
© July 2021| IJIRT | Volume 8 Issue 2 | ISSN: 2349-6002

IJIRT 152018 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 204

Automatic HTML Code Generation from Mock-up

Images Using Machine Learning Techniques

Mrs. Vidhya K1, Payal2, Sushma D Sarang3, Sushma JC4, Thanmaya C5

1 Assistant Professor, Department of information Science and Engineering

East West Institution of Technology, Visvesvaraya Technological University, Karnataka, India

 234 Student, Department of information Science and Engineering

East West Institution of Technology, Visvesvaraya Technological University, Karnataka, India

Abstract - The design cycle for a website begins with the

construction of individual web page mock-ups, which

can be done by hand or with the help of graphic design

and specialist mock-up production tools. Software

programmers next turn the prototype into structured

HTML or comparable markup code. This procedure is

typically performed several times until the appropriate

template is obtained. The goal of this research is to

automate the process of creating code from hand-drawn

mock-ups. Computer vision techniques are utilized to

process hand-drawn mock-ups, and then deep learning

approaches are employed to construct the suggested

system. Our system has a method accuracy of 96 percent

and a validation accuracy of 73 percent.

Index Terms - Object detection, object recognition,

convolutional neural network, deep learning, automatic

code generation, HTML.

I.INTRODUCTION

Because of today's technological advancements, the

relevance of Internet web pages has expanded

significantly. Nowadays, websites represent the

personalities of states, institutions, communities, and

individuals. There are websites for practically any

subject, from knowledge to social work, games to

training, and so on. Companies’ websites are brought

to the forefront for financial objectives, such as

product promotion or advertising. Official institutions,

on the other hand, strive to provide more efficient

services.

Every web site has a “web page” at the front-end,

which is the section of the site that interacts with the

user. It's critical to serve a page that grabs the user's

attention, is simple to use, and has a sufficient number

of functional features. However, creating web pages

that effectively answer to these objectives is a time-

consuming task. Graphic designers, software

professionals, end-users, business authorities, and

people employed in a variety of fields are all required

to collaborate in the creation of web sites.

Typically, the process begins with graphic designers

or mock-up artists creating a mock-up design of the

user interface in accordance with the institution's

demands, either on paper or through graphic editing

software. On the basis of these draughts, software

specialists build code for web sites. The web pages that

result may alter as a result of the feedback obtained

from the end users. There are a lot of repetitive jobs in

their process. The process of rewriting code for

components with similar functionalities and page

structures that change over time is tedious. This

highlights the need to investigate more efficient web

page design alternatives.

As a research topic, the idea of designing a web page

by creating automatic code is gaining traction.

Programming time, process costs, and resource

consumption are all reduced when web pages are

generated automatically. The final web site is created

in less time as a result of the faster progressive design

stages.

An algorithm was created in this work to automatically

produce HTML code for a hand-drawn mock-up of a

web page. Its goal is to recognize the mock-up

drawing's components and encode them according to

the web page hierarchy. The suggested approach is

trained and verified using a public dataset of hand-

drawn images of websites acquired from Microsoft AI

Labs' GitHub page [1]. The photos in the dataset are

analyzed using computer vision techniques, and the

data is trained using a deep neural network model

including convolutional neural networks. Following

that, a structured HTML code is generated. Our model

© July 2021| IJIRT | Volume 8 Issue 2 | ISSN: 2349-6002

IJIRT 152018 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 205

has a method accuracy of 96 percent and a validation

accuracy of 73 percent.

The remainder of the study is organized as follows:

Section II reviews related studies in the literature. The

dataset and methods are described in Sections III and

IV. The collected results and findings were shared in

Section V. Evaluations are included in Section VI,

which is the conclusion section.

II. RELATED WORK

REMAUI algorithm[2] discovers the components of a

mobile application's user interface, such as buttons,

textboxes, and photos, and generates the code for them

using screenshots of the application window or

conceptual designs. In their study, which was the first

in terms of providing conversion to the code from the

screen images or drawings for mobile platforms,

computer vision and optical character recognition

methods are used. Although the REMAUI method

works successfully, it does not support cross-page

transition and animations within the page. The authors

of created the P2A algorithm[3] to address the

shortcomings of the REMAUI method.

