
© October 2021| IJIRT | Volume 8 Issue 5 | ISSN: 2349-6002 

IJIRT 152989 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 167 

 

A secure and efficient authentication technique to access 

cloud services in Openstack 

 

 

Raghavendra K1, B Ramesh2 

1Assistant Professor, Dept of Computer Science and Engineering, NIEIT Mysuru-570018 , Karnataka 

India 
2Professor, Dept of Computer Science and Engineering, Malnad College of Engineering, Hassan 

Karnataka India 

 

Abstract - Nowadays cloud services have gained more 

interest. The main advantage of the cloud is, it reduces 

management costs and efficient usage of resources. The 

major role of efficient authentication means not only 

providing authentication for a single service in a cloud 

environment it should provide AAA in a federated 

identity management environment also, called as single 

sign-on(SSO). There are many authentication 

mechanisms most of them were only for a web 

application. Here in this paper, we focus on both web and 

non-web applications for efficient AAA in a cloud 

environment. For non-web application services of cloud, 

ABFAB has created an architecture for federated 

identity management environment. 

ABFAB also defines how to use existing EAP/AAA and 

GSS-EAP for both web and non-web-based applications. 

In this paper, we mainly focus on efficient AAA to access 

cloud services. To demonstrate the proposed system, we 

use the moonshot from Github, freeradius an 

opensource, and Openstack for cloud service with our 

proposed authentication method. We have done the 

performance analysis of our authentication method 

compared with the other authentication mechanism to 

access cloud services. This analysis shows a significant 

reduction in the computation time required for 

authentication and authentication traffic. 

 

I.INTRODUCTION 

 

OAuth, OpenID, and SAML are the few web-based 

authentication technologies to access cloud services 

and also in federated identity management 

technologies used by Google, Amazon, and Microsoft.  

RADIUS and EAP methods support AAA for both 

web and non-web (generic) applications in accessing 

cloud services and also in federated identity 

management environments, in AAA federated 

environments each organization should deploy AAA 

server and deployed organizations should interconnect 

with all AAA servers, in this way federation of identity 

and AAA can be provided. For authentication, an 

extensible authentication protocol framework is used 

with an extensible set of “EAP methods (e.g EAP-

TLS, EAP-TTLS, EAP-MD5)”. AAA is widely used 

for network access in federated environments. 

Eduroam is an example which is using AAA 

infrastructure for providing internet access through 

WiFi for the members of federated organizations 

students and research scholars. By the federated 

identity management, if the user of the same 

organization (home organization) once authenticates, 

he or she can access services provided by other 

federated organizations. Today more interests gaining 

in providing AAA for services, provided by cloud and 

internet access. An example of providing internet 

access using AAA infrastructure is eduroam, here 

RADIUS provides federated infrastructure, and the 

Extensible authentication protocol provides 

authentication. The success of eduroam has gained 

more interest to use RADIUS infrastructure for AAA 

for any type of application services for example SSH, 

HHTP, and cloud services, including network access 

too. For providing AAA using RADIUS, EAP and to 

access any kind of services in the federated 

environment is defined in ABFAB. “Generic Security 

Service Application Program Interface (GSS-API)” is 

a new mechanism specified by ABFAB. “GSS-API is 

based on an Extensible authentication protocol”. 

“GSS-API” is already included and supported by 

many of the application services. In GSS-EAP 

authentication, several authentication message 

exchanges take place with the end-users home 

organization. In typical EAP authentication, first, there 

will be the establishment of tunnel TLS/SSL (using the 



© October 2021| IJIRT | Volume 8 Issue 5 | ISSN: 2349-6002 

IJIRT 152989 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 168 

 

EAP-TLS method) between the AAA server(home) 

and the end-user.  

 

1.1.  EAP/AAA 

An EAP is an authentication framework used mainly 

for network access. Extensible authentication protocol 

architecture is very flexible because we can use any 

authentication techniques known as extensible 

authentication protocol methods. “These EAP 

methods are executed between an EAP peer and an 

EAP server through an EAP authenticator”, EAP 

authenticator just forwards the messages between the 

EAP peer and the EAP server.  Usually, Extensible 

authentication protocol is deployed over RADIUS or 

Diameter and also called as (AAA) infrastructure. 

AAA provides a framework for 3 security services, 

“authentication, authorization, and accounting”. In 

AAA infrastructure if the user wants to get to access a 

network service, the user will be registered in an 

IdP(Identity Provider), provided by an SP.  

