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Abstract - Geo-sciences is a one of the vital social area 

that demands solutions to numerous pressing issues 

confronting humanity and the whole world. As the geo-

sciences enter the era of big data, machine learning 

(ML)—which has been extensively successful in 

commercial domains—offers enormous promise to help 

solve geo-sciences challenges.   This article introduces 

machine learning (ML) researchers to the challenges 

posed by geo-sciences problems and the potential for 

both machine learning and geo-sciences advancement. 

We begin by highlighting common sources of geo-

sciences data and outlining their shared characteristics. 

Data science is gaining traction across a broad range of 

geo-sciences fields and applications.   To meet that 

requirement, this article presents a review from a data 

life cycle viewpoint. Numerous facets of the geo-sciences 

present unique difficulties for the study of intelligent 

systems. Geo-sciences data is notoriously difficult to 

analyze since it is frequently unpredictable, intermittent, 

sparse, multi-resolution, and multiscale. The 

spatiotemporal boundaries of geo-sciences processes and 

objects are frequently amorphous. Across academia, 

industry, and government, there is a strong desire to 

learn more about the current state of data science in geo-

sciences as well as its potential. To address that need, this 

article provides a review from a data life cycle 

perspective. The data life cycle's critical steps include 

concept generation, data collection, preprocessing, 

analysis, archiving, distribution, discovery, and 

repurposing. Initially we discusses the fundamental 

concepts and theoretical underpinnings of data science, 

while the second section summarizes key points and 

shareable experiences from existing publications 

centered on each stage of the data life cycle. In 

conclusion, a future vision for data science applications 

in geo-science is discussed, including topics such as open 

science, smart data, and team science. We hope that this 

review will be beneficial to data science practitioners in 

the geo-science community and flash additional 

discussion about data science best practices and future 

trends in geo-sciences and data science. 

Index Terms - Geo-science, Data Science, scientific 

insights, Machine learning, Big data, data life cycle. 

 

1.INTRODUCTION 

 

The goal of geo-sciences study is to get a better 

understanding of the Earth as a complex, highly 

interacting system of natural processes and their 

connections with human activities. Given the 

complexity of geo-sciences data, current methods have 

significant flaws. First and foremost, evidence alone is 

insufficient for the creation of models of the extremely 

complex processes under investigation; thus, 

preceding hypotheses must be taken into 

consideration. Second, data gathering can be most 

successful if it is guided by knowledge of current 

models in order to concentrate on data that will make 

a significant impact. Third, in order to integrate 

heterogeneous data and models from different 

disciplines, it is necessary to capture and reason about 

substantial qualifiers and context in order to make 

their integration feasible. The necessity for 

knowledge-rich scientific insights that include 

substantial volumes of geo-sciences knowledge. Geo-

sciences research seeks to comprehend the Earth as a 

complex, highly interactive system of natural 

processes and their interactions with human activities. 

Given the complexity of geo-science data, current 

approaches have fundamental flaws. To begin, using 

data alone is insufficient for developing models of the 

extremely complex phenomena under study; therefore, 

prior theories must be considered. Second, data 

collection can be most effective when guided by an 

understanding of existing models in order to 

concentrate on data that will make a difference. Third, 

integrating disparate data and models from disparate 

disciplines requires capturing and reasoning about 
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extensive qualifications and context. Today, the speed 

of geo-sciences research is barely keeping up with the 

urgency created by societal requirements to manage 

natural resources, respond to geohazards, and 

comprehend the long-term implications of human 

actions on the globe.  

Numerous aspects of geo-sciences pose novel 

problems for the study of intelligent systems. Geo-

science data is notoriously difficult to analyse because 

it is inherently uncertain, intermittent, sparse, 

multiresolution, and multiscale. Processes and objects 

in the geo-sciences frequently have amorphous spatio-

temporal boundaries. Due to the absence of ground 

truth, evaluating, testing, and comparing models 

becomes difficult. Overcoming these obstacles would 

require technological breakthroughs in intelligent 

systems, which would benefit the geo-sciences 

enormously. A newly formed Research Coordination 

Network on Scientific insightsfor Geo-sciences was 

formed in response to a workshop on this subject held 

at the National Science Foundation. The growing 

network capitalises on the momentum generated by 

the National Science Foundation's EarthCube 

initiative for geo-sciences and is motivated by pressing 

issues in Earth, ocean, atmospheric, polar, and 

geospace sciences. 

