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Abstract - Energy harvesting is a traditional concept, 

which is used by a wide variety of physical systems for 

converting naturally available energy into electric 

power. Sources of power include wind, solar, mechanical 

vibrations, magnetic fields, temperature variations, 

application specific power transforming sources, etc. 

Wireless sensor networks (WSNs) consist of a wide 

variety of limited power nodes, each of which 

continuously require energy for operation. These nodes 

are placed at remote locations, due to which continuous 

physical monitoring is not possible. This limits the 

capability to replace power sources (batteries) for these 

nodes, thus affecting their normal functioning. As an 

alternate to power source replacement, wireless network 

researchers have proposed use of energy harvesting in 

wireless sensor nodes. In order to perform this task, a 

wide variety of energy harvesting models are proposed 

by researchers, each of which vary in terms of 

computational complexity, harvesting efficiency, energy 

efficiency, and size of harvesting models. Due to which it 

becomes difficult for network designers to select the best 

possible energy harvesting model for their deployments. 

To reduce this difficulty of model selection, this text 

reviews a wide variety of network models directed at 

energy harvesting. These models are compared in terms 

of deployment application type, energy efficiency, 

computational complexity, etc. Upon referring this 

comparison, researchers and network designers can 

select the best suited model for their deployment, which 

will assist in improving network lifetime and harvesting 

performance. Moreover, this text also proposes various 

model level enhancements which will assist in improving 

performance of already defined energy harvesting 

techniques. This text also performs application wise 

statistical comparison of reviewed models, which further 

assists in selecting deployment specific models for highly 

effective network design. 

 

Index Terms - Energy, harvesting, sensor, renewable, 

lifetime, computational complexity. 

INTRODUCTION 

 

Optimizing battery utilization is a major task for any 

wireless sensor network (WSN). To achieve this task, 

a wide variety of models are developed, which include 

sleep scheduling, duty cycle optimization, node-to-

node load balancing, distributed computing, etc. But 

due to limited battery capacity and physical access 

limitations, WSN nodes often require frequent battery 

replacement, which reduces their long-term running 

efficiency. To reduce the probability of battery 

replacement, various energy harvesting circuits are 

integrated into wireless nodes [1]. These circuits 

convert renewable energy sources like solar energy, 

wind energy, temperature variations, mechanical 

disturbances, etc. into electrical energy. This 

converted energy is used to charge the power source 

connected wireless sensor node. Additionally, some 

wireless networks, as depicted in figure 1, offload 

computationally complex tasks to high energy nodes, 

in order to extend network lifetime, thereby improving 

their battery capacity. 

 
Figure 1. Wireless sensor network with energy 

harvesting 
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From the network model it can be observed that each 

energy harvesting node (EHN) has a battery source, 

and an energy harvesting circuit. This circuit is 

responsible for converting renewable source energy 

into electrical power for charging the battery. The 

EHNs estimate their battery power, and offload their 

computationally complex tasks to the wireless sensor 

node (WSN) showcased at the centre. This process 

enhances energy efficiency of the offloading node, 

thereby giving it more time for external charging. 

Approaches similar to this are proposed by 

researchers, and vary in terms of energy efficiency, 

computation complexity, and other parameters. A 

survey of these approaches can be observed from the 

next section, along with their nuances, advantages, 

limitations and characteristics. This is followed by 

performance evaluation of the reviewed algorithms, 

along with their statistical comparison in terms of 

empirical parameters. By referring to this comparison, 

researchers can identify the best possible energy 

harvesting algorithm(s) for their deployments. Finally, 

this text concludes with some interesting observations 

about the reviewed algorithms and recommends 

methods to improve it. 

 

LITERATURE REVIEW 

 

Harvesting energy in wireless sensor networks 

requires design of inherently efficient models that 

allow for low energy operations. For instance, the 

work in [2] proposes a low energy clustering model 

that uses solar energy for harvesting. Components like 

solar plate, harvesting module device, and storage 

device are used in order to harvest solar power. The 

harvested power is represented using equation 1 as 

follows, 

𝑃ℎ𝑎𝑟𝑣𝑒𝑠𝑡(𝑡) = 𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦(𝑡 + 1) − 𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦(𝑡)

+ 𝑃𝑎𝑐𝑡𝑖𝑣𝑒(𝑡) + 𝑃𝑠𝑙𝑒𝑒𝑝(𝑡) … (1) 