The pix2code algorithm was developed by the authors

in [4] with the goal of converting a web page's

graphical interface to structured code using deep

learning with convolutional and recurrent neural

networks. The approach has been tested on Android,

iOS, and other mobile platforms, with positive results.

The ReDraw technique in [5] takes mock-ups of

mobile application screens and converts them into

structured XML code. Computer vision techniques are

used to detect individual GUI components in the early

stage of their implementation. The second stage is

categorizing the discovered components based on their

function, such as toggle-button, text-area, and so on.

Deep convolutional neural networks are used at this

stage. The XML code is generated in the last stage by

merging the kNN algorithm with the web

programming structure. Open-source code libraries

like GitHub [6] are now widely used for sharing code

and apps. When starting or enhancing software

projects, it's customary to look at this repository and

reuse code. The common code in these libraries

reduces the number of times the same code is written

by various persons. The writers of [7] employ SUISE,

a search software in which users create a graphical

interface using simple graphics and keywords. This

interface is then looked for in existing libraries to find

interfaces that are similar. These interfaces are

converted into executable codes, and the end user is

given the option of selecting the most appropriate

interface.

Microsoft has just released a technology that converts

hand-drawn mock-ups of basic web sites into HTML

code [1]. Although there is no literature to describe

their approach, they have made their code and dataset

available online. Some of the photos from this dataset

are used in this project.

III. DATASET

In order to generate our dataset, we used some of the

photos given by Microsoft AI Lab for their

Sketch2Code tool [1]. We chose images that contained

four types of components when

creating it for the experiment: textbox, dropdown,

button, and checkbox. Then, from these images, we

chopped each component and gathered them to train

our CNN model (see Fig. 5).

IV. IMPLEMENTATION

The research was carried out in steps. Object detection

was applied to the input image in the first step, using

image processing techniques like erosion, dilation, and

contour detection.

The recognized objects were subsequently cropped,

and the resultant components were labelled with the

trained CNN model.

Finally, the HTML Builder script was used to convert

the model's output to HTML code. Figure 1 depicts the

proposed algorithm.

Fig 1. Proposed algorithm

© July 2021| IJIRT | Volume 8 Issue 2 | ISSN: 2349-6002

IJIRT 152018 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 206

1. Login module

New user register ad he can login in this login module.

2. Upload handwriting mockup image

In this module we have to upload mockup images.

These images are stored in database.

3. Preprocessing module

This is further divided into steps.

Object detection and cropping

The input file is the image that is uploaded, and it is

read and converted to grayscale format. The noise is

then reduced using the Gaussian function. Then, in

order to meet the threshold procedure's requirements,

rectangles are constructed for shape analysis utilizing

the counter detection method. They are transformed

into morphological changes. Cropped and sent to the

CNN model are the discovered components. At this

stage, morphological alterations such as dilatation and

erosion are carried out.

The goal of this phase is to take an image and create a

list of elements with their bounding boxes (size and

location) and element type. Images, paragraphs, titles,

inputs, and buttons are the five element classes that are

classified. Figures 2 and 3 depict the output of this

stage.

Fig 2. Object Detection

Fig 3. The output of the cropping

Object Recognition

The recognized components such as text box, drop

down, button and checkbox are trained with dataset.

After this stage, the model is trained with loss function

to avoid deviation from actual results. Then

components that come as input to this stage from

previous stage are carried out with component

recognition process.

The components in our component dataset were used

to train the model displayed in Fig. 5. It consists of

four various types of components, including

textboxes, dropdowns, buttons, and checkboxes, as

previously mentioned. The loss function was trained

for 200 epochs using Binary Crossentropy and

RMSProp methods with a batch size of 64 after the

model was learned. After that, the cropped

components from the previous stage were used as

input for the component recognition method. We used

many convolution layers with 4x4 kernels and

subsequently conducted max pooling procedures with

2x2 kernels for feature extraction, as shown in our

CNN Model in Fig. 5. Following the feature

vectorization process, the BiLSTM layer is used to

catch correlation of the retrieved features. After all, in

order to reach the categorization goal, we used a 20

percent ratio of Full Connected Layers to Dropout

Layers.

