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Abstract - Question Answering systems (QA)  technology 

that provides the answer, rather than a list of possible 

answers, can be referred to as an algorithm. Text 

similarity and questions asked in natural language are 

the primary concerns for QA systems in this scenario. 

Several deep learning models for answering questions 

have been proposed. Local maxima corresponding to 

incorrect answers cannot be recovered because of their 

single-pass nature. So, we're going to use an algorithm 

called the Dynamic Coattention Network (DCN) to 

answer questions. DCN combines question and 

document representations that focus on the most 

relevant parts of each. Decoders iterate over possible 

answer spans using dynamic pointing. An initial local 

maximum associated with incorrect answers can be 

recovered using this iterative procedure. For Stanford 

question answering, this DCN ensemble model scores 

80.4 percent accuracy. 

 

Index Terms - Natural Language Processing, deep 

learning model, Dynamic Coattention networks, 

bidirectional LSTM. 

 

I.INTRODUCTION 

 

Our sentences are input and the machine/computer 

responds in the context-based information extraction 

process. Deep learning algorithms, a subset of neural 

networks, are used to achieve the highest level of 

accuracy and precision. Neural language processing 

researchers are working on an intriguing problem. The 

Question Answering (QA) System is extremely 

beneficial because it can be used to model most deep 

learning-related problems. Because of this, it is one of 

the most heavily researched areas of computer science 

today. Many of the recent advancements in the field 

can be attributed to the rise of Deep Learning in the 

last few years. Finally, the recently proposed Deep 

Learning methods are addressed in this paper. 

Implementation and algorithmic tweaks that improved 

results have also been covered. 

A critical part of natural language processing (NLP) is 

question answering (QA), which necessitates 

knowledge of the world around us as well as natural 

language understanding. QA datasets tend to be high-

quality but small in size because of the human 

annotation. The result was that models like deep neural 

networks, which require a lot of data to train, could not 

be used. Using semi-automated techniques, 

researchers have been able to overcome this problem. 

To train more expressive models, these QA datasets 

can be used instead of smaller, hand-annotated 

datasets. Following the completion of this study, it was 

discovered that different types of reasoning were 

necessary for the answers to the questions (Chen et al., 

2016). 

To be RC, a machine must be able to comprehend and 

apply real-world knowledge, as well as be able to 

process and answer questions about documents' texts. 

Many applications are possible, from making it easier 

to find information to improving artificial intelligence. 

The majority of natural language processing was done 

with probabilistic models before they were introduced. 

Recent advances in deep learning, which have shown 

to produce superior results, have led researchers to rely 

more and more on neural networks. 

End-to-end neural network called "Dynamic 

Coattention Network" is used to answer questions. 

What is encoded in the model a coattentive encoder 

and dynamic decoder that alternately estimates 

beginning and end points of the answer span are 

included in this tool. The F1 of this model is 74.9 

percent greater than the best previously published 

results (Yu et al., 2016). The F1 of our ensemble 

model is 80.4 percent, which is higher than the second-

best SQUAD result. 
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Stanford University researchers released the SQuAD 

dataset, which is several orders of magnitude larger 

than any previous hand-annotated dataset and contains 

a wide range of characteristics that make QA an 

obvious task (2016). Each SQuAD response is 

contained within a section of an answer document. As 

a result, all possible answers are constrained to this 

range. According to Rajpurkar et al., the dataset 

contains many different answers, including multi-

sentence reasoning (2016). 

 

II.LITERATURE SURVEY 

 

Traditional methods of research have primarily 

focused on the syntactic matching of questions and 

responses. According to Punyakanok et al., 

dependency tree models were used in order to match 

questions and answers. The probabilistic tree edit 

algorithms proposed by Heilman and Smith [2] and 

Khan et al. [3] can both be used to model sentences. It 

was used by Yao et al. [4] to extract tree editing 

sentence answer sequence labelling from the TREC-

QA dataset. Based on word relationships, Zhou et al. 

[5] selected the answer sentences. If you've ever tried 

it, you know how laborious it can be to hand-label data 

the old-fashioned way. 

In recent years, the use of in-depth learning techniques 

has grown in popularity. Semantic parsing frameworks 

based on semantic similarity models and 

convolutional neural networks were developed by Yih 

et al. [6] and Wang et al. [7]. There was no syntactic 

parsing or external knowledge resources like WordNet 

used in Wang and Nyberg's stacked Bi LSTM study 

[8]. The questions and answers in these models were 

not interdependent. Attention is built into our deep 

neural networks from the ground up. 