Where, 𝑃ℎ𝑎𝑟𝑣𝑒𝑠𝑡 , 𝑃𝑏𝑎𝑡𝑡𝑒𝑟𝑦 , 𝑃𝑎𝑐𝑡𝑖𝑣𝑒 , 𝑎𝑛𝑑 𝑃𝑠𝑙𝑒𝑒𝑝 represent 

harvested, battery, active and sleep power levels. The 

model further utilizes a specialized frame structure 

that supports EH model, wherein the following 

parameters are stored on the frame, and communicated 

throughout network,  

• Shared information between nodes 

• Distance calculations between nodes 

• Radius calculation for clustering 

• Cluster head selection information 

• Cluster formation details 

• Node identification number 

• Rate of energy harvesting 

• Residual energy in the nodes 

Decisions about clustering, and harvesting are taken 

based on these parameters. The proposed novel energy 

harvesting clustering protocol (NEHCP) is found to 

have 71% energy efficiency, which is higher than 

sleep awake energy-efficient distributed (SEED) that 

has an efficiency of 61.8%, hybrid unequal clustering 

layering protocol (HUCL) that has an efficiency of 

45.7% and centralized energy-efficient cluster 

(CEEC) that has an efficiency of 37.7% on the same 

network conditions. This efficiency can be improved 

with energy prediction systems, which can pre-

emptively decide which nodes should be given more 

power, while which nodes must be put to sleep mode, 

depending upon their behavioural patterns. The work 

in [3] proposes such a model, wherein solar irradiance 

is predicted, and nodes with less computational 

requirements are put to sleep. The model uses 

Exponentially Weighted Moving Average (EWMA) 

for estimation of a smarting factor as indicated by 

equation 2, 

𝑆 = 𝑟 ∗ (
𝐶(𝑡) − 𝐶(𝑡 − 1)

𝐶(𝑡) + 𝐶(𝑡 − 1)
) ∗ 𝐶(𝑡) … (2) 

Where, 𝑟, 𝐶 represents scaling constant, and energy 

observations at different time instances. Based on this 

factor, energy prediction is performed using equation 

3 as follows, 

𝐸(𝑡 + 1) = (𝑎 ∗ 𝐸(𝑡) + (1 − 𝑎) ∗ 𝐸(𝑡 − 1))

∗ (1 + 𝐿) ∗ 𝑆 … (3) 

Where, 𝑎, 𝐸, 𝑎𝑛𝑑 𝐿 represent prediction scaling 

constant, energy observation, and length of prediction 

interval respectively. The proposed model iPro-energy 

is able to achieve an efficiency of 81%, which is higher 

than Q-Learning Based Solar Energy Prediction 

(QLSEP) that has an accuracy of 75%, iPro that has an 

accuracy of 65%, and LPro that has an accuracy of 

62% on the same network. Thereby making the 

proposed algorithm usable for real time deployments. 

A combination of these protocols along with 

cooperation-based scheduling can be observed from 

[4], wherein energy harvesting and energy transfer for 

transmission of data, with power control, scheduling 

& routing (EDPR) is proposed. The model utilizes 

Lyapunov optimization along with drift-plus-penalty 

& perturbation method for optimization. The model 
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utilizes power as a data stream in order to 

cooperatively charge neighbouring nodes as observed 

from figure 2, wherein energy connections between 

nodes are observed. Due to the cooperative process, 

proposed model is able to achieve an energy efficiency 

of 85%, which is very high and suitable for real time 

network deployments with high lifetime. 

 
Figure 2. Cooperative energy harvesting in WSN [4] 

This performance can be further improved via use of 

forecasting models as suggested in [3], but forecasting 

models have their own nuances, advantages, and 

limitations. The work in [5] highlights these 

characteristics and propose that neural network (NN) 

based hybrid methods like back propagation NN 

(BPNN) that has an energy efficiency of 65%, radial 

basis kernel feed forward network (RBFFN) that has 

an energy efficiency of 68%, Genetic Algorithm with 

NN (GANN) that has an energy efficiency of 71% and 

fuzzy ANN that has an energy efficiency of 67% 

models have better performance than other models like 

Extreme Learning Machine (ELM), and fuzzy 

approaches. The performance of these models is 

moderate due to use of a single renewable source, 

which can be improved using radio frequency (RF), 

thermal, wind flow, water flow, biomass, parametric 

changes in pressure, stress strain, vibration, & waste 

heat, body movements, body temperature, 

physiological parameters, electromagnetic (EM) 

waves, and hybrid sources. From this review it is 

observed that PV systems have an energy efficiency of 

80%, RF energy harvesting have an energy efficiency 

of 64%, flow-based EHs have an energy efficiency of 

53%, bio-energy models have an energy efficiency of 

63%, thermal models have an energy efficiency of 

86%, while mechanical systems have an efficiency of 

6%, which indicates that bio-energy models & PV 

models must be combined for better EH systems.  