 
Figure 1.1.1: Architecture of Extensible authentication 

protocol. 

 

1.2.  GSS-API 

A set of generic security functions are defined by the 

GSS-API [11] for server and client applications. The 

generic set of security functions makes client and 

server application-independent for any kind of 

security mechanism. This makes a client application 

(GSS Initiator) and a server application (GSS 

Acceptor) to establish a security context between each 

other. The context exchange between client and server 

results in GSS tokens and transported using 

application protocol. These tokens' format and content 

are derived from the underlying authentication 

mechanism. In the phase of security context exchange 

(establishment), both the client and server (initiator 

and acceptor) are mutually authenticated, services like 

confidentiality, mutual authentication and application 

data protection is also provided. the protocols namely 

XMPP.1, SMTP, SSH, HTTP are all supported by the 

GSS-API. 

 

1.3. Application Bridging for Federated Access 

Beyond Web(ABFAB)” 

ABFAB [12] makes AAA infrastructures support both 

“web and non-Web application” services (e.g. file 

storage, grid, remote access, and cloud infrastructures, 

etc.). 

Specifically, the “Application Bridging for Federated 

Access Beyond Web” joins existing protocols, for 

example, RADIUS/Diameter protocol, “GSS-API / 

SAML Security Assertion Markup Language” and 

EAP [13]. “The Application Bridging for Federated 

Access Beyond Web (ABFAB)” architecture consists 

of 3 entities:  User application, who requests for the 

service, the “Relying Party (RP)”, accessing services 

will be controlled by this entity, (IdP) Identity 

Provider, who is responsible for verifying the 

credentials of the user and performs authorization 

process. If the end-user needs to access any service, it 

executes the Client application, as a component of an 

access control method, a security context (GSS-API) 

should be established between the GSS initiator 

(client) and the GSS acceptor(RP).  

GSS context does two things i) mutual authentication 

between RP and client, ii) identity information will be 

given to RP of the user, and credentials for “AA 

authentication and authorization”.  In RP’s viewpoint, 

GSS-API performs access control and EAP performs 

the authentication process, in EAP authentication 

client acts as an EAP peer, Idp acts as an EAP server, 

RP acts as an EAP authenticator. Using GSS-API EAP 

packets are transported between RP and Client for this 

purpose GSS-API mechanism is defined by ABFAB 

for EAP known as (GSS-EAP) it also defines how 

EAP packets sent over GSS tokens and how 

credentials (keying materials 

At last, RADIUS protocol, used between the Relying 

Party and the identity provider, provides a federation 

substrate, by implementing the trust associations. 2 

resolutions of using RADIUS protocol has: i)  it 

conveys EAP packets to RP and the IdP. ii) it 

transports authorization data about the end-user from 

the IdP to the RP. This information is represented 

using SAML. 

 

 



© October 2021| IJIRT | Volume 8 Issue 5 | ISSN: 2349-6002 

IJIRT 152989 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 169 

 

 
Fig. 1.3.1: ABFAB protocol and entities. 

 

1.4. Moonshot 

Moonshot is based on AAA and it is separated into a 

few modules, the important and applicable is the one 

that actualizes the “GSS-EAP” system. The moonshot 

has 2 unique libraries. 

The EAP authenticator and EAP peer are implemented 

in the library named libeap. The libeap [15] has been 

modified to broaden the EAP, consolidating the 

advances and usefulness related to REAP.  GSS-EAP 

methods functionality is implemented in the library 

mech_eap. For the EAP functionality, mech_eap uses 

the libeap library.  

 

1.5.  FreeRadius 

FreeRadius is utilized to execute as a home AAA 

server (IdP), which does the EAP confirmation among 

clients and connects the cloud administration with the 

“AAA infrastructure”. “FreeRadius” has a lot of 

modules. To help EAP strategies, In the EAP module 

of free-range (called rlm_eap) all the usefulness of 

EAP exists. Little changes are made to this module to 

help the EAP-REAP and use related to EAP in the IdP 

and to deal with the various keys in IDP. 

