
© November 2021| IJIRT | Volume 8 Issue 6 | ISSN: 2349-6002 

IJIRT 153340 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 525 

 

An Approach to Operations Research Techniques and 

constraint Programming 

 

 

Akash Pandey1, Subhash Kumar Sharma2, Umesh Kumar Gupta3 

1Assistant Professor Department of Mathematics, MGPG College, Gorakhpur 
2Assistant Professor, Department of Electronics, MGPG College, Gorakhpur  

3Associate Professor, Department of Mathematics, MGPG College, Gorakhpur 

 

Abstract - The mathematical points of interest and the 

explicit techniques used to manufacture and investigate 

these models can be very modern and are tended to. Here 

we  present an overview of the integration of constraint 

programming (CP) and operations research (OR) to 

solve combinatorial optimization problems. We interpret 

CP and OR as relying on a common primal-dual solution 

approach that provides the basis for integration using 

four main strategies. The first strategy tightly 

interweaves propagation from CP and relaxation from 

OR in a single solver. The second applies OR techniques 

to domain filtering in CP. The third decomposes the 

problem into a portion solved by CP and a portion solved 

by OR, using CP-based column generation or logic-based 

Benders decomposition. The fourth uses relaxed decision 

diagrams developed for CP propagation to help solve 

dynamic programming models in OR. The paper cites a 

significant fraction of the literature on CP/OR 

integration and concludes with future perspectives 

 

Index Terms - Constraint Programming, Operations 

Research, Operation Research Techniques.  

 

1.INTRODUCTION 

 

Operations Research (O.R.) is a discipline that 

provides scientific methods for the purpose of solving 

real life problems that helps us in determining the best 

utilization of limited resources. Here we study about 

optimization techniques. In everyday life, we observe 

many situations of optimization around us. For 

example, suppose we want to maximize the profit or 

minimize the cost then maximization of the profit or 

minimization of cost is the optimization of profit/cost. 

In O.R., we obtain the optimal solution for decision 

making problems with the help of optimization 

techniques. This chapter contains origin, definitions 

and scope of Operations Research. In this unit, we also 

discuss the concept of convex sets.  

1.1.1. Objectives.  

The objective of these contents is to get familiar reader 

with Operations Research. After studying this unit, 

reader should be able to define/describe the following 

concepts like:  

• What is Operations Research?  

• Origin of Operations Research.  

• Scope of operation research.  

• Convex Set.  

 

1.2. ORIGIN AND DEFINITIONS OF 

OPERATIONS RESEARCH 

Origin:  

Operations Research came into existence and gained 

prominence during the World War II in Britain with 

the establishment of team of scientists to study the 

strategic and tactical problems of various military 

operations. Scientists of different disciplines were part 

of this team, their research on military operation soon 

find applications in other fields also. Now, it was 

started applying in the fields of industry, trade, 

agriculture, planning and various other fields of 

economy and named as 'Operations Research'. Hence 

the scientific methods and techniques of Operations 

Research became equally useful for the planners, 

economists, administrators, irrigation or agricultural 

experts and statisticians etc. The use of Operations 

Research has not limited to the Britain only. Many 

countries of the world had started using O.R. India was 

one of the few first countries who started using O. R. 

Regional Research Laboratory located at Hyderabad 

was the first Operations Research unit established in 

India during 1949. With the opening of this unit 

Operations Research in India came into existence. At 

the same time one more unit was set up in Defence 

Science Laboratory. In 1955, Operations Research 

Society of India was formed. Today, O.R. became a 
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professional discipline and studied as a popular subject 

in Management institutes and school of Mathematics.  

 

Definitions:  

Operations Research can be defined simply as 

combination of two words operation and research 

where operation means some action applied in any 

area of interest and research imply some organized 

process of getting and analysing information about the 

problem environment. However, many scientists or 

experts has been defined O.R. in various ways but the 

opinions about the definitions of it have been changed 

according to the growth of the subject. So before 

defining O.R. it is important to see few definitions of 

it.  

1. O.R. is a scientific method of providing executive 

departments with a quantitative basis for decisions 

regarding the operations under their control. -Morse 

and Kimbal (1946)  

2. O.R. is a scientific method of providing executive 

with an analytical and objective basis for decisions. -

P.M.S. Blackett (1948)  

3. O.R. is the application of scientific methods, 

techniques and tools to problems involving the 

operations of system so as to provide these in control 

of the operations with optimum solutions to the 

problem. -Churchman, Acoff, Arnoff (1957)  

4. O.R. is a management activity pursued in two 

complementary ways one-half by the free and bold 

exercise of commonsense untrammeled by any 

routine, and other half by the application of a 

repertoire of well-established pre created methods and 

techniques. -Jagjit Singh (1968) 