An optimal size & rate (OSR) scheme that uses packet 

size, data rate, and maximum number of transmission 

trials (MNTT), are used for improving throughput & 

energy efficiency is proposed in [7], wherein periodic 

energy harvesting is proposed. The model showcases 

an energy efficiency of around 85% with a throughput 

of 7 kbps across different scenarios, which makes it 

useful for high performance WSN design. This 

efficiency can be improved using a modified single 

material energy harvesting device, which uses 

KNBNNO ceramic material as proposed in [8]. The 

proposed material is able to harvest solar, thermal, and 

kinetic changes via incorporation of photovoltaic, 

piezoelectric, and pyroelectric sensors. Circuit of the 

proposed model is showcased in figure 3, wherein 

pyro, photovoltaic, and piezo sensors are seen. 

 
Figure 3. Proposed KNBNNO circuit design for 

energy harvesting [8] 

The proposed model is observed to have an energy 

efficiency of 89%, which makes it suitable for real 

time deployments. But the cost of designing this model 

is very high, which can be resolved using mass 

production of the components. The proposed model’s 

performance can be extended when combined with 

[9], wherein opportunistic routing protocol is proposed 

for EH WSN. The model utilizes long-short-term-

memory (LSTM) to solve the energy sensing and 

consumption imbalance during solar power 

conversion. It also uses energy aware opportunistic 

routing (EAOR) for low power communications. The 

proposed model is observed to have an efficiency of 

76%, and high QoS when compared to non-

opportunistic routing scenarios. This efficiency can be 
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extended using the work in [10], wherein resource 

allocation model using differential game theory is 

proposed. The model adaptively modifies speed, and 

power requirements during data communication based 

on traffic load & energy availability as observed from 

figure 4, wherein a neighbouring set is formed, 

depending upon energy harvesting & data sensing 

events. 

 
Figure 4. Event-based energy harvesting [10] 

The model further uses receding-horizon-control with 

dynamic Game (RHCDG), for provision of reliable 

controllers to nonlinear sensing systems with 

constraints. The model is observed to have an energy 

efficiency of 80%, which makes it favourable for real 

time deployments, but the model is very 

computationally complex to implement, which limits 

its usability to high performance applications. This 

complexity can be extensively utilized by adding a 

greater number of sources for energy harvesting. For 

instance, the work in [11] can be referred where RF 

energy harvesting techniques are compared. It is 

observed that singe band designs have an energy 

efficiency of 62%, dual band & triple designs have an 

energy efficiency of 40%, while quad band designs 

have an efficiency of 84%, thereby facilitating the use 

of quad band designs for real time WSN node design. 

This efficiency can be extended with proper battery 

size design, which can limit number of update 

messages sent in the network. To facilitate this, the 

work in [12] can be used, wherein it is observed that 

optimum battery size depends upon number of nodes 

in the network. The work utilizes a queueing system 

as indicated in figure 5, wherein sensor nodes are 

observed to communicate their battery status signals 

on first come first serve (FCFS) basis. 

 
Figure 5. Use of FCFS for queuing battery signals [12] 

Due to this, the proposed model is capable of obtaining 

an energy efficiency of 72% which makes it usable for 

large sized networks with optimum battery sizing. 

This framework can be extended by using the work in 

[13], wherein ordered transmissions scheme (OTS) 

based on Gaussian statistics. The proposed model is 

capable for improving energy efficiency to nearly 

85%, by minimizing packet loss, and improving 

sensing interval hit ratio. Similar enhancement models 

are proposed in [14, 15], wherein fair cooperative 

protocol (FCP), and relay selection protocol (RSP) is 

used. These protocols have an energy efficiency of 

65%, and 68% respectively. This efficiency can be 

optimized via use of improved cooperative routing 

scheme as proposed in [16], wherein underwater 

WSNs are used. The model uses a combination of 

cable connected, acoustic connected, and moored 

sensors in order to improve energy harvesting 

efficiency. The model works by bifurcating source 

load to different intermediaries, which are selected 

based on their residual energy, and distance metrics. 