 

1.6.  OpenStack 

Openstack is made up of different modules, each 

module provides different cloud services like virtual 

machines, object storage, file (swift services), and 

networking. Using HTTP RESTFUL APIs all the 

modules will communicate with each other for 

providing services. Authentication and authorization 

and identity management for the cloud are provided by 

the module called keystone. Keystone supports a 

variety of user “identity credentials e.g X.509 

certificates” and username/passwords. It also supports 

different authentication technologies (LDAP, 

Kerberos, etc). Besides, on account of the endeavors 

of the “CLASSe project” [12], it additionally 

underpins “federated authentication” using Apache 

[16] validation, modules, “mod_shib for SAML based 

authentication”, and “mod_auth_kerb” meant for 

“ABFAB based authentication”,  federated user 

credentials received are plotted to “OpenStack” roles 

and clusters for authorization purposes. Figure 1 

shows how to access cloud services with ABFAB 

based validation provided by the OpenStack. In this 

process user first contacts the keystone and gets the 

unscoped token. This keystone is protected by the 

apache server and receives the authentication request 

and passes it to the authentication 

module(mod_auth_kerb). Then a legacy EAP 

authentication is performed between the user and the 

Identity provider, in this process RADIUS and GSS-

EAP is utilized to pass the packets between them over 

the apache server. As soon as the user is authenticated, 

initially,  the HTTP authentication request is allowed 

by the apache server to reach the keystone. which thus 

produces and gives the unscoped token to the user. 

Lastly, the user can use the issued “token to request “ 

supplementary ”scoped” tokens from the keystone. 

After getting the scoped tokens from the keystone it is 

submitted to the cloud services to get access. 

 
Fig. 1.6.1: Working of Openstack 

 

II. LITERATURE SURVEY 

 

2.1. Related works and comparisons of different AAA 

mechanisms  

In this paper, we are comparing EAP methods with the 

REAP method. We are comparing the requirements 

specified in RFC 4017, key properties, and 

maintenance of certificates. The disadvantage of EAP 



© October 2021| IJIRT | Volume 8 Issue 5 | ISSN: 2349-6002 

IJIRT 152989 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 170 

 

MD5 is, it is vulnerable to man-in-the-middle attack 

and dictionary attack [1]. EAP MD5 will not afford 

session key generation and mutual authentication.  

“EAP-FAST, EAP-PEAP, EAP-TLS, and EAP-

TTLS” are the EAP methods based on certificates. 

These methods mainly rely on certificates. The EAP 

method known as EAP-FAST provides both session 

key generation and mutual authentication. EAP-FAST 

is also not prone to MITM and dictionary attacks. 

Another EAP method is known as EAP-LEAP is 

vulnerable to dictionary attacks [2].  

User identity protection, During the authentication 

process user’s credentials, should be secured, for this 

purpose users' credentials are encrypted in the 

authentication process. To secure users' identity and 

credentials “EAP methods” like “EAP TLS, EAP 

TTLS, EAP PEAP, and EAP Fast” establishes a secure 

tunnel. users' credentials are encrypted and transmitted 

via the secure tunnel therefore users' 

identity/credentials are hidden by these EAP methods.  

User identities/credentials are also protected in EAP 

TLS and EAP SEM since they use TLS tunnels for 

hiding the user’s identity. EAP-MD5, EAPLEAP, and 

EAP-SPEKE do not establish secure tunnels so these 

methods do not hide user identity/credentials. 

Urien et al, Badra et al  [4],  Rescorla [5] et al,  and 

Dierks et al discussed how EAP TLS secure user 

credentials/identity by tunneling. Moreover, the first 

EAP method of Juang et al, the EAP method proposed 

by Park et al, Yoon et al. are prone to the dictionary 

attack and do not provide hiding of user identity. 

Hence, their methods do not provide and meet the 

specification of identity privacy. In REAP user 

identity is encrypted while exchanging authentication 

messages so it meets the specification of identity 

privacy. 

Another requirement specified in RFC during 

authentication is Fast reconnection capability that will 

reduce the number of round trips which improves the 

performance. All the EAP methods which are based on 

Certificates provide fast reconnections capabilities. In 

these types of EAP methods, the client and server 

quickly establish a secure connection for 

communication. Thus reducing the number of round 

trips or message exchanges when authenticating. EAP-

FAST, EAP-SEM, EAP-double- TLS, and EAP-SRP 

supports “fast reconnections”.  The REAP method also 

provides this feature.  

The attackers can easily calculate the pre-shared 

session key at the user side if he gets the long term key. 

In this way it only gives “half-forward secrecy”. 

“forward secrecy” is not provided by the EAP method 

MD5. Many methods rely on certificates for providing 

authentication called Certificate-based EAP methods. 