On the basis of all above opinions, Operations 

Research can be defined in more general and 

comprehensive way as: “Operation research is a 

branch of science which is concerned with the 

application of scientific methods and techniques to 

decision making problems and with establishing the 

optimal solutions" 

 

1.3. SCOPE OF OPERATIONS RESEARCH  

Scope of O.R. is very wide in today’s world as it 

provides better solution to various decision-making 

problems with great speed and efficiency. Areas where 

methods/models developed in Operations Research 

can be applied are given here under:  

1. In Agriculture: With the explosion of population 

and consequent shortage of food, every country is 

facing the problem of optimum allocation of land to 

various crops in accordance with the climatic 

conditions, optimum distribution of water from 

different resources. Problems of agriculture 

production under various restrictions can be solved by 

applications of Operations Research techniques.  

2. In Defence Operations: Since Second World War 

operation research have been used for Defence 

operations with the aim of obtaining maximum gains 

with minimum efforts.  

3. In Finance: In these modern times, government of 

every country or every organisation wants to introduce 

such type of planning/policies regarding their finance 

and accounting which optimize capital investment, 

determine optimal replacement strategies, apply cash 

flow analysis for long range capital investments, 

formulate credit policies, credit risk. Techniques 

developed in O.R. can be applied for attaining above 

said things.  

4.In Marketing: A Marketing Administrator has to 

face many problems like production selection, 

formulation of competitive strategies, distribution 

strategies, selection of advertising media with respect 

to cost and time, finding the optimal number of 

salesmen, finding optimum time to launch a product. 

All such problems can be overcome using Operations 

Research Techniques.  

5.In Personnel Management: Every organization 

wants to make selection of personnel on minimum 

salary. It needs to find the best combination of workers 

in different categories with respect to costs, skills, age 

and nature of jobs. It also needs to frame recruitment 

policies, assign jobs to machines or workers.  

6.In LIC: Operations Research Techniques can be 

fruitfully applied in LIC offices as it enables the policy 

makers to decide the premium rates for various modes 

of policies.  

7.In Research and Development: In determination of 

the areas of concentration of research and 

development. It also helps in project selection. 

O.R. helps in solving many other problems faced by 

public as well as private sectors such as the ones in 

economic and social planning, management of natural 

resources, energy, housing pollution control, waiting 

lines and administrative problems, insurance policies 

and many more.  

 

1.4. ADVANTAGES OF OPERATIONS 

RESEARCH  
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Following are certain advantages of Operations 

Research (OR):  

• Operations Research helps decision –maker to take 

better and quicker decisions. It helps decision –maker 

to evaluate the risk and results of all the alternative 

decisions. So, it improves the quality of decisions and 

makes the decisions more effective.  

• Operation Research helps, in preparing future 

managers as it provides in-depth knowledge about a 

particular action.  

• Operations Research develop models, which 

provides logical and systematic approach for 

understanding, Solving and controlling a problem.  

• Operations research reduces the chances of failure as 

it provides many alternatives for one problem, which 

helps the management to choose the best decision. 

Even managers can evaluate the risks associated with 

each solution and can decide whether they want to go 

with the solution or not.  

• It helps users in optimum use of resources. For 

example, linear programming techniques in 

Operations Research suggest most effective methods 

and efficient ways of optimality.  

• It helps in finding the limitations and scope of an 

activity.  

• Using this information, he can measure the 

performance of employees and can compare it with the 

standard performance. It modifies mathematical 

solutions before these are applied. Managers may 

accept or modify the mathematical solutions obtained 

using Operations Research techniques.  

• It helps suggest alternative solutions for the same 

optimum profit if the management wants so.  

 

1.5 LIMITATIONS OF OPERATIONS RESEARCH  

• Formulation of mathematical models may take into 

account all possible factors for defining a reallife 

problem and hence is difficult. As a result, the help of 

computers is required for the large number of 

cumbersome computations for such problems. This 

discourages small companies and other organisations 

from using O.R. techniques.  

• Unquantifiable factors: Some problems may involve 

a large number of intangible factors such as human 

emotions, human relationship, etc. which cannot be 

quantified. Hence, the best solution cannot be 

determined for such problems because such factors 

have to be excluded.  

•Dependence on experts: A specialist, who may be a 

mathematician or a statistician, is needed to 

understand the formulation of models, find solutions 

and recommend their implementation. Managers, who 

deal with such problems, may not have such 

specialisation. Managers, who deal with such 

problems, may not have such specialisation and hence 

the results may not be optimal.  

•Model is abstraction of real-life situations and not the 

reality.  

•Assumptions need to be made about the nature and 

importance of some factors in order to construct an 

Operation Research model. 