 Rule-based or linear classifiers, which use hand-

engineered feature sets, have been used in the past to 

answer questions. Richardson et al. (2013) suggested 

two possible baselines: a sliding window and word-

distances between words in a question and a 

document, for example. The method proposed by 

Berant et al. (2014), on the other hand, is based on 

constructing a knowledge base of the document's 

entities and relations first, and then creating a 

structured query to match the database's content. 

Frame semantic features, as well as syntactic features 

such as speech tags and dependency parses, are used 

in a statistical model. For competitive analysis, Chen 

and colleagues (2016) developed a statistical 

foundation using various carefully crafted lexical, 

syntactic, and word order features. 

 Recently, many complex queries and matching tasks 

have relied on cosine similarity as a metric because it 

has been shown to be an effective one in previous 

studies like those by Liu [9] and He et al. To classify 

new data points and support vectors from various 

categories, Lee et al. (10) used the Euclidean distance 

to measure the average distance between them [10]. 

The GESD (Geometric mean of Euclidean and 

Sigmoid Dot product) and the AESD (absolute error 

standard deviation) metrics for answer selection were 

proposed by Feng et al. [10]. (Arithmetic mean of 

Euclidean and Sigmoid Dot product). This team has 

developed a set of metrics that they believe to be 

superior to the others. It is possible to measure the 

semantic distance between sentences using the cosine 

similarity and Euclidean distance. When used in 

conjunction with other evaluation mechanisms, the 

cosine similarity metric performs better. We are able 

to improve and optimise previous methods by 

combining the two functions. This strategy appears to 

work, according to our research. 

  NLP frequently employs neural attention models to 

aid in machine comprehension and question 

answering. An Attentive Reader model was proposed 

by Hermann et al. (2015) after releasing the Questions 

and answers collected from the Questions and answers 

collected from the CNN/Daily Mail website. For the 

second time, Hill and colleagues (2016) presented data 

from the book and proposed a window-based memory 

network. A single attentional step is performed by this 

pointer-style attention mechanism, according to 

Kadlec et al (2016). Machine comprehension tasks 

were applied to a neural attention model by Sordoni 

and his colleagues (2016). 

Rajpurkar et al. recently released the SQuAD dataset. 

(2016). Non-entities and longer phrases can be 

included in answers to real-world questions rather than 

cloze-style queries.  We found that Wang and Jiang 

(2016b) proposed an end-to-end SQUAD-specific 

neural network model, and we found that Yu et al. 

(2016) presented an end-to-end SQUAD-specific 

neural network model that extracts and ranks a set 

answer candidate of different lengths from documents 

in order to respond to questions. As Vinyals et al. 

(2015) stated, " 
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A hierarchical co-attention model for visual question 

answering was presented with the COCO-VQA 

dataset by Lu and colleagues (2016). (Antol et al., 

2015). An image representation and a question 

representation are computed by the co-attention 

mechanism in a similar fashion (Lu et al., 2016). 

 
Fig 1.  Performance of DCN Model across various Dev 

set and Test set which shows great results. 

Our dynamic coattention model (DCN) is based on the 

aforementioned research and includes a new 

coattentive encoder and a dynamic decoder.  Iterative 

conditional modes (Wang & Jiang, 2016b) are 

comparable to our model in that they update the start 

and end positions iteratively to estimate the answer 

span's start and end positions (Besag, 1986). 

 

III.DYNAMIC COATTENTION NETWORKS 

 

The diagram below depicts the overall process of 

DCN. The dynamic decoder, which generates the 

answer span, and the document and question encoders, 

which contain coattention mechanisms, are both 

demonstrated here. 

 
Fig 2.  Overall  Architechture 

 

B. DOCUMENT AND QUESTION ENCODER 

Here, two-word vectors have been taken 

corresponding to the words in both document and 

question. Let (x1
Q, x2

Q,…., xn
Q)  word vectors in the 

question are denoted by a sequence of words (x1
D, 

x2
D,…., xm

D) indicate the same for the text's words and 

phrases. An LSTM can be used for this purpose, the 

document is encoded as a: dt = LSTMenc(dt-1, xt
D). The 

Document Encoding Matrix is defined as below 𝐷 =

[𝑑1 …  𝑑𝑚 𝑑∅ ] ∈ 𝑅𝑙×(𝑚+1). It also consists a sentinel 

vector 𝑑∅ (Merity et al., 2016), in which the model can 

ignore any particular word in the input, as later 

demonstrated. 