As the deluge of big data continues to engulf virtually 

every commercial and scientific domain, geo-sciences 

has undergone a significant transformation from a 

data-poor to a data-rich field. This has been made 

possible by the advancement of sensing technologies 

(e.g., remote sensing satellites and deep sea drilling 

vessels), increases in computational resources for 

running large-scale simulations of Earth system 

models, and the Internet-based democratisation of 

data, which enables the collection, storage, and 

processing of data on crowd-sourced and distributed 

environments such as the Internet. The increasing 

availability of big geo-science data presents an 

enormous opportunity for machine learning (ML)—

which has revolutionised almost every aspect of our 

lives (e.g., commerce, transportation, and 

entertainment)—to make a significant contribution to 

solving geo-science problems of significant societal 

importance. 

 

2. GEO-SCIENCE CHALLENGES REQUIRING 

INNOVATIONS IN SCIENTIFIC INSIGHTS 

 

Numerous recent papers have evaluated and detailed 

the difficulties inherent in geo-science research.  Geo-

sciences is the field of study that spans and describes 

the immense scales of Earth's temporal and spatial 

systems. These scales are accompanied by a 

remarkable range of data, knowledge, and scientific 

methodologies. Geo-science problems are rarely 

simple and symmetrical. The phenomena of Earth's 

systems are nonlinear, diverse, and highly dynamic. 

Extreme occurrences and long-term alterations in 

Earth systems will also pose challenges to geo-

sciences study. Additionally, recent exceptional 

improvements in data availability, along with a greater 

emphasis on societal causes, underline the importance 

of cross-disciplinary research. 

 

We discuss the requirements and their potential impact 

on a variety of scales: 

 

2.1 Site-level requirements, for which recent research 

in intelligent sensors opens up new possibilities, 

particularly in difficult-to-reach regions. While 

collecting observations for all physical characteristics 

everywhere and at all times would be ideal, given 

resource and instrumentation limits, this is practically 

impracticable. Rather than that, the goal is to 

maximize the amount of science that can be 

accomplished within those restrictions, which requires 

enhancing the sophistication of existing data 

collection systems. 

 

2.2 Regional-level requirements, where efficient 

procedures are required to integrate data from various 

locations, data kinds, and collection efforts spread 

across a large geographic area. While Earth systems 

are connected, geo-science data and models are not. 

 

2.3 Global-level requirements, for which geo-sciences 

research can be both data-rich and data-deficient. That 

is, while it may be possible to collect enormous 

volumes of data about a phenomenon, the amount of 

information contained in the data may be trivial in 

comparison to the amount required to characterize the 

phenomenon for scientific or practical purposes. 

Scientists require novel ways that combine data with 

previously accumulated information about the 

underlying processes. 
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3. A ROADMAP FOR SCIENTIFIC INSIGHTS 

RESEARCH WITH BENEFITS TO GEO-

SCIENCES 

 

Geo-sciences is fast transitioning from a small data to 

a big data age as a result of the enormous increase of 

observational and model data acquired about physical 

processes on the Earth. This has been made possible 

by technological breakthroughs in data collection and 

increased access to computing power. The increasing 

availability of data on the Earth system presents an 

enormous opportunity for scientific insights research 

to speed developments in the geo-sciences, and vice 

versa. 

The promise of scientific insights research in the geo-

sciences is enhanced by the recent success of classical 

scientific insights methods in various commercial 

sectors utilizing enormous datasets, such as product 

recommendation and advertising. Geo-science 

datasets, on the other hand, exhibit a number of 

distinct properties that set them apart from large 

datasets in commercial areas. Geo-science datasets are 

extremely heterogeneous, are frequently 

spatiotemporal in nature, and the events or objects of 

interest lack sharp boundaries. Ocean eddies and 

hurricanes, for example, have amorphous 

spatiotemporal boundaries that manifest as patterns in 

continuous variables such as sea surface height. Geo-

science datasets contain information on both well-

known and little-understood physical processes and 

connections, which exhibit various features across the 

globe due to changes in geographies, climatic 

conditions, and seasonal cycles, among other factors. 

Even relatively uniform 'big data' from remote sensing 

is fraught with ambiguity, incompleteness, and a 

dearth of user-friendly tools.  