•A reasonably good solution without the use of 

Operation Research may be preferred by the 

management as compared to a slightly better solution 

provided by using Operation Research since it is very 

expensive in terms of time and money. In the next 

chapter onwards, we shall introduce various O.R. 

techniques for obtaining optimal and feasible 

solutions. Before studying these techniques, you must 

familiar with some important basic concepts like 

convex sets and basic feasible solutions. Now, we will 

discuss these concepts.  

 

1.6. CONVEX SET  

A region or a set K is convex if and only if for any two 

points on the set K, the line segment connecting these 

points lies entirely in K. Mathematically, (x1 y1)K.  

(x1 + (1-) x2, y1 + (1-)y2) K   ,0 ≤ 𝜆 ≤ 1  

Where (𝜆𝑥1 + (1 − 𝜆)2, 𝜆𝑦1 + (1 − 𝜆) 𝑦2 ) gives all the 

points which lie on the line segment joining (𝑥1, 𝑦1) 

and (𝑥2, 𝑦2).  

Example of a Convex Set   

 
Fig (1.1) 

Consider the region enclosed by OPQR. Let us denote 

it by K. It is convex as the line segment joining any 

two points in this region lies wholly within it. As an 

example, let us take two points A (1, 3) and B (4, 1). 
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Then all points on the line segment joining A and B 

are given by  

((1) + (1 − 𝜆)4, 𝜆(3) + (1 − 𝜆)(1) ) = (𝜆 + 4 − 4𝜆, 3𝜆 + 

1 − 𝜆) = (4 - 3𝜆, 1 + 2𝜆), 0 ≤ 𝜆 ≤ 1. 

Here 𝜆 = 0 gives the point Q (4, 1) and 𝜆 = 1 gives the 

point P (1, 3). Other points on the line segment AB are 

given by = (4 - 3 𝜆, 1 + 2 𝜆), where 0 < 1   

For example, let us take 𝜆=0.1, 0.3, 0.5, 0.7, 0.9; then 

the corresponding points (after substituting the values 

of 𝜆 = 0.1, 0.3, 0.5, 0.7, 0.9) are; (4 – 3(0.1), 1 + 

2(0.1)), (4-3× 0.3, 1 + 2 × 0.3), (4- 3× 0.5, 1 + 2 × 0.5), 

(4-3× 0.7, 1 + 2 × 0.7), (4-3× 0.9, 1 + 2 × 0.9) i.e., 

(3.7,1.2), (3.1 ,1.6), (2.5,2), (1.9, 2.4), (1.3, 2.8) All 

these points clearly lie on the line and also in the 

region K. Similarly, all other points on the line 

segment AB also lie inside the region K. Hence, the 

line segment AB lies in K. Therefore, K is convex in 

this example. 

Example of Non-Convex Set  

1.6.1. Example. 

 
Fig (1.2) 

Consider the shaded region in Fig. 1.2, clearly the line 

segment joining two points do not lie wholly in the 

region and hence this is an example of non-convex set.    

1.6.2. Example. Show that the set T = {(x, y): 𝑥2 + 𝑦2 

≤ 1} is a convex set.  

Solution: Let us take any two points A (𝑥1, 𝑦1) and B 

(𝑥2, 𝑦2) in Fig. 1.3 such that:  

𝑥1
2 + 𝑦1

2 ≤ 1, And 𝑥2
2 + 𝑦2

2 ≤ 1.  

 
Fig (1.3) 

Now, the line segment joining A and B is the set  

{𝜆𝑥1 + (1 − 𝜆)2, 𝜆𝑦1 + (1 − 𝜆)𝑦2: 0 ≤ 𝜆 ≤ 1}.  

Let 𝑢1 = 𝜆𝑥1 + (1 − 𝜆)2, 𝑢2 = 𝜆𝑦1 + (1 − 𝜆)𝑦2  

Therefore, all points on the line segment AB are given 

by (𝑢1, 𝑢2). Now, the line segment AB lies wholly in 

T if  

𝑢1
2 + 𝑢2

2 ≤ 1  

Since  

𝑢1
2 + 𝑢2

2 = [𝜆𝑥1 + (1 − 𝜆)2] 2 + [𝜆𝑦1 + (1 − 𝜆)𝑦2] 2  

=𝜆2𝑥1
2 + (1 − 𝜆)2𝑥2

2 + 2𝜆(1 − 𝜆)𝑥1𝑥2 + 𝜆2𝑦1
2 + (1 − 

𝜆)2𝑦2
2 + 2𝜆(1 − 𝜆)𝑦1𝑦2  

= 𝜆2[𝑥1
2 + 𝑦1

2 ] + (1 − 𝜆)2 [𝑥2
2 + 𝑦2

2 ] + 2𝜆(1 − 𝜆)[𝑥1𝑥2 

+ 𝑦1𝑦2]  

