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Abstract - The design cycle for a website begins with the 

construction of individual web page mock-ups, which 

can be done by hand or with the help of graphic design 

and specialist mock-up production tools. Software 

programmers next turn the prototype into structured 

HTML or comparable markup code. This procedure is 

typically performed several times until the appropriate 

template is obtained. The goal of this research is to 

automate the process of creating code from hand-drawn 

mock-ups. Computer vision techniques are utilized to 

process hand-drawn mock-ups, and then deep learning 

approaches are employed to construct the suggested 

system. Our system has a method accuracy of 96 percent 

and a validation accuracy of 73 percent. 

 

Index Terms - Object detection, object recognition, 

convolutional neural network, deep learning, automatic 

code generation, HTML. 

 

I.INTRODUCTION 

 

Because of today's technological advancements, the 

relevance of Internet web pages has expanded 

significantly. Nowadays, websites represent the 

personalities of states, institutions, communities, and 

individuals. There are websites for practically any 

subject, from knowledge to social work, games to 

training, and so on. Companies’ websites are brought 

to the forefront for financial objectives, such as 

product promotion or advertising. Official institutions, 

on the other hand, strive to provide more efficient 

services. 

Every web site has a “web page” at the front-end, 

which is the section of the site that interacts with the 

user. It's critical to serve a page that grabs the user's 

attention, is simple to use, and has a sufficient number 

of functional features. However, creating web pages 

that effectively answer to these objectives is a time-

consuming task. Graphic designers, software 

professionals, end-users, business authorities, and 

people employed in a variety of fields are all required 

to collaborate in the creation of web sites.  

Typically, the process begins with graphic designers 

or mock-up artists creating a mock-up design of the 

user interface in accordance with the institution's 

demands, either on paper or through graphic editing 

software. On the basis of these draughts, software 

specialists build code for web sites. The web pages that 

result may alter as a result of the feedback obtained 

from the end users. There are a lot of repetitive jobs in 

their process. The process of rewriting code for 

components with similar functionalities and page 

structures that change over time is tedious. This 

highlights the need to investigate more efficient web 

page design alternatives. 

As a research topic, the idea of designing a web page 

by creating automatic code is gaining traction. 

Programming time, process costs, and resource 

consumption are all reduced when web pages are 

generated automatically. The final web site is created 

in less time as a result of the faster progressive design 

stages.  

An algorithm was created in this work to automatically 

produce HTML code for a hand-drawn mock-up of a 

web page. Its goal is to recognize the mock-up 

drawing's components and encode them according to 

the web page hierarchy. The suggested approach is 

trained and verified using a public dataset of hand-

drawn images of websites acquired from Microsoft AI 

Labs' GitHub page [1]. The photos in the dataset are 

analyzed using computer vision techniques, and the 

data is trained using a deep neural network model 

including convolutional neural networks. Following 

that, a structured HTML code is generated. Our model 
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has a method accuracy of 96 percent and a validation 

accuracy of 73 percent. 

The remainder of the study is organized as follows: 

Section II reviews related studies in the literature. The 

dataset and methods are described in Sections III and 

IV. The collected results and findings were shared in 

Section V. Evaluations are included in Section VI, 

which is the conclusion section. 

 

II. RELATED WORK 

 

REMAUI algorithm[2] discovers the components of a 

mobile application's user interface, such as buttons, 

textboxes, and photos, and generates the code for them 

using screenshots of the application window or 

conceptual designs. In their study, which was the first 

in terms of providing conversion to the code from the 

screen images or drawings for mobile platforms, 

computer vision and optical character recognition 

methods are used. Although the REMAUI method 

works successfully, it does not support cross-page 

transition and animations within the page. The authors 

of created the P2A algorithm[3] to address the 

shortcomings of the REMAUI method. 

The pix2code algorithm was developed by the authors 

in [4] with the goal of converting a web page's 

graphical interface to structured code using deep 

learning with convolutional and recurrent neural 

networks. The approach has been tested on Android, 

iOS, and other mobile platforms, with positive results. 

The ReDraw technique in [5] takes mock-ups of 

mobile application screens and converts them into 

structured XML code. Computer vision techniques are 

used to detect individual GUI components in the early 

stage of their implementation. The second stage is 

categorizing the discovered components based on their 

function, such as toggle-button, text-area, and so on. 

Deep convolutional neural networks are used at this 

stage. The XML code is generated in the last stage by 

merging the kNN algorithm with the web 

programming structure. Open-source code libraries 

like GitHub [6] are now widely used for sharing code 

and apps. When starting or enhancing software 

projects, it's customary to look at this repository and 

reuse code. The common code in these libraries 

reduces the number of times the same code is written 

by various persons. The writers of [7] employ SUISE, 

a search software in which users create a graphical 

interface using simple graphics and keywords. This 

interface is then looked for in existing libraries to find 

interfaces that are similar. These interfaces are 

converted into executable codes, and the end user is 

given the option of selecting the most appropriate 

interface. 

Microsoft has just released a technology that converts 

hand-drawn mock-ups of basic web sites into HTML 

code [1]. Although there is no literature to describe 

their approach, they have made their code and dataset 

available online. Some of the photos from this dataset 

are used in this project. 