However, EAP-TLS entails that all users should apply 

for the certificates. All users are required to install 

certificates. This increases the administrative burden 

and needs to maintaining and manage the certificate 

and adds additional time for authentication.  In 

symmetric key-based Authentication, the server will 

authenticate the users by using the shared secrets that 

reduce authentication time and processing time.  

The number of round trips i.e EAP request/response. 

EAP-MD5 takes two round trips EAP 

request/response, but it is not capable of providing 

mutual authentication. EAP-TLS takes Four round 

trips ( EAP request/response)for authentication, but 

the server and client both are required to install 

certificates. EAP-TTLS and EAP-PEAP take five and 

seven round trips (EAP request/response) for 

authentication, in these methods it is not necessary to 

install certificates at both server and the client sides, 

once server authentication is done using TLS 

handshake, EAP methods like EAP MD5is used to 

authenticate a client. 

In EAP-LEAP it performs (MS-CHAP) “Microsoft 

Challenge Handshake Authentication Protocol”. So, it 

chooses four round trips. EAP-FAST establishes a 

secure tunnel by TLS handshake. After the handshake 

MS-CHAP or One-Time Password (OTP) [5] is used 

for authentication. So, EAP-FAST takes 5 round trips 

(EAP request/response) for authentication. REAP 

method takes only two round trips EAP 

request/response and satisfies all the requirements.  

In “EAP-TLS”, “EAP-TTLS”, “EAP-PEAP” and 

“EAP-FAST” both server and client communicate 

with each other securely using a handshake procedure 

by performing a key exchange, Furthermore, In “EAP-

TLS”, “EAP-TTLS”, “EAP-PEAP” and “EAP-FAST” 

user must verify the certificate of the server, In EAP 

TLS certificate signed by the client, is verified by the 

server. in EAP-TLS. These processes depend on the 

asymmetric cryptographic algorithms, such as RSA, 

DSA, or Diffie-Hellman computations.  

In Table 2, we are comparing REAP with other widely 

used EAP methods for the properties like computation 



© October 2021| IJIRT | Volume 8 Issue 5 | ISSN: 2349-6002 

IJIRT 152989 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 171 

 

time taken for the handshake, round trips for complete 

authentication. 

In most of the EAP methods the “key exchange 

algorithm” and “certificate verification” are 

implemented by Diffie-Hellman and RSA, 

respectively. AES and SHA-256 algorithms are used 

to implement the REAP method. Therefore, we are 

comparing the performance of the REAP method with 

that of the 2byte DH key agreement and 2byte RSA 

verification. 

The legacy EAP methods use asymmetric 

cryptographic algorithms such as RSA, DH, for key 

computation at both the server and the client sides 

which require more CPU cycles for computing keys 

and time-consuming also decrease the performance. 

REAP method uses only symmetric 

encryption/decryption without asymmetric ones, 

Therefore, the computation cost of REAP is reduced 

by depending on different types of EAP methods as 

associated to the other EAP methods that have the 

same level of security as REAP. 

(REAP) Polynomial based keys are the sequence of 

keys that are computed using one-time symmetric key 

cryptography. In this technique, all the messages are 

encrypted or decrypted by using the sequence of keys 

generated.  Since all the messages are encrypted or 

decrypted in this technique, if an attacker uses the 

compromised key, then it can be easily detected. 

Unlike sharing the keys to entities, in this technique, 

the keys are generated effortlessly using polynomial 

expression each time and used for encryption and 

decryption. In session-based keys generation [6], for 

each session, separate keys will be generated and 

exchanged with the entities. In this technique, there is 

no concept of exchanging the key nor key trade in each 

session. Both timestamp and polynomial expressions 

are used to compute/generate the chain of keys used 

for encryption/decryption. The timestamp is passed as 

a parameter by the client to server and at both the end, 

polynomial expressions exist, which is used to 

compute the sequence of keys to encrypt/decrypt the 

messages.  

That is how our technique utilizes the idea of 

Polynomial based keys [7] When the succession of 

Polynomial based keys is spent, another succession of 

Polynomial based keys is produced by using 

Polynomial expression. both the server-side and the 

user side performs the same procedure [8]. 

 

 
Fig. 2.1: REAP Authentication process 

 
Fig. 2.2: EAP method proposed by [9] 

 

2.1.2 Related works of EAP methods used in cloud 

scenario for AAA. 