We have 

𝑢1
2 + 𝑢2

2 ≤ 𝜆2 + (1 − 𝜆)2 + 2𝜆(1 − 𝜆)[𝑥1𝑥2 + 𝑦1𝑦2]         (1)  

Now consider (𝑥1𝑥2 + 𝑦1𝑦2) 2 = 𝑥1
2𝑥2

2 + 𝑦1
2𝑦2

2 + 

2𝑥1𝑥2𝑦1𝑦2 

 = 𝑥1
2𝑥2

2 + 𝑦1
2𝑦2

2 + 𝑥1
2𝑦2

2 + 𝑥2
2𝑦1

2 − 𝑥1
2𝑦2

2 − 𝑥2
2𝑦1

2 + 

2𝑥1𝑥2𝑦1𝑦2 

 = (𝑥1
2 + 𝑦1

2 )(𝑥2
2 + 𝑦2

2 ) − 𝑥1𝑦2 (𝑥1𝑦2 − 𝑥2𝑦1 ) − 𝑥2𝑦1 

(𝑥2𝑦1 − 𝑥1𝑦2 )  

= (𝑥1
2 + 𝑦1

2 )(𝑥2
2 + 𝑦2

2 ) − (𝑥2𝑦1 − 𝑥1𝑦2 )2  

≤ (𝑥2𝑦1 − 𝑥1𝑦2 ) ≤ 1  

⇒ (𝑥1𝑥2 + 𝑦1𝑦2 ) ≤ 1  

∴ From (1) and (2), we have 

 𝑢1
2 + 𝑢2

2 ≤ 𝜆2 + (1 − 𝜆)2 + 2𝜆(1 − 𝜆)  

Or                   𝑢1
2 + 𝑢2

2 ≤ [𝜆 + (1 − 𝜆)]2  

⇒ 𝑢1
2 + 𝑢2

2 ≤ 1  

∴ T is convex set.  

1.6.3. Extreme Points of a convex set  

A point (x, y) in a convex set K is called an extreme 

point if it is not possible to locate two distinct points 

in or on K so that the line joining them will include (x, 

y). Mathematically, a point (x, y) is an extreme point 

of a convex set if it cannot be expressed as a convex 

combination of any two points (𝑥1, 𝑦1) and (𝑥2, 𝑦2) [for 

(𝑥1, 𝑦1) ≠ (𝑥2, 𝑦2)] in the set such that 𝑥 = 𝜆𝑥1 + (1 − 

𝜆)2 and 𝑦 = 𝜆𝑦1 + (1 − 𝜆)𝑦2 , 0< 1  

Remark:  

i) The vertices of the polygons, which are convex sets, 

are the extreme points. 

ii) Every point on the circumference of the region 

containing the portion in and on the circle is an 

extreme point.  

 

1.6.4. IMPORTANT DEFINITIONS  

Solution  

A set of values of the decision variables which satisfy 

the constraints of the given LPP is said to be a solution 

of that LPP.  
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Feasible Solution  

A solution in which values of decision variables 

satisfy all the constraints and non-negativity 

conditions of an LPP simultaneously is known as 

feasible solution.  

 

Infeasible Solution  

A solution in which values of decision variables do not 

satisfy all the constraints and non-negativity 

conditions of an LPP simultaneously is known as 

infeasible solution.  

 

Basic solution  

Suppose there are m equations representing 

constraints (limited available resources) containing m 

+ n variables in an allocation problem. The solution 

obtained by setting any n variables equal to zero and 

solving for the remaining m variables and the 

remaining n variables are non – basic variables. The 

maximum number of possible basic solutions is given 

by the formula 𝐶𝑛𝑚+n  

For example, if there are 2 equations in 3 variables, 

then the maximum number of possible basic solutions  

is 

 

 

Basic Feasible Solution  

A basic solution for which all the basic variables are 

non – negative is called the basic feasible solution. 

Further basic feasible solution are of two types:  

 

Degenerate Solution  

A basic feasible solution is known as degenerate if 

value of at least one basic variable is zero. Non- 

 

Degenerate Solution  

A basic feasible solution is known as non- degenerate 

if value of all basic variables are non-zero and positive.  

 

Optimum Basic Feasible Solution  

A basic feasible solution which optimizes i.e. 

maximise or minimise the objective function value of 

the given LPP is called optimum basic feasible 

solution.  

 

Unbounded Solution  

A solution in which value of the objective function of 

the given LPP increase/decrease indefinitely is called 

an unbounded solution.  

