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Abstract - We present a mean field theory for higher 

order legendre polynomial in chiral interaction part to 

describe helicoidal cholesteric phase for binary mixture 

of chiral nematic liquid crystals and polymer chain in 

presence of longitudinal electric field which is parallel to 

the pitch axis of cholesteric phase. We have calculated 

free energy of the helicoidal cholesteric phase a a 

function of order parameter and orientational 

distribution function in equilibrium state. Based on free 

energy minimization we have observed that inclusion of 

higher order legendre polynomial in intermolecular 

potential makes ChH phase more stabilized depending 

on the external field strength. 

 

Index Terms - Legendre Polynomial, Cholesteric Phase, 

Helicoidal Cholesteric phase, Distortion free energy, 

Order parameter and External field. 

 
Figure 1. Illustration of the director with the cone 

angle between the director and the pitch axis under the 

external electric field 

 

INTRODUCTION 

 

Liquid Crystal has an important role in application and 

the influenced of external field i.e electric or magnetic 

field on Cholesteric or chiral nematic N* phase are the 

one of the important for   many technological 

applications, biological materials, fundamental 

physical and chemical research. When an electric or 

magnetic field is applied perpendicular towards helical 

axis of a cholesteric phase, untwisting of helix takes 

place with positive diamagnetic anisotropy or positive 

dielectric above the threshold value of the electric or 

magnetic field. This is well known as field- induced 

twist-untwist transitions [1-10]. When the longitudinal 

electric or magnetic field is applied parallel towards 

helical axis of cholesteric phase, the director n exhibits 

a helicoidal structure, this was first theoretically 

observed by Meyer [11] and experimentally 

investigated [12]. The director of helicoidal 

cholesteric liquid phase has the same as twist- bend 

nematic phase in achiral bent- core liquid crystals 

molecules [13-25]. In recent times researcher have 

shown interest in both cholesteric and twist- bend 

nematic phase. 

Recently, many mean field theories presented to 

describe the cholesteric liquid crystal molecules in 

presence of the external electric field perpendicular 

towards pitch axis and also in mixture of cholesteric 

phase of a polymer chain [26-32]. In all these theories 

we have seen that the intermolecular interactions have 

been truncated by lower order of legendre polynomial 

i.e. intermolecular chiral interaction is given by 

(Ω1×Ω2ˑr12) P1 (Ω1ˑΩ2) in the lowest order. The chiral 

interaction must be odd in Ω1ˑΩ2 while in nematic 

interaction be even. The existence of this term 

differentiates cholesterics from nematics and 

determines the cholesteric pitch in an equilibrium 

state. Theoretically all these models based on general 

molecular model of choleteric liquid crystals 

presented by Liu- Liu group. They proposed a planar 

model containing the intermolecular potential is 

contain chiral contributions and by mean field theory 

they observed   the microscopic basis of the existence 

of cholesteric phase [33]. In [34] a Molecular theory 

for cholesteric liquid crystals they observed that by 

symmetry considerations a general form of 

intermolecular potential contains chiral term which are 
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the reason for forming cholesteric liquid crystal. Maier 

and Saupe [35] offered a generalized theory known as 

Maier Saupe theory and this theory is widely used for 

the understanding of mean field analysis for 

intermolecular potential used in all this kind of phase 

transitions problems. 

In all the theoretical attempts to describe cholesteric 

phase, we have seen that the chiral potential in series 

of legendre polynomial truncated by lower order of 

legendre polynomial. We focus on the theoretical 

understanding of phase transitions properties of the 

cholesteric liquid crystals phase in presence of 

external electric field which is parallel to the pitch axis 

of the cholesteric phase by taking higher order 

legendre polynomial in chiral potential in 

intermolecular potential. 

The coupling between director and the external field 

i.e. electric field, we developed our mean field theory 

for higher order legendre polynomial in chiral 

interaction potential. The aim of this work is to 

developed theoretical understanding of cholesteric 

liquid crystal phase in presence of external field for 

higher order legendre polynomial in interaction 

potential. 

Based on model for higher order legendre polynomial 

in chiral interactions, we derive the free energy of the 

helicoidal cholesteric phase as a function of 

orientational order parameter of a Liquid crystal 

molecules and the order parameter of the liquid 

crystals. Using these order parameters, we 

theoretically predicted isotropic phase, paranematic 

phase, Usual nematic phase and cholesteric and 

helicoidal cholesteric phase. 

 

FREE ENERGY OF A HELICOIDAL 

CHOLESTERIC PHASE 

 

Let us consider a binary mixture of a Liquid Crystals 

and a flexible polymer chain. For the analysis of 

helicoidal cholesteric phase of binary mixture, we 

developed our theory based on molecular theory of 

Liu- Liu et al. [33-34] and other models for lower 

order of legendre polynomial [35-36]. 