A single LSTM model is used to compute the 

embeddings for all questions: 

 qt = 𝐿𝑆𝑇𝑀𝑒𝑛𝑐  (𝑞𝑡−1, 𝑥𝑡
𝑄). We define an intermediate 

question representation 𝑄′ = [𝑞1 …  𝑞𝑛 𝑞∅ ] ∈ 

𝑅𝑙×(𝑛+1). In order to accommodate differences 

between the encoding spaces for questions and 

documents, a non-linear projection layer is added to 

the question encoding. The question can now be 

expressed as follows: 

𝑄 =𝑡𝑎𝑛ℎ 𝑡𝑎𝑛ℎ (𝑊(𝑄)𝑄′ + 𝑏(𝑄))  ∈ 𝑅𝑙×(𝑛+1). 

 

A.COTTENTION NETWORKS: 

A coattention mechanism, similar to that proposed by 

(Lu et al., 2016), was put forth to pay attention to both 

the question and the document at the same time. The 

coattention encoder can be seen in the figure below. 

 Affinity matrices are calculated for each pair of 

document words and query words. 

 𝐿 = 𝐷⊤𝑄 ∈ 𝑅(𝑚+1)×(𝑛+1).  This matrix is normalised 

row-wise and column-wise for each word in a question 

to produce 𝐴𝑄 and 𝐴𝐷 for each word: 

𝐴𝑄 = (𝐿)  ∈ 𝑅(𝑚+1)×(𝑛+1)  

 𝐴𝐷 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝐿⊤) ∈ 𝑅(𝑛+1)×(𝑚+1)          (1)         

The document's summaries or attention contexts are 

calculated here based on each word of the Question. 

𝐶𝑄 = 𝐷𝐴𝑄 ∈ 𝑅𝑙×(𝑛+1)          (2)                                                                                                   
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Fig 3. The above figure describes the Coattentive 

Encoder. Here, AD and AQ represents the normalised 

attention weigths AQ and AD. 

For each word in the document, we compute the Q𝐴𝐷 

summaries of the question. We also compute the 𝐶𝑄𝐴𝐷  

attention context summaries in light of each word in 

this document's content like Cui et al. (2016). Eq. 3 

shows that these two operations can be performed in 

parallel. Question encoding is translated into 

document encoding space, which is one possible 

interpretation of the operation 𝐶𝑄𝐴𝐷. 

    𝐶𝐷 = [𝑄; 𝐶𝑄]𝐴𝐷 ∈ 𝑅2𝑙×(𝑚+1)           (3)                                                                                    

The question and the document are depicted in a co-

dependent manner is defined as  𝐶𝐷 in this context. A 

and B are concatenated horizontally using the [a; b] 

notation. 

The final step is to use a bidirectional LSTM to 

combine the temporal information with the coattention 

context: 

𝑢𝑡 = 𝐵𝑖 − 𝐿𝑆𝑇𝑀 (𝑢𝑡−1, 𝑢𝑡+1, [𝑑𝑡; 𝑐𝑡
𝐷]) ∈ 𝑅2𝑙   (4)                                                                        

Let 𝑈 = [𝑢1, … , 𝑢𝑚] ∈ 𝑅2𝑙×𝑚, be the equation the 

basis for selecting, as a coattention encoding, which 

span could be the most appropriate response. 

 

C. DYNAMIC COATTENTION NETWORKS 

Because of the SQuAD structure, it is possible to 

generate the answer span by making educated guesses 

about its beginning and ending points (Wang & Jiang, 

2016b). A single document may contain multiple 

intuitive answer spans, each of which corresponds to a 

different local maximum. Iteratively switching 

between predicting the beginning and ending points of 

the answer span. Incorrect answer spans' initial local 

maxima can be recovered with this iterative procedure. 

An LSTM-based sequential model depicted in the 

figure below maintains the Dynamic Decoder state 

machine. Using with the help of a multi-layered neural 

network, the decoder creates new estimations for the 

start and end positions. 

Iteration I of the LSTM is represented by hi, si, and ei, 

which denote hidden state, position estimate, and end 

position estimate. Eq. 5 is used to describe the LSTM 

state change. 

ℎ𝑖 = 𝐿𝑆𝑇𝑀𝑑𝑒𝑐  (ℎ𝑖−1, [𝑢𝑠𝑖−1
; 𝑢𝑒𝑖−1

])            (5)                                                                       

where 𝑢𝑠𝑖−1
 and  𝑢𝑒𝑖−1

 depictions of the coattention 

encoding U that correspond to previous estimates of 

its start and end positions. 