Each node is given a harvesting trust value, which is 

calculated using equation 4 as follows, 

𝐸𝐻𝑇 =
𝑁𝑜𝑑𝑒 𝑡𝑜 𝑛𝑜𝑑𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑆𝑜𝑢𝑟𝑐𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦
… (4) 

Nodes with low value of EHT are selected for 

communication, which results in minimum distance 

and maximum residual energy utilization. Number of 

data packets communicated through a node are 

selected using the following equation 5, wherein node 

residual energy is used a primary metric for 

controlling number of communicated packets (NCP). 

𝑁𝐶𝑃𝑖

= 𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑐𝑘𝑒𝑡𝑠

∗
𝐸𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑖𝑡ℎ 𝑛𝑜𝑑𝑒

𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑛𝑜𝑑𝑒𝑠
… (5) 
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Due to this energy-based packet distribution, the 

proposed model Cooperative Underwater WSN (Co-

WSN) is able to achieve an energy efficiency of 83%, 

which is higher than normal EH-WSN that has an 

energy efficiency of 75% under the same network 

conditions. This performance can be improved via use 

of Energy-harvesting wastage-aware (EHWA), Sleep-

wake scheduling and power control algorithm 

(SSPCA), Power splitting optimization (PoSO), Solar 

energy-prediction with Q-learning (QLSEP), Novel 

energy efficient clustering (NEEC), and clustering 

algorithm for energy efficiency (CAEE), as reviewed 

in [17]. It can be observed that NEEC has an energy 

efficiency of 57%, CAEE has an energy efficiency of 

55%, QLSEP has an energy efficiency of 68%, PoSO 

has an energy efficiency of 65%, SSPCA has an 

energy efficiency of 71%, and EHWA has an energy 

efficiency of 80%, thereby suggesting that EHWA 

should be applied to real time EH WSNs.  

A similar, highly efficient algorithm for energy 

optimization can be observed from [18], wherein 

distributed optimization based on potential game 

theoretic approach is defined. The model is based on 

prediction of power consumption over 2 days and 

using this predicted data for allocating routing and 

computation load to nodes. An energy efficiency of 

83% is achieved using this model, which makes it 

highly usable for real time networks. Similar models 

are proposed in [19, 20, 21, 22] wherein inverter based 

photovoltaic circuit design (IBPVCD) that achieves 

79% efficiency, Markovian model with modified 

opportunistic routing (MEHOR) that achieves 90% 

efficiency, EHOR that achieves 85% efficiency, collar 

mounted device design (CMDD) that achieves 76% 

efficiency and update internal violation probability 

(UIVP) based energy harvesting that achieves 74% 

energy efficiency are proposed. These models are used 

for high performance network design, and can be 

deployed for low cost, and low power networks.  

During design of these networks, a wide variety of 

censoring rules are applied, the work in [23] highlights 

these rules, and indicates that battery sizing, mobility 

limits, and mean squared error (MSE) bounds must be 

kept in check while designing battery powered WSN 

nodes. Based on these conditions, work in [24, 25, 26, 

27] proposes design of maximum power point transfer 

with PV (MPPT PV) with energy efficiency of 96%, 

RF harvesting at the header of timeslot (RF HHT) with 

energy efficiency of 72%, RF harvesting at the 

dedicated timeslot (RF HDT) with energy efficiency 

of 79%, particle swarm optimization (PSO) for 

cooperative communication (PSO CC) with an energy 

efficiency of 63%, and adaptive medium access 

control (AMAC) for PV harvesting (AMAC PV) with 

an energy efficiency of 85% are seen. These models 

have better QoS, and are used for moderately sized 

WSNs, that have moderate processing power. Similar 

models are reviewed in [28, 29, 30], wherein it is 

observed that machine learning models that utilize 

deep learning have limited use in energy harvesting, 

while rule-based systems are more suited towards 

providing high energy efficiency in EH WSNs.  