 

1.7 Constraint Programming Concepts: 

Constraint programming (CP) and operations research 

(OR) have the same overall goal. They strive to 

capture a real-world situation in a mathematical model 

and solve it efficiently. Both fields use constraints to 

build the model, often in conjunction with an objective 

function to evaluate solutions. It is therefore only 

natural that the two fields join forces to solve problems 

Attempting to unify CP and OR might be unwise if 

they relied on entirely different solution methods. 

However, their methods are not only related, but 

complementary, due to the contrasting intellectual 

origins of the two fields. This has allowed integrated 

methods to outperform those that rely solely on CP or 

OR techniques in a wide variety of problem areas, 

sometimes by orders of magnitude. Furthermore, the 

potential benefits of integration are, arguably, only 

beginning to be reaped, which suggests that CP/OR 

integration will continue to be an active research area. 

Both CP and OR use what the OR community might 

call a primal-dual approach, which combines search 

with some kind of inference. Search solves the primal 

problem of finding a feasible solution (one that 

satisfies the constraints), while inference solves the 

dual problem of proving that a solution is optimal, or 

that no solution is feasible. Search frequently takes the 

form of a branching mechanism, at least in the context 

of exact methods. The two fields diverge when it 

comes to inference. In OR, it typically appears as 

problem relaxation, strengthened by such inferred 

constraints as cutting planes. In CP, inference appears 

as constraint propagation and domain filtering. Both 

relaxation and propagation can help find feasible 

solutions as well. Operations research is strongly 

influenced by its historical roots in linear 

programming (LP), which formulates problems using 

inequality constraints. Much of the field today is based 

on inequality-constrained mathematical programming 

models, including those of nonlinear programming 

(NLP), mixed integer/linear programming (MILP), 

and mixed integer/nonlinear programming. A model is 

almost always relaxed by reducing it to a simpler 

inequality constrained model, such as an LP or a 

convex NLP model, which can be solved with highly 

developed methods that exploit its special structure. 
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Relaxation is essential because it allows the solver to 

infer a bound on the optimal value, which reduces 

branching. The relaxation is often strengthened by 

valid inequalities that are inferred from the constraint 

set. Operations research is, of course, broader than 

mathematical programming, as it encompasses 

dynamic programming, queuing theory, simulation, 

and other areas. Although we focus primarily on 

mathematical programming, we will see that dynamic 

programming, as well as network and matching 

theory, also play a significant role in CP. Constraint 

programming has roots in logic programming, where 

a model has both a declarative and a procedural 

interpretation. A model is declarative because its 

statements can be read as logical propositions that 

describe the problem, and it is procedural because the 

statements can be processed as instructions for how to 

find a solution. Something similar to this dual 

interpretation survives in today’s CP. The statements 

in a model impose constraints that describe the 

problem, even while they invoke algorithms, such as 

domain filtering, that lead to a reduction in branching. 

Due to these contrasting origins, OR and CP process a 

model differently as they conduct a search. OR solves 

an inequality-constrained relaxation of the model as a 

single problem, while CP processes the constraints of 

the model individually. This allows OR to combine 

information from the entire model while inferring a 

bound, but relaxation sacrifices much of the 

combinatorial complexity of the problem. The CP 

approach captures much of the combinatorial 

complexity of individual constraints while inferring 

reduced domains, but it must resort to the propagation 

of domains from one constraint to the next to obtain a 

global view. OR partially compensates for the 

weakness of its relaxations by strengthening them with 

valid constraints that capture some of the special 

structure of groups of constraints. CP partially 

compensates for the weakness of constraint 

propagation by defining high-level global constraints 

that represent a group of simpler constraints. At least 

four basic strategies for combining the complementary 

strengths of OR and CP have been developed in the 

literature. They can be summarized as follows. 

Combine relaxation from OR with propagation from 

CP. This can be effective when some constraints 

“relax well” in the sense that they have a tight 

inequality relaxation, and others “propagate well.” A 

relaxation is tight when its feasible set is similar to that 

of the original problem, or at least yields a similar 

optimal value. Constraints propagate well when their 

structure allows significant domain reduction when 

some variables are fixed (or their domains reduced), 

perhaps by branching. The so-called knapsack 

constraints of OR, which are linear inequalities with 

many nonzero coefficients, tend to relax well, because 

they serve as their own LP relaxation. Certain groups 

of constraints can also give rise to useful valid 

inequalities, such as the famous Gomory cuts, which 

are derived from constraints that are tight in the 

solution of the LP relaxation, or the valid cuts derived 

from subtours and “combs” in the solution of a relaxed 

traveling salesman problem. The classical “binary” 

constraints of CP, which contain only two variables, 

generally propagate well, because fixing (or reducing 

the domain of) one variable tends to have a significant 

effect on the domain of the other. High-level global 

constraints may also propagate well, assuming they 

have been analyzed and implemented in solvers. 