Let Np be the number of polymers with np segments 

and NL be the low- molecular weight liquid molecules 

of length L and Diameter D. The volume of LC 

molecule and of polymer chain is 

𝑉𝐿 = (
𝜋

4
) 𝐷2𝐿 and   𝑣𝑃 =  𝑎3𝑛𝑃 respectively. Let us 

consider the volume fraction of both liquid crystal 

molecule and polymer chain is  ∅𝐿 =  𝑣𝐿𝜌𝐿 and ∅𝑃 =

𝑣𝑃𝜌𝑃 respectively, where  𝜌𝑖 is the number density. 

Due to axial ratio 𝑛𝐿 =  
𝐿

𝐷
 of liquid crystal molecule 

and volume per molecule is consider as 𝑣𝐿 = 𝑎3𝑛𝐿, 

where  𝑎3 =  
𝜋

4
 𝐷3. 

The free energy is considered as 

𝐹 = 𝐹𝑚𝑖𝑥 + 𝐹𝑎𝑛𝑖                                (1) 

In above mentioned equation the first term descries 

isotropic mixing of binary mixture and it is given by 

well-known Flory- Huggins theory for polymer [38]. 

𝑎3𝛽
𝐹𝑚𝑖𝑥

𝑉
=  

∅𝐿

𝑛𝐿
𝑙𝑛∅𝐿 +  

∅𝑃

𝑛𝑃
𝑙𝑛∅𝑃 +  𝜒∅𝐿∅𝑃               (2) 

In equation (2), χ is defined as Flory- Huggins 

interaction parameter between the liquid crystal 

molecule and polymer chain in an isotropixc phase and 

𝛽 =  
1

𝑘𝐵𝑇
; where T is absolute temperature and kB is 

Boltzmann constant 

The second term in equation (1) stands for free energy 

of liquid crystal phases including nematic, cholesteric 

and helicoidal cholesteric liquid crystals. The 

configuration of the constituent LC molecules is 

characterized by position vector r and orientation unit 

vector Ω defined by polar angle between local director 

n(r) and solid angle dΩ, Where dΩ = sin𝜃d𝜃d∅. Let 

the orientational distribution function of the liquid 

crystal molecule is defined as fL (n(r)ˑΩ). The 

distribution function depends on only relative angle 

between local director and molecular orientation 

vector. The anisotropic part of the free energy in the 

second virial approximation is given by 

𝛽𝐹𝑎𝑛𝑖=ρL ∫ 𝑓𝐿(n(r1) ∙ Ω1) ln 4π𝑓𝐿(n(r1) ∙ Ω1)𝑑r1𝑑Ω1 

 +
1 

2
ρL

2 ∫ 𝑓𝐿(r1 ∙ Ω1)𝑓𝐿((r2 ∙ Ω2)𝛽ULL(r1, Ω1; r2, Ω2)𝑑R  (3) 

where 𝛽 =
1

𝑘𝐵𝑇
; and T is absolute temperature and kB 

is Boltzmann constant and  

𝑑𝑅 ≡  𝑑𝑟1𝑑𝑟2𝑑Ω1𝑑Ω2 

The first term in equation (3) represents the change in 

entropy because of orientational ordering and 𝑈LL is 

for orientation dependent intermolecular potential 

between LC molecule at a position r1 with an 

orientation Ω1 and that at a position r2 with an 

orientation Ω2. In this work we are neglecting the 

effect of anisotropic coupling between the polymer 

and the LC molecule because we are only concerned 

on flexible polymers. The Higher- order chiral 
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contributions to the interaction potential for the Liquid 

crystal phases are given in the series configuration of 

legendre polynomial [27,34,39,40]: 

 

𝑈𝐿𝐿 (r1, Ω1; r2, Ω2) =  𝑈𝐿𝐿,1(r12)(Ω1 × Ω2 ∙ �̂�12)P1(Ω1 ∙

Ω2) +  𝑈𝐿𝐿,2(𝑟12)𝑃2 (Ω1 ∙ Ω2) +                       (4) 

where r12 =  r1 − r2. 

In eq (4) the first and third term (𝑈LL,1and 𝑈LL,3) shows 

chiral interaction between LC molecules. The term 

(Ω𝟏 × Ω𝟐 ∙ 𝒓^𝟏𝟐) is a pseudoscalar and 𝒓^𝟏𝟐 ≡ (𝐫𝟐 − 

𝐫𝟏) / |(𝐫𝟐 − 𝐫𝟏)| is unit vector. From experiment it is 

observed that in achiral system the twist deformation 

studied and for achiral 

banana shaped molecules exhibit a conformal chirality 

within each molecule: left handed and right handed 

helices [18,37]. The chiral interaction 𝑈LL,1and 

𝑈LL,3contribute in achiral system. The 𝑈LL,2term in 

potential shows intermolecular potential which is 

responsible for nematic phases and used in the Maier-

Saupe [35] and Onsager models [36]. We have 

assumed that the interaction potential 𝑈LL is short 

range (d0) and we have defined 𝑐L = − 𝛽 (𝑈LL,1 + 

𝑈LL,3) for chiral pseudoscalar material parameter and 

𝑣L = −𝛽𝑈LL,2(> 0) for nematic interaction parameter. 