In the cloud scenario, the services provided by the 

cloud will be secured and access control is controlled 

by the access control mechanisms. Different cloud 

solutions will use different access control mechanisms 

and security mechanisms.  



© October 2021| IJIRT | Volume 8 Issue 5 | ISSN: 2349-6002 

IJIRT 152989 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 172 

 

 For example, OpenStack [20] underpins numerous 

kinds of credentials for users like “username, 

password”, “certificates x.509” and mechanisms for 

authentication like “Kerberos” and “LDAP”. Through 

the expanding significance of “identity federations” 

cloud computing is beginning to show interest for 

access control as an approach to streamlining client 

connections to moderate the client the board exertion. 

OpenStack has incorporated the OS_FEDERATION 

augmentation [17], which allowed federated clients by 

performing the assignment of roles and groups all 

together with cloud access. It also provides a feature 

of federated access through which an efficient and 

secure authentication from the industry and R&D for 

a long time. The advantages of secure and efficient 

authentication are, it gives regarding expanded 

convenience for clients (users need not have to present 

their certificates/credentials every time in the 

authentication process), too as the eminent decrease on 

the multifaceted nature of the verification the measure 

required when accessing to the cloud services have 

made a significant “Identity Management” (IDM) 

theme. From the individual perspective, a large portion 

of the secure, efficient, and SSO-empowered access 

control mechanisms are just centered around 

applications of the web.  “SAML” [18] and “OAuth” 

[19] are outstanding models, permitting clients and 

services of applications to access various resources.  

Some other important web services are “OpenID” 

[20], “OpenID Connect” [21],[22] these have been 

only essentially framed for applications of web.  The 

current exertion inside the “IETF Kitten WG” [23] to 

characterize “SAML” Client “SASL” and “GSS-API 

Mechanisms for non-Web applications” [24] may give 

more extensive convenience in the coming days. 

Kerberos [25] gives a conventional access control 

convention, in light of the circulation of confirmation 

tickets, that is broadly upheld by numerous 

applications & that gives an authentication and “SSO” 

feature. Even though the standard doesn't especially 

care about security, there are a few propositions, for 

example, PrivaKerb [26] or KAMU [27], that give 

augmentations to supporting improved security. 

Moreover, Kerberos underpins an activity mode, 

“Kerberos cross-domain” organizations has not been 

generally conveyed because of some perceived issues 

[28], just as to the reality of establishing an 

autonomous foundation aside those effectively settled 

for the access to web applications (for example 

“SAML-based”) & access to the network (for example 

“AAA-based”) [29].  

Based on the literature survey we have selected 2 

authentication methods (EAP-methods) that are 

secure, efficient, and recent technology. We are 

comparing these methods with the REAP method 

integrated to access cloud services. Also, performance 

analysis and results are discussed below. 

 

III.  PROPOSED SYSTEM 

 

 
Fig 3.1 Proposed System 

The cloud services are provided to the user, for 

example, SaaS (e.g Openkm) using OpenStack. The 

“application service supporting ABFAB employing 

the extension of GSS-EAP”. The components in the 

proposed system are listed below. 

• “User” (U). The user is an entity who is intent on 

using the cloud services provided by the cloud 

service provider. The user will use his 

username/password for authentication by the 

AAA infrastructure and with EAP methods.  

• “Identity Provider (IdP)”. IdP uses a 

username/password to verifies the user, and it will 

act as an “AAA server”, known as “IdP in 

ABFAB”.  

• “Cloud service/Relying Party (RP)”. Also known 

as RP provides cloud services to the User. GSS-

EAP manages access control.  

 

IV.  TESTBED CONFIGURATION 

 

In the testbed, the entities are deployed using VM and 

the entities used in this testbed are listed below. 

• “FreeRADIUS” is open-source software that is 

installed in the VM. 

• IdP (RADIUS server). IdP handles the 

moonshot.test.in the realm and executes a 

“FreeRADIUS” instance.  

• The indicators A and B are measured for the 

performance analysis, elements A and B are the 

components: User, RP, and IDP: 

• ATC: the time consumed by component A to 

accomplish the necessary process. Network 

delays are excluded in this indicator. We have 



© October 2021| IJIRT | Volume 8 Issue 5 | ISSN: 2349-6002 

IJIRT 152989 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 173 

 

determined the estimation of this indicator as the 

total time spent in entity A between the receiving 

of a message till the transmission of another 

message. 

