
© August 2021 | IJIRT | Volume 8 Issue 3 | ISSN: 2349-6002

IJIRT 152358 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 251

Statistical Adaptive Arithmetic Coding

KAJAL SALUJA1, PROF. RENUKA ARORA2
1, 2 Ganga Institute of Technology and Management, Kablana, Jhajjar

Abstract— Data Compression is an area that needs

to be given almost attention to is text quality

assessment. Different methodologies have been

defined for this purpose. Hence choosing the best

machine learning algorithm is important. In addition

to different compression technologies and

methodologies, the selection of a good data

compression tool is most important. There is a

complete range of different data compression

techniques available both online and offline working

such that it becomes really difficult to choose which

technique serves the best. Here comes the necessity

of choosing the right method for text compression

purposes and hence an algorithm that can reveal the

best tool among the given ones. A data compression

algorithm is to be developed which consumes less

time while provides more compression ratio as

compared to existing techniques. In this paper, we

represent a hybrid approach to compress the text

data. This hybrid approach is the combination of the

Dynamic Bit reduction method and Huffman coding.

Index Terms— Text data compression, Dynamic Bit

Reduction method, Huffman coding, lossless data

compression.

I. INTRODUCTION

Data compression is a process by which a Text, Audio,

or Video file may be transformed into a compressed

file, such that the original file may be fully recovered

from the original file without any loss of actual

information. This process may be useful if one wants

to save storage space. For example, if one wants to

store a 4MB file, it may be preferable to first compress

it to a smaller size to save the storage space. Also,

compressed files are much more easily exchanged

over the internet since they upload and download

much faster. We require the ability to reconstitute the

original file from the compressed version at any time.

Data compression is a method of encoding rules that

allows a substantial reduction in the total number of

bits to store or transmit a file. The more information

being dealt with, the more it costs in terms of storage

and transmission costs. In short, Data Compression is

the process of encoding data to fewer bits than the

original representation so that it takes less storage

space and less transmission time while communicating

over a network. Data Compression is possible because

most of the real-world data is very redundant. Data

Compression is defined as a technique that reduces the

size of data by applying different methods that can

either be Lossy or Lossless. A compression program is

used to convert data from an easy-to-use format to one

optimized for compactness. Likewise, an

uncompressing program returns the information to its

original form. Source Data Compressed

Data Fig. 1.1 Data Compression and Decompression

1.2 TYPES OF DATA COMPRESSION

Currently, two basic classes of data compression are

applied in different areas. One of these is lossy data

compression, which is widely used to compress image

data files for communication or archives purposes.

The other is lossless data compression that is

commonly used to transmit or archive text or binary

files required to keep their information intact at any

time. There are two main two types of Data

Compression: Lossy Compression Lossless

Compression Data Decompression Amandeep Singh

Sidhu et al, International Journal of Computer Science

and Mobile Computing, Vol.3 Issue.12, December-

2014, pg. 01-10 © 2014, IJCSMC All Rights Reserved

3

© August 2021 | IJIRT | Volume 8 Issue 3 | ISSN: 2349-6002

IJIRT 152358 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 252

Fig: 1.2 Classification of Data Compression

1.2.1 Lossy Data Compression

A lossy data compression method is one where the

data retrieves after decompression may not be the

same as the original data, but is "close enough" to be

useful for specific purposes. After one applies lossy

data compression to a message, the message can never

be recovered exactly as it was before it was

compressed. When the compressed message is

decoded, it does not give back the original message.

Data can be lost. Because lossy compression cannot be

decoded to yield the same message. For example, in a

sound file or textual data. It is most useful for Digitally

Sampled Analog Data (DSAD) that consists of sound,

video, graphics, or picture files. In a sound file, there

are very high and low frequencies, which the human

ear cannot hear, maybe truncated from the file.