The positive/ negative value of the chiral pseudoscalar 

material parameter responsible for left/ right-handed 

helix. The nematic interaction parameter has been 

defined in Maier- Saupe theory for the nematic phase 

[1,35] 

In order for calculation of spatial variation of the 

director we are using tensor order parameter [1] 

𝑄𝛼𝛽(𝐫)  =  𝑆𝐿 (
3

2
𝑛𝛼(𝐫)𝑛𝛽(𝐫) –  ½ 𝛿𝛼𝛽)                      (5) 

Where  𝑛𝛼 and 𝛿𝛼𝛽represents the 𝛼 (= 𝑥, 𝑦, 𝑧) 

components of the director 𝐧 and kronecker delta 

function respectively. The scalar orientational order 

parameter 𝑆L for the LC molecules can be obtained 

from 

𝑆𝐿  =   ʃ 𝑃2(𝑛(𝐫). Ω)𝑓𝐿(𝑛(𝐫). Ω) dΩ             (6) 

And it is independent of the position r for the bulk LC 

phase. 

Substituting eq (5) into eq (3) and (4), the anisotropic 

free energy can be expressed as [27-32] - 

𝐹ani = 𝐹nem + 𝐹d                                                       (7) 

where the first term is for nematic free energy and 

second term is for distortion free energy.  

The nematic free energy is defined as 

    𝐹nem  ≡  𝑎3𝛽 𝐹nem/𝑉 

=
∅𝐿

𝑛 𝐿
∫ 𝑓𝐿(𝑛(𝐫). Ω) ln 4𝜋𝑓𝐿(𝑛(𝐫). Ω) dΩ −1/2 𝑣𝐿  ∅𝐿

2𝑆𝐿
2  (8)                          

The second term of equation (7), the distortion free 

energy containing first and second spatial derivatives 

of the tensor order parameter [27,30] ; 
𝑎3𝛽𝐹𝑑

𝑉
=

1

4
𝜈𝐿

2

9
𝑑0

2𝜕𝛾𝑄𝛼𝛽(𝒓)𝜕𝛾𝑄𝛼𝛽(𝒓) −

  
2

9
𝑐𝐿𝑑0𝜀𝛼𝛽𝛾𝑄𝜇𝛽(𝒓)𝜕𝛼𝑄𝜇𝛾(𝒓)                                (9) 

where ∂𝛾 = ∂/∂r is first spatial derivative of the tensor 

order parameter and εαβγ is the Levi-Civita anti-

symmetric tensor of the third rank. 

For this work we consider longitudinal external 

electric field parallel to the pitch axis p. The electric 

field is given by- 

E= (0, 0, E)              (11) 

where E represents the strength of the electric field. 

When the dielectric anisotropy is positive the liquid 

crystal molecules tends to orients towards electric 

field. The longitudinal deformations along Z axis can 

orient the director along the pitch axis p, the directors 

rotates out perpendicular plane onto the surface of 

cone angle  .The director  is defined as- 

𝑛 (𝑧) = (sin 𝜖 cos 𝑤(𝑧) , sin 𝜖 sin 𝑤(𝑧) , cos 𝜖)     (12) 

The cone angle is constant and does not depend on the 

position z. The director is uniformly twisted along z 

axis with pitch and the azimuthal angle 𝜔 is given as 

function of position which   is 𝜔 = qz. 

The dimensionless nematic free energy (𝑓nem) is 

given as- 

𝐹nem  ≡  𝑎3𝛽 𝐹nem/𝑉 

 = 
∅𝐿

n𝐿
ʃ 𝑓𝐿(n(𝐫) ∙ Ω)ln 4𝜋𝑓𝐿(n(𝐫) ∙ Ω)𝐝Ω −  ½ 𝑣𝐿∅𝐿

2𝑆𝐿
2 −

 ∅𝐿𝑆𝐿ℎ𝐿
2     (13) 

 

SUMMARY AND CONCLUSION 

 

In this work we have presented a mean field theory to 

understand the helicoidal cholesteric phase induced by 

an external field for third order legendre polynomial in 

intermolecular potential. From this theory we 

observed that the stable ChH phase can appear for K22> 

K33 with SL>0. We observed that the inclusion of third 

order legendre polynomial in intermolecular potential 

leads to more stabilized helicoidal cholesteric phase in 

comparison with the previous few models which is 

truncated intermolecular potential for the lower order 

of legendre polynomial. In this work, we have focused 

on mixures of a flexible polymer and a liquid crystal 

molecule only and neglected the anisotropic coupling 

between liquid crystal molecule and polymer or any 
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other molecules. When the order parameter y = 1 we 

have Q= Q0 this shows that Ch phase and when y = 0 

we have nematic phase. For k2 > k3, we have the 

stable helicoidal phase.  
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