Fig. 5. CNN Model

© July 2021| IJIRT | Volume 8 Issue 2 | ISSN: 2349-6002

IJIRT 152018 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 207

4. HTML Builder

The bootstrap framework was used to successfully

transform recognized components into HTML code. It

was carried out using the coordinates obtained from

the contour finding algorithms' output. Figure 6 shows

the most recent output from a browser when the input

image is the first of the images in Figure 1.

Fig 6. Design code produced by HTML builder

algorithm from sketch input image

First, we constructed the templates for a header and a

footer, as indicated in the HTML builder algorithm in

Fig 7. Second, using component coordinates, we

determined how many objects are on each of the rows.

The component labels were then mapped to their

template codes. The body part of the HTML code was

successfully acquired at the end of this operation.

Finally, the components of the header, body, and

footer were integrated.

As a result, the final HTML code was created. Figure

7 shows the algorithm that was created for the purpose

of completing HTML modification.

Fig 7. HTML builder algorithm

V. RESULTS

The goal of this study was to generate automatic

HTML code from mock-up photographs, and it was

accomplished effectively. Object detection, object

cropping, object recognition, and HTML creation

were all performed as part of this process. Our

proposed algorithm's milestones are these sequential

phases. A CNN architecture was also used to be

utilized in the object recognition stage of the study.

Thus, various morphological transformations and deep

learning which is highly popularized in recent years

were performed. At last, another algorithm for HTML

code generation, which is the final stage of the

proposed algorithm, was presented. As a result of 200

epoch training of the model shown in Fig 5 using the

one hot encoding method accuracy and validation

accuracy were obtained as 0.96 and 0.73 respectively.

VI. CONCLUSION

In recent years, when artificial intelligence has been

rapidly disrupting the business by entering practically

every field, converting web page mock-ups to their

mark-up code with the least amount of time and human

cost has become an important topic. In creation of

website the cost labor and minimum time can be

reduced by converting web page mock ups to their

markup code. Also, by using this automatic HTML

code generator it is easy to make modification in web

page creation with the least cost and minimum time.

This can fasten the deployment process of website.

The purpose of this project is to create automatic

HTML code from hand-drawn mock-ups.

The components in the image were cropped in this

study using object detection and image processing

techniques. Our trained CNN model was used to

determine which components were obtained. Finally,

the goal of creating HTML code was accomplished

utilizing our HTML builder script and the coordinates

obtained via the contour finding techniques.

REFERENCES

[1] Sketch2code. Microsoft AI Labs. [Online].

Available: https://github.com/ Microsoft/ailab/

tree/master/Sketch2Code/model/images

[2] T. A. Nguyen and C. Csallner, “Reverse

Engineering Mobile Application User Interfaces

© July 2021| IJIRT | Volume 8 Issue 2 | ISSN: 2349-6002

IJIRT 152018 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 208

with REMAUI (T),” in 2015 30th IEEE/ACM

International Conference on Automated Software

Engineering (ASE). IEEE, nov 2015, pp. 248–

259. [Online]. Available: http:

//ieeexplore.ieee.org/document/7372013/

[3] S. Natarajan and C. Csallner, “P2A: A Tool for

Converting Pixels to Animated Mobile

Application User Interfaces,” Proceedings of the

5th International Conference on Mobile Software

Engineering and Systems - MOBILESoft ’18, pp.

224–235, 2018. [Online]. Available: http://dl.

acm.org/citation.cfm?doid=3197231.3197249

[4] T. Beltramelli, “pix2code: Generating code from

a graphical user interface screenshot,” CoRR, vol.

abs/1705.07962, 2017. [Online]. Available:

http://arxiv.org/abs/1705.07962

[5] K. P. Moran, C. Bernal-Cardenas, M. Curcio, R.

Bonett, and D. Poshy-´ vanyk, “Machine

learning-based prototyping of graphical user

interfaces for mobile apps,” IEEE Transactions on

Software Engineering, pp. 1–1, 2018.