 

Scientific insights for Geo-sciences: Vision and 

Research Agenda 

To handle geo-sciences difficulties involving complex 

multi-scale, multi-process phenomena, scientists will 

require scientific insights that integrate cutting-edge 

technology with their expertise, context, and 

experiences. Scientific insights must incorporate 

process-centered geo-science knowledge about 

processes including physical, geological, chemical, 

biological, ecological, and human components. This 

will result in a new generation of scientific insights 

that are rich in information and capable of unique 

forms of reasoning and learning from geo-sciences 

data. 
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Figure 1. Needs and potential impact at different scales 

at which significant new avenues of research in geo-

sciences would be open through advances in 

intelligent systems, illustrated with case examples. 

From left to right: 1) site-scale, 2) local scale, 3) global 

scale, and 4) layered wholistic scale. 

 

3.1  Knowledge Representation and Capture 

In order to create geo-science-aware intelligent 

systems, scientific knowledge relevant to those geo-

science processes must be explicitly represented, 

captured, and shared. 

3.1.1 Research Directions 

i. Representing Scientific Metadata:  

Geoscientists are collecting more data than ever 

before, yet raw data stored on isolated servers is 

useless. Recent work on semantic and linked open data 

standards permits the publication of datasets in Web 

standard formats with open access licenses, as well as 

the description of their semantics via metadata that 

maps the data to a domain ontology. Additionally, they 

enable the creation of linkages between datasets to 

facilitate interoperability. New ways are required for 

automatically integrating data from disparate sources 

and conducting analysis on it without requiring 

extensive manual effort. Additionally, new techniques 

for automatically inferring semantic structure from 

raw data are required, as well as tools for integrating, 

analysing, and visualising big datasets. 

ii. Capturing Scientific Knowledge. 

An even greater challenge is representing the ever-

evolving, uncertain, complex, and dynamic aspects of 

scientific knowledge and information. While 

ontologies are growing in use to state basic relations 

between objects, existing ontologies need to be 

extended to represent geo-science processes with buy-

in from many diverse communities and capabilities of 

documenting, versioning, and representing various 

forms, such as spatio-temporal processes interacting 

with each other and multi-scale phenomena. These 

representations can be broadly linked to existing data 

and ontological concepts with actionable authority. 

Important challenges will arise in representing 

mathematical concepts, dynamic processes, 

uncertainty, and other aspects of a constantly growing 

scientific knowledge base. These representations need 

to be expressive enough to capture complex scientific 

knowledge, but they also need to support scalable 

reasoning that integrates disparate knowledge at 

different scales, and scientists need to understand the 

representations enough to trust the outcomes. 

 

3.1.2 Research Vision: Knowledge Maps 

We envision dense knowledge networks that comprise 

explicit interconnected representations of scientific 

information that are spatially and temporally related. 

These would result in five-dimensional knowledge 

maps (3D + time + knowledge annotations). 

Interpretations and assumptions shall be properly 

documented and corroborated by observational data 

and mathematical models. Today's semantic networks 

and knowledge graphs connect disparate facts on the 

Web, but they contain superficial facts that lack the 

depth and context necessary for scientific 

investigation. Knowledge maps will incorporate more 

detailed representations of spatiotemporal processes 

and will be physically grounded, integrating the 

various models of geo-science systems. 

 

3.2.2 Research Vision: Model-Driven Sensing 

Sensor research will result in the development of a 

new generation of devices that will have a better 

understanding of the scientific context for the data 

being collected; they will use this understanding to 

maximise their performance and efficacy in modeling 

the phenomena being investigated. This will result in 

the development of new model-driven sensors with 

increased autonomy and exploratory capabilities. 

 

3.3 Machine Learning 

The proposed bidirectional, collaborative research 

program's outcome might be a scientifically correct, 

valuable, and trustworthy landscape of data, models, 

information, and knowledge. Scientific discovery 

generates integrated large-scale data products from 

raw measurements. These items are discussed in detail 

to illustrate the derivations and assumptions made in 

order to boost other scientists' comprehension and 

trust. These well-established scientific lines will be 

easily navigable, queryable, and displayed. 

 

3.3.1 Modern machine learning tools 

This decade ushers in a paradigm shift in tooling, 

which is directly responsible for the recent surge in use 

and research in both shallow and deep machine 

learning. 