The examples of frequent use of Lossy compression in

streaming media and telephony applications. Some

examples of lossy data compression algorithms are

JPEG, MPEG, MP3. Most of the lossy data

compression techniques suffer from generation loss

which means decreasing the quality of text because of

repeatedly compressing and decompressing the file.

Lossy image compression can be used in digital

cameras to increase storage capacities with minimal

degradation of picture quality.

1.2.2 Lossless Data Compression

Lossless data compression is a technique that allows

the use of data compression algorithms to compress

the text data and also allows the exact original data to

be reconstructed from the compressed data. This is

contrary to the lossy data compression in which the

exact original data cannot be reconstructed from the

compressed data. The popular ZIP file format that is

being used for the compression of data files is also an

application of the lossless data compression approach.

Lossless compression is used when the original data

and the decompressed data must be identical. Lossless

text data compression algorithms usually exploit

statistical redundancy in such a way to represent the

sender's data more concisely without any error or any

sort of loss of important information contained within

the text input data. Since most of the real-world data

have statistical redundancy, therefore lossless data

compression is possible. For Data Compression

Lossless Data Compression Lossy Data Compression

Amandeep Singh Sidhu et al, International Journal of

Computer Science and Mobile Computing, Vol.3

Issue.12, December- 2014, pg. 01-10 © 2014,

IJCSMC All Rights Reserved 4 instance, In English

text, the letter 'a' is much more common than the letter

'z', and the probability that the letter ’t’ will be

followed by the letter 'z' is very small.

So, this type of redundancy can be removed using

lossless compression. Lossless compression methods

may be categorized according to the type of data they

are designed to compress. Compression algorithms are

used for the compression of text, images, and sound.

Most lossless compression programs use two different

kinds of algorithms: one which generates a statistical

model for the input data and another which maps the

input data to bit strings using this model in such a way

that frequently encountered data will produce shorter

output than improbable (less frequent) data.

The advantage of lossless methods over lossy methods

is that Lossless compression results are in a closer

representation of the original input data. The

performance of algorithms can be compared using the

parameters such as Compression Ratio and Saving

Percentage. In a lossless data compression file, the

original message can be exactly decoded. Lossless

data compression works by finding repeated patterns

in a message and efficiently encoding those patterns.

For this reason, lossless data compression is also

referred to as redundancy reduction. Because

redundancy reduction is dependent on patterns in the

message, it does not work well on random messages.

Lossless data compression is ideal for text.

II. LITERATURE REVIEW

This section involves the Literature survey of various

techniques available for Data compression and

analyzing their results and conclusions.

© August 2021 | IJIRT | Volume 8 Issue 3 | ISSN: 2349-6002

IJIRT 152358 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 253

R. S. Brar and B. Singh, et.al, (2013), “A survey on

different compression techniques and bit reduction

algorithm for compression of text data”. International

Journal of Advanced Research in Computer Science

and Software Engineering (IJARCSSE) Volume 3,

Issue 3, March 2013. This paper provides a survey of

different basic lossless and lossy data compression

techniques. Based on these techniques a bit reduction

algorithm for compression of text, data has been

proposed by the authors based on the number theory

system and file differential technique which is a

simple compression and decompression technique free

from time complexity. Future work can be done on the

coding of special characters which are not specified on

the key-board to revise better results.

S. Porwal, Y. Chaudhary, J. Joshi, M. Jain, et. al,

(2013), “Data Compression Methodologies for

Lossless Data and Comparison between Algorithms”.

International Journal of Engineering Science and

Innovative Technology (IJESIT) Volume 2, Issue 2,

March 2013. This research paper provides lossless

data compression methodologies and compares their

performance. Huffman and arithmetic coding are

compared according to their performances. In this

paper, the author has found that arithmetic encoding

methodology is powerful as compared to Huffman’s

encoding methodology. By comparing the two

techniques the author has concluded that the

compression ratio of arithmetic encoding is better and

arithmetic encoding reduces channel bandwidth and

transmission time also.