Examples include disjunctive and cumulative 

scheduling constraints, which have been deeply 

analyzed and help explain the success of CP in the 

scheduling domain. Use OR methods for domain 

filtering in CP. Network and matching theory, as well 

as dynamic programming, are widely used to filter 

domains for a variety of global constraints. Edge-

finding methods, originally developed in OR, are 

indispensable for domain filtering in disjunctive and 

cumulative scheduling problems. In addition, since 

achieving domain consistency for a global constraint 

is frequently an NP-hard problem, it can be helpful to 

use a more tractable OR-based relaxation of the 

constraint as a basis for filtering. Decompose the 

problem into parts that suitable for OR and CP, 

respectively. This can be accomplished with two 

decomposition methods originally developed in the 

OR literature: column generation and Benders 

decomposition. Column generation accommodates CP 

by using it to generate columns in the pricing sub 

problem. Benders methods can accommodate CP if 

they are generalized to “logic-based” Benders 

decomposition, which allows the sub problem to be 

solved by CP. 

Apply constraint propagation to dynamic 

programming models. If a problem can be given a 

recursive model as in dynamic programming, the 

statetransition graph for the model can be treated as a 

decision diagram, and arcs can be deleted from the 
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diagram much as values from a domain in a 

conventional domain store. Normally a relaxed 

decision diagram is used rather than an exact one, 

which tends to grow exponentially. The relaxed 

diagram not only allows propagation that is stronger 

than propagation through domains, but it provides a 

valid bound on the optimal value that allows one to 

solve a dynamic programming model by branch-and-

bound methods when no inequality-constrained 

relaxation is available. 

 

1.8 Combining Propagation and Relaxation : 

One general strategy for integrating CP and OR is to 

combine constraint propagation with relaxation. The 

two techniques are mutually reinforcing, because 

propagation can tighten bounds on the variables in an 

LP relaxation while a relaxation can prove optimality 

or infeasibility of a problem obtained during CP-based 

search. An early application of this strategy (1995) 

used an LP relaxation to prove the optimality of a 

solution obtained by CP in five minutes for a boatparty 

scheduling problem that MILP could not solve in five 

hours [1]. 

 

Relaxation of Global Constraints: Many constraint 

programming languages allow the definition of global 

constraints that represent NP-complete problems. For 

example, one of the earliest constraint languages, 

Alice [2], included the ‘circuit’ constraint to state that 

a set of variables represent a Hamiltonian circuit in a 

graph. Since establishing domain consistency for such 

constraint would be NP-hard, it is natural to design 

propagation algorithms based on a relaxation of the 

constraint. In particular relaxations stemming from 

OR, such as linear programming and Lagrangian 

relaxations, have been used for this purpose. One of 

the first systematic applications of linear relaxations in 

global constraint propagation was developed in a 

series of papers by Focacci, Lodi, and Milano [3, 4, 5, 

6]. Using the traveling salesman problem with time 

windows as illustrative application, they develop 

optimization-oriented global constraints that 1) use the 

linear programming bound to tighten the domain of the 

variable representing the objective, and 2) apply 

reduced-cost based variable fixing to filter sub-

optimal domain values. Reduced costs can also be 

applied to guide and decompose the CP search [7]. In 

these applications, the global constraint provides an 

interface for the finite-domain variables in the CP 

model to the continuous variables in the associated 

linear programming model. 

 

1.9 Linear Relaxations from CP Models: 

In the previous section, linear or Lagrangian 

relaxations are inferred from individual (global) 

constraints, which represent a specific combinatorial 

structure. This approach can be generalized to 

arbitrary subsets of constraints, or even the entire 

problem. That is, for a given CP (sub)problem, we can 

create a linear programming model that serves as a 

relaxation to the problem. Such linear model can then 

be maintained during search and applied for improved 

optimization bounds, reduced cost based variable 

fixing, or guiding the search. The first systematic 

approaches to automatically reformulate CP models 

into linear programming models were proposed for 

this purpose by Rodosek et al. [8] and Refalo [9]. The 

approach was further developed and implemented in 

the eplex library of the constraint logic programming 

system Eclipse in [10]. Belov et al. [11] present a 

related work that automatically translates CP models 

in MiniZinc to equivalent linear MIP models, to be 

solved by MIP solvers. However, such generic 

transformations may lead to poor LP relaxations, 

especially when many ‘big-M’ constraints are needed. 

Stronger linear models may be derived by taking into 

account the semantic information in CP models. In 

particular, Laborie and Rogerie present an 

automatically generated linear relaxation for advanced 

scheduling models, as used in IBM ILOG CP 

Optimizer. This LP relaxation can be particularly 

helpful for complex objective functions [12]. 

