance of the model. And by 

downsizing and cropping we remove the unwanted 

object present in the image like road side trees, pole 

and sky etc. and keeps only the main parts like track in 

the centre of the image. 

 

D.  Image Flip 

The chosen random image is flipped horizontally in 

the process along with its steer angle by multiplying it 

by -1. After the image is chosen then it is decided with 

the constant probability to whether to flip the image or 

not. This helps to add new data to the dataset if the 

image is flipped so that model can be trained in every 

possible steering angle more accurately. 

 
Fig. 3.4.1 Original image 

 
Fig. 3.4.2 Flipped image 

E.  Image processing 

After the downsizing and cropping of the image, it is 

converted from RGB image to YUV image. YUV is a 

colour coding system that is commonly used in colour 

image pipeline. The main reason is that brightness is 

important than the image colour, so you can lower the 

resolution of V and U while keeping Y resolution 

same. Therefore, the u and v resolutions can be 

lowered, they are compatible with CNNs, and CNNs 

can be trained with the same precision many times 

faster than traditional RGB models. After the 

conversion we normalise the pixel values of whole 

image by dividing it by 255 and then store it into 

multidimensional array to feed it to network. 

 
Fig 3.5 Processed image ready for input. 

 

F.  Convolutional neural network architectures 

We have designed three multilayer CNN architecture 

with the aim of comparing these architectural models 

to get maximum accuracy model and to minimise the 

loss while training the model. 

The first architecture consists of five Convolutional 

layers along with varying filter layers like 

Maxpooling, Dropout, Flatten, and Dense layer. In this 

last Dense layer output only one value which is 

considered the predicted steering angle for processed 

input image passed to first convolutional layer as 

shown below in Fig. 3.6. 

 
Fig. 3.6 Architecture of first model. 
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In this architectural model we use small kernel size of 

(3,3) because it reduces computational costs and 

Weight sharing that ultimately leads to lesser weights 

for back-propagation. And in this architecture, we use 

the RELU activation function. 

 
Fig 3.7 The graph of RELU activation function. 

f (x)=max(0,x) 

In the second architecture, there are four convolutional 

layers and also along with varying no. of filter layers 

Maxpooling, Dropout, Flatten, and Dense layer. The 

output of last Dense layer is the steering angle 

calculated for the input image.  The architecture 

second of the CNN model is shown in Fig. 3.8. 

 
Fig. 3.8 Architecture of second model 

we use the ELU activation function. And also, we took 

set the strides to (2,2) and kernel size to (5,5) for the 

first three convolutional layers and for the rest 

convolutional layers we set kernel size to (3,3) to 

increase the performance of the architecture. And 

expectedly the training parameter were decreased to 

train the model in less time. 

 
Fig 3.9 the graph of ELU function. 

 
In the third architecture, we have Five convolutional 

layers, with some more regulators to increase the 

accuracy the architecture. In this architecture we there 

are large no. of trainable parameter because it extracts 

very large features from the images which help it to 

predict more accurate steer angle. In this we use the 

ELU activation function to predict continuous value in 

range of {-1, 1}. 

This model should be able to predict more accurate 

value with the reduced loss over the epochs. This 

architecture takes much time to train the model. 

 
Fig 3.10 Architecture of third model. 

 

G.  Training and validation 

By using the train_test_split function from the sklearn 

we split the total image dataset of 31845 images 

between training set and the validation set like 80% 
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goes to training set and remaining 20% goes to 

validation set randomly. We set the batch size to 300 

images for training and to 150 images for validating. 

We set the step_per_epoch to 300 and validation_step 

to 150 and epoch to 30. 

 
We use Adam optimizer with learning rate of 10-4 and 

loss as MSE (mean squared error) which compute the 

loss on predicted target value and actual target value. 

 

IV.  RESULTS 

 

 
Fig. 4.1 The loss over epoch during training and 

validation for the first architecture. 

 
Fig. 4.4 the accuracy over epoch for second 

architecture. 

The above fig. 4.1 shows the loss computed by MSE 

loss function during every epoch for the first CNN 

architecture of. We see the drastic decrement in the 

loss over the first few epochs during the training and 

validation. And for the rest of the remaining epochs 

loss decrease very slowly. Here loss at the 30th epoch 

is 0.045 for validation. 

The fig 4.2 demonstrate the accuracy for the first CNN 

architecture over epochs during training and 

validation. This graph shows the average accuracy of 

85% for training and validation. 

 
Fig. 4.3 The loss over epoch for second architecture. 

 
Fig. 4.4 the accuracy over epoch for second 

architecture. 

The Fig 4.3 demonstrate the loss function value over 

the 30 epochs during the training and validation. We 

see the slight decrease in the loss over every epoch. 

The observed loss during the training is 0.062 and 

during validation is 0.047. 

As shown in the Fig. 4.4 the validation accuracy 94.7% 

which is very high. And training accuracy is 79.1% 

which is comparatively very low than validation 

accuracy. 

 
Fig. 4.5 The loss over epoch for third architecture. 
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Fig. 4.6 the accuracy over epoch for third 

architecture. 

In the Fig 4.5 for the first few epochs loss has rapidly 

decreased then after for remaining epochs less 

decrement is seen. The training loss is at 30th epoch is 

0.068 and the validation loss is 0.049. 

In Fig. 4.6 it is seen that validation accuracy is less 

than training accuracy. The validation a accuracy is 

75.9% and training accuracy is 84.2%. 

By analysing the facts, we see loss over the epoch is 

decreasing continuously which mean the model is 

computing more accurate target value then before. So 

we can say that architecture with more training 

parameter will perform better. Hence, neural network 

architecture first and neural architecture third will give 

better performance than architecture second because 

that have large number of trainable parameters. 

 

IV.  CONCLUSION 

 

In this research paper, we explained the need of 

simulator to generate the data which turn out to be very 

effective for the model to train to compute the steering 

angle based on input images. The use of simulator save 

cost of physical equipments required to collect the 

real-world data. And simulator turn out to be very well 

efficient for training the model for prediction steering 

angle. 

The prediction of the steering angle based on the 

processed captured images turn out to be fine for CNN 

network because it extracts the feature and find the 

necessary dependencies required for prediction. 

In this paper, we compared the three CNN architecture 

to know which architecture can give better 

performance. Here we find out that the more parameter 

architecture has the better the performance will be. 

The first and third architecture the show the better 

result than second architecture. The first architecture 

shows the accuracy of 85% and it is more than the 

other two architectures. The architecture with lesser 

trainable parameter should be trained over many more 

epochs than epochs in architecture have larger training 

parameter to give same performance. 
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