S. Shanmugasundaram and R. Lourdusamy, et. al,

(2011), “A Comparative Study of Text Compression

Algorithms”. International Journal of Wisdom Based

Computing, Vol.1 (3), Dec 2011. There are a lot of

data compression algorithms that are available to

compress files of different formats. This paper

provides a survey of different basic lossless data

compression algorithms. Experimental results and

comparisons of the lossless compression algorithms

using Statistical compression techniques and

Dictionary-based compression techniques were

performed on text data. Among the statistical coding

techniques, the algorithms such as Shannon-Fano

Coding, Huffman coding, Adaptive Huffman coding,

Run Length Encoding, and Arithmetic coding are

considered. A set of interesting conclusions are

derived on their basis. Lossy algorithms achieve better

compression effectiveness than lossless algorithms,

but lossy compression is limited to audio, images, and

video, where some loss is acceptable. The question of

the better technique of the two, “lossless” or “lossy” is

pointless as each has its uses with lossless techniques

better in some cases and lossy techniques better in

others.

III. RESEARCH AND DESIGN

METHODOLOGY

Improved Dynamic Bit Reduction algorithm works in

two phases to compress the text data. In the first phase,

data is compressed with the help of the dynamic bit

reduction technique and in the second phase, Huffman

coding is used to compress the data further to produce

the final output. In the first phase, when a user enters

input data, the system will find out the occurrence of

several unique symbols in the input text string, and

then numeric code will be assigned to these unique

symbols. For each numeric code, corresponding

binary codes will be generated dynamically to obtain

the (compressed) binary output.

Then ASCII code will be generated from the binary

output obtained which will serve as the input to the

second phase of the system. In the second phase,

Huffman Coding will be applied to the output of the

first phase to further compress the data and improve

the performance of the dynamic bit reduction

algorithm. Huffman coding follows a top-down

approach means the binary tree is built from the top to

down to generate an optimal result. In Huffman

Coding the characters in a data file are converted to

binary code and the most common characters in the

file have the shortest binary codes, and the least

common characters will have the longest binary code.

In a similar way method of decompression works in

reverse order. Compressed data is first decompressed

by Huffman Decoder and then by dynamic bit

reduction decoder to get back the original data.

Following are the steps to compress the data with the

help of our proposed system.

3.1 COMPRESSION ALGORITHM

Step I: Input the text data to be compressed.

Step II: Find the number of unique symbols in the

input text data.

© August 2021 | IJIRT | Volume 8 Issue 3 | ISSN: 2349-6002

IJIRT 152358 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 254

Step III: Assign the numeric code to the unique

symbols found in step II.

Step IV: Starting from the first symbol in the input find

the binary code corresponding to those Symbols from

assigned numerical codes and concatenate them to

obtain binary Output.

Step V: Add several 0’s in MSB of Binary output until

it is divisible by 8.

Step VI: Generate the ASCII code for every 8 bits for

the binary output obtained in step V Amandeep Singh

Sidhu et al, International Journal of Computer Science

and Mobile Computing, Vol.3 Issue.12, December-

2014, pg. 01-10 © 2014, IJCSMC All Rights Reserved

6 And concatenate them to create input for the second

phase. [Step VI is the result of dynamic bit Reduction

Method in ASCII format]

Step VII: Give the output generated by Step VI to the

Huffman tree to further compress the data and obtain

the result in compressed binary output form.

Step VIII: Display the final result obtained in step VII.

[Output from step VIII is final compressed output].

3.2 DECOMPRESSION ALGORITHM

Step I: Input the Final output from the compressed

phase.

Step II: Assign this input to the Huffman decoder to

decompress the data compressed by the Huffman tree

in ASCII format.

Step III: Calculate the binary code corresponding to

the ASCII values obtained in Step II.

Step IV: Remove the extra bits from the binary output

added in the compression phase.