Historically, machine learning software has been 

dominated by proprietary applications such as 
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MatlabTM with the Neural Networks Toolbox and 

Wolfram MathematicaTM, or by university-based 

efforts such as the Stuttgart Neural Network Simulator 

(SNNS). Shortly thereafter, LibSVM was released as 

free open-source software (FOSS), enabling the 

efficient implementation of support vector machines. 

It is still in use in a large number of other libraries, 

notably WEKA [Chang and Lin, 2011]. Theano is a 

neural network library that was developed at the 

Montreal Institute for Learning Algorithms (MILA) 

and halted development in 2017 following the 

availability of openly licenced deep learning 

frameworks by major industrial developers. Scikit-

learn implements a variety of shallow machine 

learning algorithms, such as SVMs, Random Forests, 

and shallow neural networks, as well as utility 

functions such as cross-validation, stratification, 

metrics, and train-test splitting, which are required for 

the development and evaluation of robust machine 

learning models. 

By establishing an uniform application programming 

interface (API), scikit-learn formed the current 

machine learning software package [Buitinck et al., 

2013]. The following code snippets demonstrate this 

API. To begin, we use a utility function to construct a 

categorization dataset. The make classification 

function accepts many arguments to change the 

desired arguments; in this case, we are creating 1000 

samples (n samples) with four features (n features), 

two of which are genuinely significant to the 

classification (n informative). X contains the data, 

whereas y contains the labels. 

# Generate random classification dataset for example 

from sklearn.datasets import make_classification,  

X, y = make_classification(n_samples=5000, 

n_features=5 

n_informative=3, n_redundant=0, 

random_state=0, shuffle=False) 

It is recommended to divide the available labelled data 

into two sets: a training set and a validation or test set. 

This division enables models to be evaluated on 

previously unseen data in order to determine their 

generalizability to previously unseen samples. Train 

test split is a utility function that accepts an arbitrary 

number of input arrays and divides them according to 

provided arguments. 25% of the data is retained for the 

hold-out validation set and is not used in training in 

this circumstance. The random state variable is fixed 

to ensure reproducibility of these examples. 

# Split data into train and validation set 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X, y, 

                                                              test_size=.25, 

                                                         random_state=0) 

Then, in light of the prior discussion of high-impact 

machine learning models, we need to define a machine 

learning model. The first example is an SVM 

classifier. This example uses the SVM classifier's 

default parameters; for optimal performance on real-

world issues, these values must be modified. Machine 

learning training is always performed by executing 

classifier.fit(X, y) on the classifier object, which is the 

SVM object in this case. 

# Define and train a Support Vector Machine 

Classifier 

from sklearn.svm import SVC 

svm = SVC(random_state=0) 

svm.fit(X_train, y_train) 

> SVC(C=1.0, break_ties=False, cache_size=200, 

   class_weight=None, coef0=0.0, degree=3, 

   decision_function_shape='ovr', gamma='scale', 

    kernel='rbf', max_iter=-1, probability=False, 

    random_state=0, shrinking=True, tol=0.001, 

   verbose=False)  

By using classifier.predict(data) on the learned 

classifier object, the trained SVM may be used to 

predict on new data. The new data must contain the 

same four characteristics as the training data. By and 

large, machine learning models must always be trained 

on the same set of input attributes as the data being 

predicted. 

# Predict on new data with trained SVM 

print(svm.predict ([[0, 0, 0, 0, 0], 

                             [-1, -1, -1, -1, -1], 

                             [1, 1, 1, 1, 1]])) 

>>> [1 0 1] 

The classifier.score() function should be used to 

evaluate the blackbox model. Evaluating the model's 

performance on the training data set provides valuable 

insight into the model's performance. Additionally, on 

the hold-out set, the trained model can be evaluated. 

The default score equals the accuracy, indicating that 

our model is around 90% accurate. Similar train and 

test scores show that the machine has developed a 

generalizable model, which enables prediction on 

unknown data without incurring performance 

degradation. 

# Score SVM on train and test data 
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print(svm.score(X_train, y_train)) 

print(svm.score(X_test, y_test)) 

>>> 0.9098666666666667 

>>> 0.9032 

Support-vector machines are applicable to all 

categories of machine learning problems, including 

classification, regression, and clustering. In a two-

class problem, the algorithm analyses the n-

dimensional input and seeks a (n -1)-dimensional 

hyperplane that separates the data points in the input. 