• ATW: Total time spent by entity A for requests 

sent and waiting for the responses. It is calculated 

by the value as the total time spent in element A 

amongst transmitting the request message till the 

response message is received for the request.  

• ATD(A, B):- The time taken(spent) to deliver the 

messages between components A and B. ATD(A, 

B) = ATW(A) − ATC(B) − ATW(B). 

TT:- The total  time needed by the user (U) to 

access the services. TT = ATC(U) + ATD(U, RP) 

+ ATC(RP) + ATD(RP) +  ATD(IDP) + 

ATC(IDP). It is similar  to ATC(U) + ATW(U). 

• ADB(A, B). Amount of data in bytes that is 

communicated between elements A and B. the 

calculation of this indicator is calculated by taking 

the size of the responses or requests i.e 

communicated between elements A and B. 

• TAT. The total amount of data termed as TAT is 

communicated in the network for the process of 

accessing the services. TAT = ADB (U, RP) + 

ADB(RP) + ADB (IDP). 

To measure these indicators, we have used the open-

source tool Wireshark. By using this tool, we have 

captured the packets in the network (network traffic) 

of all the entities in the process of accessing cloud 

services.  The data in this file are the messages 

captured during the accessing services. It also provides 

the size, type of packet (RADIUS), and timestamp for 

each message that has been sent and received. These 

files are analyzed by using python scripts that extract 

and read all the lines and also calculates values for all 

the indicators with respect to time spent between 

messages. 

V. RESULTS 

 

The results are obtained by executing the following 

testbed configurations. 

• Access to cloud services using the Moonshot 

implementation. 

• Access to cloud services using Moonshot with 

REAP (EAP method).  

In particular, we have executed testbed configuration 

with legacy EAP method used in moonshot and with 

configuration using REAP method. Since virtual 

machines are used to configure our testbed, the 

challenges and performance considerations that have 

been mentioned in [24] apply. Before dissecting the 

outcomes, it should be noted that EAP authentication 

is only the process of accessing the cloud services 

(Openstack) other processes are the creation of 

OpenStack tokens and  GSS-API packet encapsulation 

in keystone messages. So by using “Amdahl’s law” 

[33],  the total time to complete the entire process of 

cloud services accessing won't be relatively influenced 

by the decreases we bring into the EAP authentication. 

Alternately, the general decrease will be restricted by 

the total time spent in the EAP authentication. 

Testbed 

Configuration 

Moonshot 

using 

legacy 

EAP 

method 

[7] 

Moonshot 

using 

efficient 

EAP 

method 

proposed in 

[9] 

Moonshot 

using 

REAP 

ATC(U) 142.72 

ms 

130.94ms 127.43 

ms 

ATD(U, RP) 408.38 

ms 

374.66 ms 364.63 

ms 

ATC(RP) 206.92 

ms 

189.83 ms 184.75 

ms 

ATD(RP) 0.44 ms 0.40 ms 0.39 ms 

ATD(IDP) 195.27 

ms 

179.15 ms 174.35 

ms 

ATC(IDP) 2.45 ms 2.25 ms 2.19 ms 

Total 

authentication 

time taken 

(TaT) 

956.18 

ms 
877.23 ms 

853.73 

ms 

Table 1:  Shows the results based on” time-based 

performance”. 

Testbed 

Configuration 

Moons

hot 

using 

legacy 

EAP 

method 

[7] 

Moonshot 

using 

efficient 

EAP 

method 

proposed in 

[9]. 

Moonshot 

using REAP 

ATB(U,RP) 18097.

88 ms 

16603.56 

ms 

16158.83 ms 

ATB(RP,IDP) 2233.6

8 ms 2049.25 ms 

1994.36 ms 

TAT 22594.

72 ms 

18652.81 

ms 

18153.18 ms  

Table 2: Results obtained based on  “data-based 

performance indicators”. 

In Table 1, both Moonshot with legacy EAP method 

and the Moonshot with REAP configurations shows 

the overall time (TT) authentication time of the 3 



© October 2021| IJIRT | Volume 8 Issue 5 | ISSN: 2349-6002 

IJIRT 152989 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 174 

 

methods discussed above.  The time required for all 

three methods is shown in table 1. In the initial 

authentication process, it is required to execute the 

complete authentication process “(EAP 

authentication) with the identity provider”. Execution 

of the authentication method (REAP authentication 

process) reduces the authentication time to 854ms 

approximately 11% compared with the legacy 

authentication method. The reduction of overall time 

includes processing time and accessing the OpenStack 

cloud services. If we consider the “total time spent” in 

the “AAA infrastructure (i.e. ATD(IDP) + 

ATC(IDP))”, we can observe the reduction by using 

the REAP authentication method.  