 
Fig 4.  Dynamic Decoder. 

When Starting from a starting point, determining the 

variables, functions, and variables. in blue are 

indicated by the colour blue, while the variables and 

functions in red are indicated by the colour red. 

 

D. HIGHWAY MAXOUT NETWORKS 

This is based on a previous starting position of hi and 

current hidden state 𝑢𝑠𝑖−1
 and previous end position 

𝑢𝑒𝑖−1
  Equations 6 and 7 estimate the current start and 

end positions. 

𝑠𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑡(𝛼1, … , 𝛼𝑚)                        (6)                                                                    

𝑒𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑡(𝛽1, … , 𝛽𝑚)                        (7)                                                        

There is a starting score and an ending score for each 

a word from the text. Here, αt and βt are computed 

using distinct systems of the brain. Despite the fact that 

they share an overall design, these networks do not 

share any specific parameters. 

Maxout Networks (Goodfellow et al., 2013) and 

Highway Networks' strong empirical performance 

(Srivastava et al., 2015), the Highway Maxout 

Network (HMN) is used to compute the value of t (Eq. 

8). The goal of employing such a model is to make QA 

tasks more diverse by including a variety of question 

types and document subjects. Different models for 

estimating the answer span may be required to account 

for these variations. The use of Maxout Layers makes 

it easy to pool data from various model variants. 

𝛼𝑡 = 𝐻𝑀𝑁𝑠𝑡𝑎𝑟(𝑢𝑡 , ℎ𝑖 , 𝑢𝑠𝑖−1
, 𝑢𝑒𝑖−1

)             (8)                                                             

According to the coattention algorithm, this word has 

been encoded in the form: ut. Figure 4 depicts the 

beginning of an HMN. A separate HMN end is used to 

calculate the end score, 𝛽t, rather than the start score 

𝛼t. 

The HMN Model is described below:    

(𝑢𝑡, ℎ𝑖 , 𝑢𝑠𝑖−1
, 𝑢𝑒𝑖−1

)  = 𝑚𝑎𝑥 (𝑊(3) [𝑚𝑡
(1)

; 𝑚𝑡
(2)

] + 𝑏(3))    

(9) 

𝑟 = 𝑡𝑎𝑛ℎ (𝑊(𝐷)[ℎ𝑖; 𝑢𝑠𝑖−1
; 𝑢𝑒𝑖−1

])           (10)                                                  
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𝑚𝑡
(1)

= 𝑚𝑎𝑥(𝑊(1)[𝑢𝑡; 𝑟] + 𝑏(1))          (11)                                                   

𝑚𝑡
(2)

= 𝑚𝑎𝑥(𝑊(2)𝑚𝑡
(1)

+ 𝑏(2))            (12)                                                 

Where 𝑟 ∈ 𝑅𝑙 It's a  current state parameterized non-

linear projection 𝑊(𝐷) ∈ 𝑅𝑙×5𝑙, 𝑚𝑡
(1)

 consists of the 

parameters of the first maxout layer 𝑊(1) ∈ 𝑅𝑝×𝑙×3𝑙 

and 𝑏(1) ∈ 𝑅𝑝×𝑙  and 𝑚𝑡
(2)

  The second maxout layer's 

parameters are the output 𝑊(2) ∈ 𝑅𝑝×𝑙×𝑙  𝑏(2) ∈ 𝑅𝑝×𝑙 ⋅

𝑚𝑡
(1)

  and  𝑚𝑡
(2)

  parameters are fed into the final 

maxout layers  𝑊(3) ∈ 𝑅𝑝×1×2𝑙, 𝑏(3) ∈ 𝑅𝑝 ⋅ 𝑝  is the 

pooling size of each maxout layer. When a maximum 

is computed over the first dimension. The first and 

final maxout layers are linked by a highway. 

The iterative procedure comes to an end when the 

estimated start and end positions don't change any 

more after a certain number of iterations. All iterations' 

cumulative softmax cross entropy of the start and end 

positions are minimised when training the network. 

 
Fig 5. The Road Maxout Network. In highway 

signage, dotted lines denote where two or more roads 

merge or diverge. 

 

1V. LSTM AND BI-DIRECTIONAL LSTM 

 

 The inputs to LSTM are received by state boxes that 

change over time.  This is how the LSTM output is 

calculated for each time step: 

                   ℎ𝑡 = 𝑓𝑤(ℎ𝑡−1, 𝑥𝑡)                 (1)                                                                           

Where xt  is the input vector , ht and ht-1 are state vectors 

at time t and (t-1) , fw   weight vectors w are the 

nonlinear activation function Figure.1 is a common 

depiction of an LSTM. 