Applications of these models are observed from [31, 

32], wherein river monitoring, and evaluation of 

connectivity performance, are proposed. The 

performance of these applications can be improved via 

use of cooperative reinforcement learning (CRL) as 

proposed in [33], wherein throughput is optimized via 

idle time, sensing time, computing time, and 

transmission time optimization. The model showcases 

an energy efficiency of 79% but has high computation 

complexity due to implementation of RL model. This 

complexity can be reduced via use of feature selection 

for energy sources, which assists in identification of 

best harvesting source for the given environmental 

conditions. It is observed that the proposed model [34] 

is able to achieve an energy efficiency of 85%, but is 

expensive in terms of deployment, due to a large 

number of sensing devices. This cost can be reduced 

via use of optimal number of sensing devices, which 

are identified to have highest efficiency. The selection 

process is further facilitated using mixed integer 

nonlinear programming optimization (MINLPO), and 

optimal sink speed allocation (OSSAA) proposed in 

[35] that achieves an energy efficiency of 71%, which 

is higher than adjustment led allocation (ALA) that has 

an efficiency of 68% under the same network 

conditions. Similar models are proposed in [36, 37, 38] 

wherein path planning (PP), Uniform Random 

Ordered Policy (UROP), Myopic Policy (MP), and 

path exposure (EXPO), which achieve an energy 

efficiency of 54%, 65%, 68%, and 85% respectively. 

This efficiency can be further improved via enhanced 

clustering mechanisms like, Energy Harvesting 

Cluster Head Rotation Scheme (EH-CHRS) [39], and 

Solar Energy-Harvesting with Improved Cluster Head 

Selection (SEH-ICHS) [40], wherein an energy 

efficiency of 89% and 91% are achieved. This 



© September 2021| IJIRT | Volume 8 Issue 4 | ISSN: 2349-6002 

IJIRT 152789 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 454 

 

efficiency is higher when compared with Low-energy 

adaptive clustering hierarchy (LEACH) that has an 

energy efficiency of 85%, and distributed energy 

efficient clustering (DEEC) that has an energy 

efficiency of 79%, thereby making SEH-ICHS most 

suitable choice for a wide variety of network 

scenarios. Based on this review, it is observed that a 

wide variety of models are defined for energy 

harvesting in wireless networks, Statistical analysis of 

these models, which will assist in identification of the 

best method for a given network scenario can be 

observed from the next section.  

 

STATISTICAL ANALYSIS 

 

Evaluation of efficiency for energy harvesting models 

in WSNs requires comparison of the proposed models 

on different statistical parameters. These parameters 

include, energy efficiency (EE), computational 

complexity (CC), cost of deployment (CD), and 

application type (AT). These parameters are estimated 

from the reviewed models, and tabulated in table 1, 

wherein computational complexity and cost of 

deployment are converted into fuzzy ranges of low 

(L), medium (M), high (H), and very high (VH) 

depending upon their relative values. 

Method CC CD EE AT 

NEHCP [2] M M 71 General 

SEED [2] H M 61.8 General 

HUCL [2] H M 45.7 General 

CEEC [2] M L 37.7 General 

iPro EWMA [3] H M 81 PV 

QLSEP [4] H H 75 PV 

iPro [4] H M 65 PV 

LPro [3] M M 62 PV 

EDPR [4] M H 85 PV 

BPNN [5] H H 65 General 

RBFFN [5] H H 68 General 

GANN [5] M M 71 General 

Fuzzy ANN [5] H M 67 General 

MPPT PV [6] M M 80 PV 

MPPT RF [6] M M 64 RF 

MPPT Flow [6] M M 53 Mech. 

MPPT Bio [6] M M 63 Mech. 

MPPT Thermal [6] M M 86 Thermal 

OSR [7] M M 85 General 

KNBNNO [8] M H 89 General 

EAOR LSTM [9] VH H 76 PV 

RHCDG [10] H VH 80 General 

Single band RF [11] M M 62 RF 

Dual band RF [11] M M 40 RF 

Triple band RF [11] M H 40 RF 

Quad Band RF [11] M H 84 RF 

Queue FCFS [12] M H 72 General 

OTS [13] H H 85 General 

FCP [14] M H 65 General 

RSP [15] M H 68 General 

Co-WSN [16] H H 83 Mech. 

EH-WSN [16] M M 75 Mech. 

NEEC [17] M L 57 General 

CAEE [17] M M 55 General 

QLSEP [17] M H 68 General 

PoSO [17] M M 65 General 

EHWA [17] M H 80 General 

SSPCA [17] M H 71 General 

Game theory [18] H H 83 General 

IBPVCD [19] H H 79 PV 

MEHOR [20] H H 90 General 

EHOR [20] H H 85 General 

CMDD [21] M H 76 Mech. 