 

III. DATASET 

 

In order to generate our dataset, we used some of the 

photos given by Microsoft AI Lab for their 

Sketch2Code tool [1]. We chose images that contained 

four types of components when  

creating it for the experiment: textbox, dropdown, 

button, and checkbox. Then, from these images, we 

chopped each component and gathered them to train 

our CNN model (see Fig. 5). 

 

IV. IMPLEMENTATION 

 

The research was carried out in steps. Object detection 

was applied to the input image in the first step, using 

image processing techniques like erosion, dilation, and 

contour detection.  

The recognized objects were subsequently cropped, 

and the resultant components were labelled with the 

trained CNN model.  

Finally, the HTML Builder script was used to convert 

the model's output to HTML code. Figure 1 depicts the 

proposed algorithm. 

 

 
Fig 1. Proposed algorithm 
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1. Login module 

New user register ad he can login in this login module. 

 

2. Upload handwriting mockup image 

In this module we have to upload mockup images. 

These images are stored in database. 

 

3. Preprocessing module 

This is further divided into steps. 

Object detection and cropping 

The input file is the image that is uploaded, and it is 

read and converted to grayscale format. The noise is 

then reduced using the Gaussian function. Then, in 

order to meet the threshold procedure's requirements, 

rectangles are constructed for shape analysis utilizing 

the counter detection method. They are transformed 

into morphological changes. Cropped and sent to the 

CNN model are the discovered components. At this 

stage, morphological alterations such as dilatation and 

erosion are carried out. 

The goal of this phase is to take an image and create a 

list of elements with their bounding boxes (size and 

location) and element type. Images, paragraphs, titles, 

inputs, and buttons are the five element classes that are 

classified. Figures 2 and 3 depict the output of this 

stage. 

 
Fig 2. Object Detection 

 
Fig 3. The output of the cropping 

 

Object Recognition 

The recognized components such as text box, drop 

down, button and checkbox are trained with dataset. 

After this stage, the model is trained with loss function 

to avoid deviation from actual results. Then 

components that come as input to this stage from 

previous stage are carried out with component 

recognition process. 

The components in our component dataset were used 

to train the model displayed in Fig. 5. It consists of 

four various types of components, including 

textboxes, dropdowns, buttons, and checkboxes, as 

previously mentioned. The loss function was trained 

for 200 epochs using Binary Crossentropy and 

RMSProp methods with a batch size of 64 after the 

model was learned. After that, the cropped 

components from the previous stage were used as 

input for the component recognition method. We used 

many convolution layers with 4x4 kernels and 

subsequently conducted max pooling procedures with 

2x2 kernels for feature extraction, as shown in our 

CNN Model in Fig. 5. Following the feature 

vectorization process, the BiLSTM layer is used to 

catch correlation of the retrieved features. After all, in 

order to reach the categorization goal, we used a 20 

percent ratio of Full Connected Layers to Dropout 

Layers. 

 
Fig. 5. CNN Model 
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4. HTML Builder 

The bootstrap framework was used to successfully 

transform recognized components into HTML code. It 

was carried out using the coordinates obtained from 

the contour finding algorithms' output. Figure 6 shows 

the most recent output from a browser when the input 

image is the first of the images in Figure 1. 

 
Fig 6. Design code produced by HTML builder 

algorithm from sketch input image 

First, we constructed the templates for a header and a 

footer, as indicated in the HTML builder algorithm in 

Fig 7. Second, using component coordinates, we 

determined how many objects are on each of the rows. 

The component labels were then mapped to their 

template codes. The body part of the HTML code was 

successfully acquired at the end of this operation. 

Finally, the components of the header, body, and 

footer were integrated.  

As a result, the final HTML code was created. Figure 

7 shows the algorithm that was created for the purpose 

of completing HTML modification. 

Fig 7. HTML builder algorithm 

V. RESULTS 

 

The goal of this study was to generate automatic 

HTML code from mock-up photographs, and it was 

accomplished effectively. Object detection, object 

cropping, object recognition, and HTML creation 

were all performed as part of this process. Our 

proposed algorithm's milestones are these sequential 

phases. A CNN architecture was also used to be 

utilized in the object recognition stage of the study. 

Thus, various morphological transformations and deep 

learning which is highly popularized in recent years 

were performed. At last, another algorithm for HTML 

code generation, which is the final stage of the 

proposed algorithm, was presented. As a result of 200 

epoch training of the model shown in Fig 5 using the 

one hot encoding method accuracy and validation 

accuracy were obtained as 0.96 and 0.73 respectively.  

 

VI. CONCLUSION 

 

In recent years, when artificial intelligence has been 

rapidly disrupting the business by entering practically 

every field, converting web page mock-ups to their 

mark-up code with the least amount of time and human 

cost has become an important topic. In creation of 

website the cost labor and minimum time can be 

reduced by converting web page mock ups to their 

markup code. Also, by using this automatic HTML 

code generator it is easy to make modification in web 

page creation with the least cost and minimum time. 

This can fasten the deployment process of website. 

The purpose of this project is to create automatic 

HTML code from hand-drawn mock-ups. 

The components in the image were cropped in this 

study using object detection and image processing 

techniques. Our trained CNN model was used to 

determine which components were obtained. Finally, 

the goal of creating HTML code was accomplished 

utilizing our HTML builder script and the coordinates 

obtained via the contour finding techniques. 
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