Naturally, the strongest possible LP relaxations can be 

derived for specific applications. In addition to a 

tailored linear model, this also allows the addition of 

problem-specific cuts to strengthen the relaxation. 

Example applications in which dedicated LP 

relaxations are embedded as a global constraint in CP 

models include multi-agent scheduling [13], 

integrated employee timetabling and job-shop 

scheduling [14], and time-dependent sequencing 

problems [15]. 

 

OR-Based Filtering Methods: 

OR methods have made major contributions to domain 

filtering for global constraints in CP. Outstanding 

examples include the all-different constraint, the 

generalized cardinality constraint, disjunctive and 
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cumulative scheduling constraints, the sequence 

constraint, and the stretch constraint. The all-different 

constraint first appeared in 1978 [16]. Filtering 

algorithms that achieve domain consistency for all-

different were derived in the early 1990s [17] using 

results from matching theory in the OR literature [18, 

19, 20], which is in turn based on classical network 

flow theory. The OR literature also provided the basis 

for achieving bounds consistency [21], namely a result 

for convex graphs [22]. The generalized cardinality 

constraint is filtered using a network flow model [23], 

and bounds consistency achieved using a flow-based 

algorithm that again exploits convexity of the graph.In 

the 2000s the network-flow based propagation was 

extended to costbased global constraints, by 

representing them with minimum-cost network flows. 

This was first done to establish domain consistency for 

weighted cardinality constraints. Minimum-cost 

network flows have also been applied to establish 

domain consistency on soft global constraints for 

which one aims to minimize the violation, as was first 

done for the soft all-different constraint. This approach 

was generalized and applied to soft cardinality and soft 

regular constraints. An overview of soft global 

constraints can be found in. Other global constraints 

that use minimum-cost network flows include the soft 

sequence constraint, the soft all-different constraint 

with preferences, the soft cardinality and soft regular 

constraints with Preferences, soft global constraints 

for weighted CSPs, and soft open global constraints. 

Disjunctive and cumulative scheduling represent one 

of the key successes of OR/CP collaboration. It began 

with the edge-finding algorithms of Carlier and 

Pinson, published in the OR literature. These 

algorithms reduce the time windows within which 

tasks must execute, based on the fact that they cannot 

overlap, and thereby accelerate the search for a 

feasible schedule. The technology then passed over to 

the CP community, which further developed edge-

finding methods for disjunctive scheduling and 

extended them to allow incremental updates and setup 

times. These were followed by not-first/not-last rules, 

which achieve some bound tightening missed by edge 

finding. In the meantime, the cumulative scheduling 

constraint was introduced, which along with its 

variations, became a major component of CP’s 

powerful scheduling technology. A number of edge-

finding algorithms for the constraint appeared, along 

with “extended” edge finding, not-first/not-last rules 

and energetic reasoning. Much of this work is 

described. Although these contributions advanced 

substantially beyond the original edge-finding 

methods, they owe their intellectual inspiration to 

ideas that came out of the OR literature. The sequence 

constraint also illustrates a remarkable linkage of OR 

and CP. While there are elegant polynomial-time 

filters for achieving domain consistency that do not 

rely on OR methods a competitive polytime filtering 

method is grounded in deep results from integer 

programming. An integer programming model for the 

constraint has a coefficient matrix that exhibits the 

consecutive ones property, which means that the 

matrix is totally unimodular, and the problem can be 

solved by LP alone. Furthermore, it is known that such 

a problem can be given a specially-structured LP 

formulation, namely a rather unobvious network flow 

model. This provides the basis for an efficient 

polytime filtering algorithm. 

 

2.COLUMN GENERATION 

 

Some linear programming models consist of a huge 

number of variables, as compared to the number of 

constraints – perhaps the size of the model even 

exceeds the memory of the computer. It is still possible 

to solve such LPs efficiently, by recognizing that an 

optimal solution only needs at most as many non-zero 

variables as the number of constraints. Namely, we 

can start with an initial (small) subset of variables that 

permits a feasible LP solution. After solving the LP, 

we identify a new variable that may improve the 

current solution by evaluating its reduced cost. We 

then add the new variable to the LP model and repeat. 

If there are no variables with a negative reduced cost 

(for a minimization problem), the current solution is 

optimal, by LP theory. This decomposition approach 

is called column generation, as variables correspond to 

columns in the matrix representation of LP models. 