If the two classes are linearly separable, commonly 

known as a hard margin, the task is easy. The aircraft 

is capable of transmitting both sorts of data without 

ambiguity.  

Explainability is a critical concept in machine 

learning, as it examines the effect of input factors on 

the prediction. The mean values of the estimated 

importance’s indicate that three features are three 

orders of magnitude more significant, with the second 

feature providing the most information for label 

prediction. 

 
Figure 2 : Example of Support Vector Machine 

separating two classes of data points in 2D, showing 

the decision boundary learnt from the data. 

# Calculate permutation importance of SVM model 

from sklearn.inspection import 

permutation_importance 

importances = permutation_importance(svm, X_train, 

y_train, 

n_repeats=10, random_state=0) 

# Show mean value of importances and the ranking 

print(importances.importances_mean) 

print(importances.importances_mean.argsort()) 

>>> [ 2.1787e-01 2.8712e-01 1.2293e-01 -1.8667e-04 

7.7333e-04] 

>>> [3 4 2 0 1] 

Support-vector machines have been used in the 

analysis of seismic data [Li and Castagna, 2004] and 

in the automatic interpretation of seismic data [Liu et 

al., 2015, Di et al., 2017b, Mardan et al., 2017]. These 

techniques typically perform worse than convolutional 

neural networks, because SVMs treat each sample 

independently. Other prominent uses of SVM in Geo-

science include seismic tremor categorization [Masotti 

et al., 2006, 2008] and ground-penetrating radar 

analysis [Pasolli et al., 2009, Xie et al., 2013]. Society 

of Exploration Geophysicists 2016 (SEG)   machine 

learning competition was organised with an SVM as 

the baseline [Hall, 2016]. Several other authors 

examined well log analysis [Anifowose et al., 2017, 

Caté et al., 2018, Gupta et al., 2018, Saporetti et al., 

2018], as well as seismology for event classification 

[Malfante et al., 2018] and magnitude determination 

[Ochoa et al., 2018]. These rely on the ability of SVMs 

to perform regression on time-series data. SVMs' 

strong mathematical foundation has enabled a wide 

variety of applications in geo-science, including 

microseismic event classification [Zhao and Gross, 

2017], seismic well ties [Chaki et al., 2018], landslide 

susceptibility [Marjanovic et al., 2011, Ballabio and 

Sterlacchini, 2012], and digital rock models [Ma et al., 

2012]. 

 

3.3.2  Modern Deep Learning 

The ImageNet challenge is a benchmark competition 

and library of natural images for computer vision. This 

reduced the categorization error rate from 25.8% to 

16.4%. (top-5 accuracy). This has sparked interest in 

CNN research, resulting in error rates of 2.25 percent 

on ImageNet's top-5 accuracy in 2017 [Russakovsky 

et al., 2015]. Tensorflow was introduced as an open 

source deep learning model library [Abadi et al., 

2015], with a slightly different software design than 

the Theano and Torch libraries. 

 
Figure 3: Binary Decision Boundary for Random 

Forest in 2D 

The following example illustrates how deep learning 

is applied to the data supplied in the preceding 

examples. We employ independent samples in the 

categorization data set, which necessitates the usage of 
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basic densely connected feed-forward networks. 

While it is great to feed image data or spatially linked 

datasets to a convolutional neural network (CNN), 

time series are frequently better tackled using 

recurrent neural networks (RNN). This example is 

created in Python and makes use of the Tensorflow 

package. While PyTorch is an excellent tool to use, the 

author prefers to write a succinct example using the 

Tensorflow API. 

The sample model is composed of Dense layers and a 

Dropout layer that are sequentially assembled. 

Densely linked layers contain a predetermined number 

of neurons with a predetermined activation function, 

as illustrated in the example below. Each neuron 

executes the calculation described in Equation 1, with 

the activation defined. Nowadays, modern neural 

networks rarely employ sigmoid and tanh activations. 

Their activation property causes them to lose 

information at extreme positive and negative input 

values, which is referred to as saturation. This 

saturation of neurons hampered the performance of 

deep neural networks until new non-linear activation 

functions were introduced. The activation mechanism 

Due to their non-saturating qualities, the rectified 

linear unit (ReLU) is widely credited with aiding the 

creation of very deep neural networks [Hahnloser et 

al., 2000]. As seen in equation 6, it zeroes out all 

negative values and delivers a linear response for 

positive values. Numerous other rectifiers with 

varying qualities have been introduced since its start. 