From Table 1 we can observe that where these 

reductions1 are obtained. The 2 authentication 

methods are quite similar if we consider the 

computational times (ATC). In Table 2 we can observe 

that by the use of the REAP authentication method the 

total amount of authentication data transmitted (TAT) 

is reduced by 32% and 18% respectively. 11 

 

VI. CONCLUSIONS 

 

The proposed work expects to give security and an 

optimized / efficient authentication process to access 

(SaaS) cloud service and also in the situations of 

federated access control environments where ABFAB 

is used, reducing the authentication data traffic. Also, 

we have actualized a proof-of-idea model that shows 

that our proposition can be effectively used to decrease 

the authentication time needed to access the cloud 

service (SaaS) implemented using OpenStack. At last, 

we have done a performance investigation to look at 

our evidence of-idea executed utilizing the ABFAB 

arrangement. After obtaining the result by the 

performance analysis, the work proposed will be able 

to reduce the authentication time by the use of the 

REAP method and to access the cloud services around 

9 to 11%. Regarding the aggregate sum of network 

traffic, the decrease is fundamentally the same as, 

giving a general decrease of 18% if just the traffic on 

the AAA infrastructure is thought of. In future work, 

we try to implement the proposed method in Dockers 

and containers environment.” 1. 

 

REFERENCES 

[1] Arash Habibi Lashkari, F. Towhidi, R. S. Hoseini, 

“Wired Equivalent Privacy (WEP)”, ICFCC 

Kuala Lumpur Conference, 2018. 

[2] Dictionary Attack on Cisco LEAP, 

http://www.cisco.com/warp/public/707/cisco-sn-

20030802-leap.shtml, 2018. 

[3] M. Badra and P. Urien, “Adding Client Identity 

Protection to EAP-TLS SmartCards,” Proc. IEEE 

Wireless Comm. and Networking Conf., 2017. 

[4] T. Dierks and E. Rescorla, “The TLS Protocol 

Version 1.2,” RFC 5246, Aug. 2015. 

[5] N. Cam-Winget, D. McGrew, J. Salowey, and H. 

Zhou, “The Flexible Authentication via Secure 

Tunneling Extensible Authentication Protocol 

Method (EAP-FAST),” RFC 4851, May 2014. 

[6] C. Alexandra, G. Laura, R. Daniel, “A practical 

analysis of EAP authentication methods,” in Proc. 

9th Roedunet International Conference 

(RoEduNet), 2017, pp.31-35 

[7] Alejandro, Pérez, Méndez and Rafael Marín 

López, Gabriel López Millán  , “Providing 

efficient SSO to cloud service access in AAA-

based identity federations” Elsevier, Future 

Generation Computer Systems, 2016. 

[8] Chun-I Fan, Member, IEEE, Yi-Hui Lin, and 

Ruei-Hau Hsu, “Complete EAP Method: User 

Efficient and Forward Secure Authentication 

Protocol for IEEE 802.11 Wireless LANs,” IEEE 

transactions on parallel and distributed systems, 

VOL. 24, NO. 4, APRIL 2016. 

[9] P. Calhoun, J. Loughney, Diameter base protocol, 

in IETF RFC 6733, October 2012. 

[10] J. Linn, Generic security service application 

program interface version 2, in IETF RFC   2743, 

January 2000. 

[11] Application bridging for federated access beyond 

web (abfab) in IETF Working Group. 

http://datatracker.ietf.org/wg/abfab/charter/. 

[12] S. Cantor, J. Kemp, R. Philpott, and E. Maler 

(Eds.), Assertions and Protocols for the OASIS 

Security Assertion Markup Language, SAML 

v2.0, March 2005. 

[13] S. Hartman, J. Howlett, A GSS-API mechanism 

for the extensible authentication protocol, in IETF 

RFC 7055, December 2013. 