The LP defined by the current set of columns is called 

the (restricted) master problem. Finding a new 

variable consists of finding the entries of its column, 

i.e., the coefficients of the linear constraints in which 

the variable appears, which is done in the pricing 

problem. Column generation can also be applied to 

integer linear programming models, by embedding the 

procedure in an enumerative earch called branch-and-

price. It is one of the most important and widely used 

OR techniques for large-scale optimization. 
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2.1Benders Decomposition  

Benders decomposition is designed for problems that 

yield a much simpler problem (the Benders 

subproblem) when certain variables are fixed. The 

subproblem is solved to obtain one or more Benders 

cuts that bound the cost of fixing variables to these or 

similar values. The Benders cuts are added to a master 

problem that is solved to find the next set of values for 

the fixed variables. The process is repeated until the 

optimal values of the master problem and subproblem 

converge. Thus the problem decomposes into two 

parts that communicate through Benders cuts. In the 

original Benders method, the sub problem must be an 

LP, and the Benders cut is derived from the LP dual. 

Hooker and Hooker and Ottosson substantially 

generalized the classical method to logicbased 

Benders decomposition, in which the subproblem can 

in principle be any optimization or constraint 

satisfaction problem, and the Benders cuts are derived 

from an inference dual. Logic-based Benders 

decomposition (LBBD) provides a broad scope for 

OR/CP collaboration, because the master problem and 

subproblem can be attacked with different solvers, one 

from OR and one from CP. In most applications, the 

subproblem is a CP problem, perhaps a scheduling 

problem. Its combinatorial nature is no longer a barrier 

to generating Benders cuts. The master problem can be 

solved by whatever OR method is convenient, such as 

MILP or a heuristic method. Logic-based cuts must be 

developed anew for each problem class, unlike 

classical Benders cuts, which are always based on the 

LP dual in the same way. However, this provides an 

opportunity to exploit the special structure of the 

problem. 

 

2.3Decision Diagrams and Dynamic Programming:  

Decision diagrams have long been used for circuit 

design and product configuration. More recently, 

Hadˇzi´c and Hooker adapted decision diagrams to 

optimization and, with Anderson and Tiedemann  

,showed that they can be an effective alternative to the 

traditional constraint store in CP. Rather than 

propagate through variable domains, one can 

propagate through a decision diagram that represents a 

discrete relaxation of the prob- 14 J. N. Hooker and 

W.-J. van Hoeve lem. The connection of decision 

diagrams to operations research is that they are well 

suited for the solution of optimization problems that 

have dynamic programming models. Dynamic 

programming models are normally solved by a 

recursive process that enumerates the state space at 

each stage of the recursion. Because the state space 

typically grows exponentially with the number of state 

variables, such techniques as state space 

approximation and approximate dynamic 

programming are often used to resist the “curse of 

dimensionality” .Decision diagrams provide the 

option of solving the problem by a branchand-bound 

technique, and in particular, one that branches on 

nodes of a relaxed decision diagram rather than on 

values of variables .The bounding mechanism is based 

on relaxation values obtained from relaxed sub-

diagrams rooted at branching nodes, much as 

traditional branch and bound is based on relaxation 

bounds obtained from LP relaxations at nodes of the 

branching tree. This can lead to significant speedups 

relative to state-of-the-art MILP solvers on some 

problems that have a natural MILP formulation .Its 

primary potential, however, is in the solution of 

dynamic programming models that are not readily 

formulated as MILP problems. Viewing a dynamic 

programming model in terms of decision diagrams can 

occasionally lead to radical simplification of the 

problem. This is accomplished by rearranging costs on 

the arcs of the decision diagram (which are immediate 

costs in the dynamic programming model) so that the 

diagram can be reduced to a much simpler diagram.    

 

3.CONCLUSIONS 

 

In this paper, we have introduced Operations 

Research, its scope, advantages and limitations. We 

have observed that Operations Research is a very 

powerful method of getting the best out of limited 

resources. It finds applications in almost every field. 

Here, we explain concept of convex sets which is 

another important concept. We study feasible solution, 

basic solution, and basic feasible solution of a system 

of equations less in number than the number of 

decision variables. Such solutions are required to be 

obtained for finding out optimal solution of the given 

LPP The integration of CP and OR has proceeded over 

a period of nearly three decades, first rather slowly, but 

at a gradually quickening pace. It has brought 

improved solution methods—sometimes radically 

improved—to a wide variety of problems, as well as 

advances in modelling. The perspective afforded by 
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one field has lent new insight into the other, which in 

turn leads to still more effective methods. Despite this 

considerable progress, there remains great potential 

for further integration, with the concomitant 

improvement in both modelling and solution methods. 

Any attempt to predict the direction of research is a 

fool’s errand, but we can point out some current 

research activity that shows promise for further 

progress, as well as some possible areas for future 

research. One active area of current research is the 

development of advanced modelling systems that 

invoke both CP and OR solvers. 
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