(a) = max(0; a) 

The other activation function used in the example is 

the "softmax" function on the output layer. This 

activation is commonly used for classification tasks, as 

it normalizes all activations at all outputs to one. It 

achieves this by applying the exponential function to 

each of the outputs in ~a for class C and dividing that 

value by the sum of all exponentials: 

Figure 4: ReLU activation (red) and derivative (blue) 

for efficient gradient computation. 

 
Additionally, the example employs a Dropout layer, 

which is a widely used technique for regularising 

networks by randomly changing a preset percentage of 

nodes to zero for each iteration. Neural networks are 

particularly prone to over fitting, which can be 

mitigated using a variety of regularization strategies, 

including input data augmentation, noise injection, L1 

and L2 limitations, and early training loop termination 

[Goodfellow et al., 2016]. For regularisation, modern 

deep learning systems may even employ noisy 

student-teacher networks [Xie et al., 2019b]. 

import tensorflow as tf 

model = tf.keras.models.Sequential([ 

tf.keras.layers.Dense(32, activation='relu'), 

tf.keras.layers.Dropout(.3), 

tf.keras.layers.Dense(16, activation='relu'), 

tf.keras.layers.Dense(2, activation='softmax')]) 

 

3.3.3 The State of ML on Geo-sciences’ 

Geo-sciences’, particularly geophysics, has closely 

followed breakthroughs in machine learning. Machine 

learning techniques have been applied across fields to 

a variety of challenges that may be broadly classified 

into three categories: 

1. Create a fictitious machine learning model of a well-

understood process. This paradigm typically has a cost 

advantage in terms of computation. 

2. Create a machine learning model for a task that 

could previously only be accomplished through 

human contact, interpretation, or knowledge and 

experience. 

3. Create a fresh machine learning model capable of 

performing a previously impossible task. 

 

4. DATA SCIENCE FOR GEO-SCIENCES 

 

The last decade has seen a surge in interest in data-

driven discovery in geo-science research, as seen by 

the increasing number of financed initiatives, new 

facilities, shared datasets, and published scientific 

findings. Cyberinfrastructure, data portals, databases, 

workflow platforms, statistical models, machine 

learning algorithms, data management, and data 

sharing are all becoming increasingly common in the 

daily work of many geoscientists. Numerous 
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successful instances of data-driven geo-science 

discovery over the last few years have proven the data 

revolution's great potential. It is self-evident that data 

science will play a critical role in the coming decades 

in order to scale up innovation and accelerate new 

discoveries in geo-science. Nonetheless, because data 

science's theoretical foundations are still being 

developed, there is little debate and review of data 

science in geo-science. By contrast, geoscientists are 

currently in high demand for data science 

methodologies and tools. To meet that requirement, 

the objective of this work is to synthesise recent 

advances in both data science and data-driven geo-

science in order to give a review and anticipate future 

developments. 

4.1 Trends in data science 

To gain a better grasp of data science workflows, it is 

vital to comprehend a few key ideas. In recent years, 

the author has taught database and data science classes 

to senior undergraduate and graduate students. Even 

students majoring in computer science may become 

perplexed by the definitions of data, metadata, 

information, and knowledge, as experience has 

demonstrated. The term "data" refers to the 

documented representation of facts. Nowadays, in the 

digital era, records are typically stored digitally in 

formats such as plain text, spreadsheet, relational 

database, or graph database. The meaning or message 

extracted from data is referred to as information. The 

process of extracting information is frequently 

determined by the objective of the data analysis, the 

methodologies and instruments utilised, and the 

interpretation of the data analysis results. 

Data science emerged and evolved as a result of 

multidisciplinary collaboration. Donoho (2017) 

provided a comprehensive overview of the evolution 

of data science over the last three decades. He 

highlighted numerous statisticians' viewpoints on the 

importance of broadening the scope of classical 

statistics to include data preparation, presentation, and 

prediction. According to a recent report from the 

National Academies of Sciences, Engineering, and 

Medicine (NASEM, 2018a), a critical task of data 

science education is to develop data acumen, which 

encompasses the following key concepts: 

mathematical foundations, computational 

foundations, statistical foundations, data management 

and curtain, data description and visualization, data 

modeling and assessment, and workflow and analysis. 