[14] Patches for the libeap, mech_eap, and FreeRadius 

to introduce ERP support. http://www.um. 

es/classe/download.html 



© October 2021| IJIRT | Volume 8 Issue 5 | ISSN: 2349-6002 

IJIRT 152989 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 175 

 

[15] Raghavendra K, Ramesh B. "Managing the 

Digital Identity in the cloud: The current 

scenario", 2015 IEEE International Conference 

on Electrical, Computer and Communication 

Technologies (ICECCT), 2015. 

[16] Configuring keystone for federation. 

http://docs.openstack.org/developer/keystone/co

nfigure_federation.html.  

[17] S. Cantor, J. Kemp, R. Philpott, and E. Maler 

(Eds.), Assertions and Protocols for the OASIS 

Security Assertion Markup Language, SAML 

v2.0, March 2005. 

[18] E. Hammer-Lahav, D. Recordon, D. Hardt, The 

OAuth 2.0 authorization protocol, October, in 

RFC 6749, 2012.  

[19] Alejandro Pérez Méndez, Rafael Marín López, 

Gabriel López Millán. "Providing efficient SSO 

to cloud service access in AAA-based identity 

federations", Future Generation Computer 

Systems, 2016. 

[20] N. Sakimura, J. Bradley, M. Jones, B. de 

Medeiros, C. Mortimore, OpenID connect basic 

client profile 1.0-draft 24, March 2013. 

http://openid.net/specs/openidconnect-basic-

1_0.html.  

[21] M. Goodner, A. Nadalin, WS-Federation 1.2, 

May 2009. http://docs.oasisopenorg/wsfed/ 

federation/v1.2/ws-federation.pdf.  

[22] Common Authentication Technology Next 

Generation (kitten) IETF Working Group. 

[23] S. Cantor, S. Josefsson, SAML Enhanced Client 

SASL and GSS-API Mechanisms,in IETF 

Internet-Draft, October 2015. draft-IETF-kitten-

sasl-saml-ec-14. 

[24] C. Neuman, T. Yu, S. Hartman, K. Raeburn, The 

Kerberos network authentication service (V5), in 

IETF RFC 4120, July 2005. 

[25] F. Pereniguez, R. Marin-Lopez, G. Kambourakis, 

S. Gritzalis, A.F. Gomez, PrivaKERB: A user 

privacy framework for Kerberos, Comput. Secur. 

30 (6–7) (2011) 446–463. Elsevier. 

[26] F. Pere níguez García, R. Marín-López, G. 

Kambourakis, A. Ruiz-Martínez, S. Gritzalis, 

A.F. Skarmeta-Gómez, KAMU: providing 

advanced user privacy in Kerberos multi-domain 

scenarios, Int. J. Inf. Secur. 12 (6) (2013) 505–

525, 2017. 

[27] S. Sakane, K. Kamada, S. Zrelli, M. Ishiyama, 

Problem Statement on the Cross-Realm Operation 

of Kerberos. in: IETF RFC 5868, May 2010. 

[28] Rafael Marín-López, Fernando Pere níguez, 

Gabriel López, Alejandro Pérez-Méndez, 

Providing EAP-based Kerberos pre-

authentication and advanced authorization for 

network federations, Comput. Stand. Interfaces 

33 (5) (2011) 494–504, 2017. 

[29] Alejandro Pérez-Méndez, Fernando Pere níguez-

García, Rafael Marín-López, Gabriel López-

Millán, Out-of-band federated authentication for 

Kerberos based on PANA, Comput. Commun. 36 

(14) (2013) 1527–1538. 

[30] D. Forsberg, Y. Ohba, B. Patil, H. Tschofenig, A. 

Yegin, Protocol for Carrying Authentication for 

Network Access (PANA), in IETF RFC 5191, 

May 2008. 

[31] Marisol García-Valls, Tommaso Cucinotta, 

Chenyang Lu, Challenges in real-time 

virtualization and predictable cloud computing, J. 

Syst. Archit. 60 (9) (2014) 726–740. 

[32] Gene M. Amdahl, Validity of the single processor 

approach to achieving large-scale computing 

capabilities, in Proceedings of the April 18–20, 

1967, Spring Joint Computer Conference, AFIPS 

’67 (Spring), ACM, New York, NY, USA, 1967, 

pp. 483–485. 

[33] Alejandro Pérez Méndez, Gabriel López Millán, 

Rafael Marín López, David W. Chadwick, Ioram 

Schechtman Sette. "Integrating an AAA-based 

federation mechanism for OpenStack-The 

CLASSe view", Concurrency and Computation: 

Practice and Experience, 2017. 

 