Step V: Calculate the numeric code for every 8 bits

obtained in Step IV.

Step VI: For every numeric value obtained in step V,

find the corresponding symbol to Get the final

decompressed data.

Step VII: Concatenate the data symbols obtained in

step VI and obtain the final output.

Step VIII: Display the final result to the user.

IV. RESULTS AND DISCUSSION

This section describes the results generated by the

proposed system. We have taken different data sets

like Random, Alphanumeric, Numeral, and Special

characters and conducted various experiments to

determine the performance of the proposed system.

Performance Parameters: Performance evaluation of

the proposed algorithm is done using two parameters-

Compression Ratio and Saving Percentage.

Compression ratio: Compression ratio is defined as the

ratio of the size of the compressed file to the size of

the source file.

Compression ratio= (C2/C1) *100%

Saving Percentage: Saving Percentage calculates the

shrinkage of the source file as a percentage.

Saving percentage = (C1-C2/C1)*100%

C1= Size before compression

C2= Size after compression

V. FINAL PROPOSED SYSTEM FOR

RANDOM DATA SET

Final Proposed system for Random Data Set.

The table above shows the various experiments

conducted by the authors to determine the

compression ratio and space-saving percentage

achieved by the final proposed system for random data

set.

5.1 Comparison Table and Graph on Compression

Ratio for Random Dataset:

The following tables and graphs represent the

comparison of Compression ratios of the existing

techniques and the proposed system.

Input text

size (in

bytes)

Bit

Reductio

n

Compres

sion ratio

(In %)

Huffman

Compres

sion ratio

(In %)

Proposed

System

Compres

sion ratio

(in %)

87 75.8 42.5 29.8

117 75.2 42.7 30.7

© August 2021 | IJIRT | Volume 8 Issue 3 | ISSN: 2349-6002

IJIRT 152358 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 255

176 75 57.9 49.4

352 75 57.9 49.4

536 75 57.8 53.3

TABLE 5.1 COMPRESSION RATIO

COMPARISON FOR RANDOM DATASET

From Table 5.1, it is clear that the compression ratio

achieved by the proposed system is lesser as compared

to the existing techniques which mean it results in

more savings of the storage space.

Fig. 5.2 Compression ratio comparison graph for

random dataset

The above graph is made based on Table 5.1 which

shows the comparison of compression ratios of the

existing systems and the proposed system. In the

graph, the horizontal axis represents the length of the

input string in bytes, and the vertical axis represents

the Compression Ratio in percentage.

VI. CONCLUSION AND FUTURE WORK

In this proposed work, an improved dynamic bit

reduction algorithm is developed to compress and

decompress the text data based on the lossless data

compression approach. Various experiments have

been conducted on different datasets such as Random,

Alphanumeric, Numeral, and Special Characters

datasets. The results obtained by the proposed system

are compared with the existing data compression

techniques- Bit Reduction and Huffman Coding using

parameter compression Ratio and saving percentage.

From the analysis of the results, it is concluded that the

proposed system shows very good compression results

in terms of Compression Ratio and Saving Percentage

as compared to the existing techniques for all the

datasets that have been considered. The existing bit

reduction system provides poor compression results. It

is based on a fixed bit encoding scheme and provides

lossy output if special characters are present in the

input data. These limitations of the existing Bit

reduction system have been overcome by the proposed

system as it is using a variable Bit encoding scheme.

The compression results shown by the proposed

system are better than the existing systems (Bit

reduction and Huffman coding) as it is using dynamic

Bit reduction technique in the first phase and Huffman

coding is applied in the second phase to further

improve the performance of the proposed system and

to achieve better compression results.

VII. FUTURE WORK

Improved Dynamic Bit Reduction Algorithm works

only with text data written in a single language which

can also be tested to compress the multi-lingual data

i.e. text data written in multiple languages in a single

file. In other words, the system works only on the

ASCII dataset which can be extended to work with

Unicode data for future work.