UIVP [22] M M 74 General 

MPPT PV [24] M M 96 PV 

RF HHT [25] M M 72 RF 

RF HDT [25] M H 79 RF 

PSO CC [26] H H 63 General 

AMAC PV [27] H M 85 PV 

CRL [33] H H 79 General 

Feature selection [34] H H 85 General 

MINLPO with 

OSSAA [35] 

H H 71 General 

ALA [35] M H 68 General 

PP [36] M M 54 General 

UROP [37] H M 65 General 

EXPO [38] H H 68 General 

EH-CHRS [39] H H 89 General 

SEH-ICHS [40] H H 91 PV 

Table 1. Statistical evaluation of reviewed models 

(Mech.: Mechanical) 

These statistical comparisons are further bifurcated 

into General purpose, PV, RF and mechanical types. 

General purpose types include are applicable for all 

energy sources, while PV, RF, and mechanical types 

are applicable for solar, RF and piezo-electric powered 

applications. Based on this bifurcation, energy 

efficiency of different mechanical based EH WSNs 

can be observed from figure 6 as follows, 

 
Figure 6. Energy efficiency of mechanical EH WSN 

systems 

Based on this comparison, it is observed that MPPT 

Thermal [6], Co-WSN [16], CMDD [21], and EH-

WSN [16] are the most effective models in terms of 

energy efficiency for mechanical EH systems. 

Similarly, computational complexity of different 

mechanical based EH WSNs can be observed from 

figure 7 as follows, 
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Figure 7. Computational complexity of mechanical 

EH WSN systems 

Based on this comparison, it is observed that MPPT 

Thermal [6], CMDD [21], EH-WSN [16], and MPPT 

Bio [6] are the most effective models in terms of 

computational complexity for mechanical EH 

systems. Similarly, cost of deployment for different 

mechanical based EH WSNs can be observed from 

figure 8 as follows, 

 
Figure 8. Cost of deployment for mechanical EH WSN 

systems 

Based on this comparison, it is observed that MPPT 

Thermal [6], CMDD [21], EH-WSN [16], and MPPT 

Bio [6] are the most effective models in terms of 

computational complexity for mechanical EH 

systems. 

The energy efficiency of different RF based EH WSNs 

can be observed from figure 9 as follows, 

 
Figure 9. Energy efficiency of RF EH WSN systems 

Based on this comparison, it is observed that Quad 

Band RF [11], RF HDT [25], RF HHT [25], MPPT RF 

[6] and Single band RF [11] are the most effective 

models in terms of energy efficiency for RF EH 

systems. Similarly, computational complexity of 

different RF based EH WSNs can be observed from 

figure 10 as follows, 

 
Figure 10. Computational complexity of RF EH WSN 

systems 

Based on this comparison, it is observed that Quad 

Band RF [11], MPPT RF [6], Single band RF [11], 

Dual band RF [11], and Triple band RF [11] are the 

most effective models in terms of computational 

complexity for RF EH systems. Similarly, cost of 

deployment for different RF based EH WSNs can be 

observed from figure 11 as follows, 

 
Figure 11. Cost of deployment for RF EH WSN 

systems 

Based on this comparison, it is observed that MPPT 

RF [6], Single band RF [11], Dual band RF [11], and 

RF HHT [25] are the most effective models in terms 

of deployment cost for RF EH systems. 

The energy efficiency of different PV based EH WSNs 

can be observed from figure 12 as follows, 

 
Figure 12. Energy efficiency of PV EH WSN systems 
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Based on this comparison, it is observed that MPPT 

PV [24], SEH-ICHS [40], EDPR [4], AMAC PV [27], 

iPro EWMA [3], and MPPT PV [6] are the most 

effective models in terms of energy efficiency for PV 

EH systems. Similarly, computational complexity of 

different PV based EH WSNs can be observed from 

figure 13 as follows, 

 
Figure 13. Computational complexity of PV EH WSN 

systems 

Based on this comparison, it is observed that MPPT 

PV [24], EDPR [4], MPPT PV [6], LPro [3], SEH-

ICHS [40], and AMAC PV [27] are the most effective 

models in terms of computational complexity for PV 

EH systems. Similarly, cost of deployment for 

different PV based EH WSNs can be observed from 

figure 14 as follows, 

 
Figure 14. Cost of deployment for PV EH WSN 

systems 

Based on this comparison, it is observed that MPPT 

PV [24], MPPT PV [6], LPro [3], AMAC PV [27], 

iPro EWMA [3], and iPro [4] are the most effective 

models in terms of deployment cost for PV EH 

systems. 