These data literacy issues are mirrored in the data life 

cycle and data science methodology (Figure 1), which 

are designed to fulfil the real-world requirements of 

data science applications. Numerous colleges have 

already begun to offer courses in data science. For 

instance, the University of California, Berkeley's Data 

8: Foundations of Data Science course is designed for 

freshmen in any major (Adhikari and DeNero, 2017). 

Its curriculum encompasses the majority of the courses 

mentioned in the preceding list of data acuity. 

4.1 A reflection on the key steps of a data life cycle 

Focusing on the theme of data science for geo-science, 

the following sub-sections will review a list of recent 

publications for each key step in the data life cycle, 

and summarize the shareable experience from them. 

4.1.1 Business understanding and concept 

The steps labelled "concept" in Figure 5b and 

"business knowledge" in Figure 5c are meant to help 

define the data science project's objectives and 

estimate data requirements (Chapman et al., 2000; 

DDI Alliance, 2021). They are concerned with 

translating business objectives into data science plans. 

If database development is part of the intended 

activities, this step will also include work on data 

structures such as conceptual models, logical models, 

physical models, and controlled vocabularies for data 

standards. Cyber infrastructure researchers have 

realized that early consideration and action on data 

semantics can aid in improving data interoperability 

when data is generated, gathered, integrated, and 

shared (Reitsma et al., 2009; Narock and Shepherd, 

2017). 

 
Figure 5. Comparing the layered structure of data 

interoperability with the Semantic Web architecture 

and the FAIR data principles 

Numerous academics have described the layered 

structure of data interoperability, which encompasses 

systems, syntax, schematics, semantics, and 

pragmatics (Brodaric, 2007, 2018). Several further 

studies defined these levels in layman's words, such as 

discoverable, accessible, decodable, intelligible, and 

useable (Ma et al., 2011). The layered structures of 
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data interoperability and the FAIR principle are 

similarly comparable to the Semantic Web's 

technological design (Berners-Lee, 2000). Numerous 

examples of data interoperability best practices may be 

found in the domain of geo-science. 

Its data and metadata guidelines span 34 data topics in 

Earth and environmental sciences, and complete 

implementation across all participating European 

nations is required by 2021. 

 

4.1.2 Data understanding, generation and collection 

NASA manages about 100 missions and hundreds of 

platforms, equipment, and sensors orbiting the Earth 

and nearby space, and is one of the world's largest 

producers of geo-science data. According to Shannon 

(2019), NASA generated 12.1TB of data per day in 

2016. Additionally, the same storey said that NASA 

was installing new sensors capable of generating 24 

terabytes of data every day. The same advancements 

in instrumentation and data generation, transmission, 

and management were observed in field-based 

geological survey (Mookerjee et al., 2015). Wing 

(2019) distinguished data generation from data 

collection, noting that not all data generated is 

captured (Figure 1d). This could be because we just 

want to capture a subset of the data, or because the 

velocity of data streams is too high for present 

technologies to process. 

 

4.1.3 Data preprocessing and preparation 

Preprocessing data is becoming an increasingly 

critical stage in data science. Additionally, it is 

referred to by various alternative terms, including data 

cleansing, data wrangling, and data munging. The goal 

of data preprocessing is to assure the quality of data 

prior to conducting any data analysis. It may include 

tasks such as clearing out noisy and unreliable records, 

lowering data dimensionality, changing data formats, 

choosing records of interest, enriching existing data 

with extra properties, and combining data from many 

sources to create a new piece of data (Wang, et al., 

2018). Numerous new research discoveries have been 

made as a result of the upgraded database, including 

mineral evolution and ecology (Morrison et al., 2019, 

2020) and the co-evolution of the geo-sphere and the 

biosphere (Spielman and Moore, 2020). Additionally, 

the database resulted in new designs for mineral 

species databases and talks about improved data 

curation and sharing methods (Prabhu et al., 2021). 

4.1.4 Data archive, distribution, and discovery 

Funding agencies increasingly demand researchers to 

provide a data management plan with their grant 

submissions (Dietrich et al., 2012; NSF, 2015). Data 

are increasingly being viewed as a formal research 

output on par with paper papers and receiving the same 

level of attention. The FAIR data principles build on a 

long history of data management and stewardship 

activities and provide a systematic way to sharing and 

reusing scientific data in open science. NASA, the US 

Geological Survey, the National Oceanic and 

Atmospheric Administration, and the United States 

Department of Agriculture all have their own data 

archives and portals that enable users to search for and 

retrieve relevant data. For example, through a central 

interface, the USGS supports federated querying of a 

large number of spatial datasets devoted to mineral 

resources (USGS MRDATA, 2021).  

 

4.1.5 AI and Small Data Scalable 

Covid-19 severely disturbed the sorts of data 

accessible for analysis and, as a result, the utilization 

of that data. More individuals are accessible online to 

study a wider range of data, yet these data are quite 

different from past sets of big data. That is why the AI 

'small data' approaches take primacy, based on fewer 

consumer behavior occurrences. Therefore, artificial 

intelligence (AI) must be scalable to respond, despite 

the knowledge that huge amounts of data are 

historically better at predicting accurately. Machine 

learning must also adapt to the new analytical 

limitations arising from increased internet activity. 

New privacy laws such as the California Consumer 

Privacy Act of 2020 will make it more difficult to 

focus on 'little data' and allow more past data to be 

accessible. 

 

4.1.6 Real- time data 

Real-time automated testing is one of the largest new 

data analysis capabilities in 2021. This signifies a 

trend away from historical data that is out of date by 

definition. Companies may now connect more 

effectively with their product or service consumers, 

responding to customer behaviors, instead of 

analyzing their data at a later period. According to 

Seagate, 75% of the world's population will interact 

every 18 seconds with data by 2025, making it vital to 

speed up the data analysis and the following reaction. 
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4.1.7 Progress in Data science 

The rapid growth of Big Data and Data Science has 

spurred greater ideas and goals for data-driven geo-

sciences study. The Carnegie Institution for Science 

launched the "4D" program in 2018. (4D Initiative, 

2018). In 2019, the International Union of Geological 

Sciences started the major research initiative Deep-

time Digital Earth (DDE) (Cheng et al., 2020). Open 

data and community of practices on cyber 

infrastructure requirements and progress were made as 

part of the major recommendation in the vision 

(NASEM, 2020) for the next ten earth-science goals 

for the U.S. National Science Foundation (NSF). We 

are at a major turning point in science—a moment in 

which the way geoscientists do research will be altered 

by open data resources, cyber-infrastructure facility 

and new data science methods of analysis and 

visualization. Caps to uncover are the ongoing 

creation, integration and exploitation of facilities, data 

and knowledge to create and explore methods to 

understand the Earth more deeply (Hazen et al., 2020). 

 

5. CONCLUSION 

 

In the world of data science, it is new, and we are still 

figuring out what it is. For the time being, the term is 

best defined by the work of a data scientist. A data 

scientist is someone who utilizes programming as the 

foundation for a more in-depth and flexible approach 

to data analysis. Researchers in scientific insightsand 

geo-sciences collaborate to develop knowledge-rich 

frameworks, algorithms, and user interfaces that are 

easy to use and understand. Recognizing that these 

linkages are unlikely to occur without major 

facilitation, a new Research Coordination Network on 

Scientific insightsfor Geo-sciences has been 

established to facilitate sustained communication 

across these domains that rarely intersect. This 

network is focused on three primary objectives. To 

begin, collaborative workshops and other platforms 

will facilitate synergistic talks and reveal shared 

interests. Second, repositories of challenge issues and 

datasets with succinct challenge statements are 

intended to minimize the entry barriers. Third, a 

curated archive of educational materials will be 

established to assist researchers and students in 

overcoming the steep learning curve associated with 

advanced topics in the other discipline. In geo-science, 

machine learning has a lengthy history. Cringing has 

evolved into more generic machine learning 

techniques, and geology has made tremendous strides 

with the application of deep learning. Nonetheless, it 

is critical to recognize machine learning's limitations 

in geo-science. These applications make use of 

machine learning as a pre-processing tool for data, 

extending previous insights beyond theory and 

synthetic instances, or the model itself enabling 

previously unimaginable applications in geo-science. 

In general, applied machine learning has developed 

into a well-established tool in computational geo-

science and has the ability to throw new light on geo-

sciences theory. 
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