The energy efficiency, computational complexity, and 

cost of deployment for different General purpose EH 

WSNs can be observed from figure 15 as follows, 
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Based on this comparison, it is observed that MPPT 

PV [24], SEH-ICHS [40], MEHOR [20], KNBNNO 

[8], EH-CHRS [39], MPPT Thermal [6], OSR [7], 

OTS [13], EHOR [20], Feature selection [34], EDPR 

[4], AMAC PV [27], Quad Band RF [11], Game 

theory [18], Co-WSN [16], and iPro EWMA [3] are 

the most effective models in terms of energy 

efficiency for General purpose EH systems. Further, it 

is observed that MPPT PV [24], KNBNNO [8], MPPT 

Thermal [6], OSR [7], EDPR [4], Quad Band RF [11], 

EHWA [17], MPPT PV [6], RF HDT [25], CMDD 

[21], EH-WSN [16], UIVP [22], Queue FCFS [12], RF 

HHT [25], NEHCP [2], GANN [5], SSPCA [17], RSP 

[15], and QLSEP [17] are the most effective models in 

terms of computational complexity for General 

purpose EH systems. Finally, it is observed that NEEC 

[17], CEEC [2], MPPT PV [24], MPPT Thermal [6], 

OSR [7], MPPT PV [6], EH-WSN [16], UIVP [22], 

RF HHT [25], NEHCP [2], GANN [5], PoSO [17], 

MPPT RF [6], MPPT Bio [6], LPro [3], Single band 

RF [11], CAEE [17], PP [36], and MPPT Flow [6] are 

the most effective models in terms of deployment cost 

for General purpose EH systems. Using these 

observations, researchers and WSN system designers 

can select the best suited models for their application 

deployments.  

 

CONCLUSION AND FUTURE WORK 

 

The extensive review based on different parameters of 

EH based WSN models suggests that MPPT Thermal 

[6], and Co-WSN [16], are the most effective models 

in terms of energy efficiency, MPPT Thermal [6], and 

CMDD [21] are the most effective models in terms of 

computational complexity, while MPPT Thermal [6], 

and CMDD [21] are the most effective models in terms 

of computational complexity for mechanical EH 

systems. Thus, MPPT Thermal and CMDD can be 

selected as EH models when designing mechanical 

power based WSN systems. Similarly, it is observed 

that Quad Band RF [11], and RF HDT [25] are the 

most effective models in terms of energy efficiency, 

Quad Band RF [11], and MPPT RF [6] are the most 

effective models in terms of computational 

complexity, and MPPT RF [6], Single band RF [11], 

and Dual band RF [11] are the most effective models 

in terms of deployment cost for RF EH systems. Based 

on similar observations, it is perceived that MPPT PV 

[24], SEH-ICHS [40], EDPR [4], and AMAC PV [27] 

are the most effective models in terms of energy 

efficiency, MPPT PV [24], EDPR [4], LPro [3], SEH-

ICHS [40], and AMAC PV [27] are the most effective 

models in terms of computational complexity, and 

MPPT PV [24], LPro [3], AMAC PV [27], and iPro 

EWMA [3] are the most effective models in terms of 

deployment cost for PV EH systems. 

Finally, it is observed that MPPT PV [24], SEH-ICHS 

[40], MEHOR [20], and KNBNNO [8] are the most 

effective models in terms of energy efficiency, MPPT 

PV [24], KNBNNO [8], MPPT Thermal [6], and OSR 

[7] are the most effective models in terms of 

computational complexity, NEEC [17], CEEC [2], 

MPPT PV [24], and MPPT Thermal [6] are the most 

effective models in terms of deployment cost for 

General purpose EH systems. Using these 

observations, researchers and WSN system designers 

can select the best suited models for their application 

deployments. Further, it is recommended that 

researchers must perform combinatorial evaluation of 

these models, and interface mechanical models with 

PV models, PV models with RF models, and RF 

models with General purpose models, in order to 

design hybrid EH systems. This must be done by 

keeping the cost of deployment & computational 

complexity as low as possible, while keeping energy 

efficiency as high as possible. Researchers can design 

Genetic Algorithms (GAs) or other bio-inspired 

models in order to perform this task. 
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