 
Fig 1: LSTM layer. 

The unrolling depicted in Fig.1 can be expressed 

mathematically in (2), which is derived from [12] and 

[13]. 

{𝐶𝑡 = 𝑓 ⊙ 𝐶𝑡−1 + 𝑖 ⊙ 𝑔 ℎ𝑡 = 𝑂 ⊙ 𝑡𝑎𝑛ℎ (𝐶𝑡) [𝑖 𝑓 𝑜 𝑔 ] =

(𝜎 𝜎 𝜎 𝑡𝑎𝑛ℎ )𝑊(ℎ𝑡−1 𝑋𝑡 )                   (2)        

Ct is the cell's output, and forgetting gate f controls 

whether or not cells erase it; input gate I controls 

whether or not to write to cell; writing gate g controls  

function, which includes functions such as tanh and 

sigmoid. The input from X and the state h are, in 

general, seen as i⊙g in (2). In order to determine how 

much of a cell is revealed to the hidden state, 

⊙tanh(Ct) represents the cell's current state. The 

unrolled LSTM and its repeating model (2) are shown 

in Fig. 2. 

 
Fig 6.  The   in-depth description of the unrolled LSTM 

repeating model The tanh and sigmoid functions are 

represented by the red circles. 

 

A. Bi- DIRECTIONAL LSTM: 

Sequence classification problems benefit from the use 

of bidirectional LSTMs, which are an extension of the 

standard LSTM model.  Using Bi-LSTMs, you can 

train two LSTMs instead of one LSTM on input 

sequences that have all time steps available. Analysis 

of the original input sequence and a reversed copy of 

it were carried out separately. Because the network 

now has more context, getting results is faster. 
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Fig 7. Bidirectional LSTM layer. 

RNNs (Bidirectional Recurrent Neural Networks) 

have a very simple theory behind them. The input 

sequence is provided  when it's used as input to layer 

1, and a flipped copy of that input is provided to layer 

2 when it's used in layer 2. We no longer have to worry 

about the drawbacks of the conventional RNN. It's 

possible to use the past and future to train a 

bidirectional recurrent neural network (BRNN). 

Regular RNNs divide state neurons into forward and 

backward states (positive and negative time 

directions) (negative time direction). Because the 

entire utterance is taken into account rather than a 

linear interpretation, the input sequence is fed both 

ways when it comes to speech recognition. This means 

that the network moves through the entire input 

sequence sequentially in both directions at the same 

time. 

V.EXPERIMENTS 

 

The DCN model described above was trained and 

tested on the SQuAD dataset. Prior to preprocessing, 

the corpus was run through Stanford Core NLP's 

tokenizers (Manning et al., 2014). The 840B Common 

Crawl corpus serves as a pre-training ground for 

GloVe's word vectors (Pennington et al., 2014). There 

are no embeddings for words that aren't in the 

Common Crawl corpus because the vocabulary is 

restricted to words that are already in the database. In 

order to avoid overfitting and poor performance, only 

results with fixed word embeddings are reported here. 

This is the maximum length of sequences that can be 

used in recurrent units, maxout layers, and linear 

layers during training. To begin, all LSTMs have zero 

initial states and random initialised parameters. During 

training, random initialization and optimization are 

applied to the sentinel vectors. We use a maxout pool 

size of 16 and a maximum number of iterations of 4 

for the dynamic decoder. Dropout (Srivastava et al., 

2014) is used to regularise our network during 

training, and ADAM is used to optimise the model 

(Kingma & Ba, 2014). Chainer is used to implement 

and train all models (Tokui et al., 2015). 

 

VI.RESULTS 

 

Two metrics are used for evaluation on the SQuAD 

dataset. Using the exact match score, you can 

determine how closely two answers predicted by a 

computer match those provided by human judgement 

in the real world (EM). The F1 score is based on how 

closely the predicted and actual answers sound. There 

may be multiple ground truth answers for a document-

question pair, which is why EM and F1 are taken to be 

the maximum values across all of them. All document-

question pairs are averaged together to arrive at the 

overall score. CodaLab hosts the official SQuAD 

evaluation. There is a public release of the training and 

development sets, but a private release of the test set. 

When compared to the other models on the 

leaderboard, 3 is a significant improvement, the 

Dynamic Coattention Network's performance on the 

SQuAD dataset is shown in Table 1. This single-model 

DCN currently has the highest exact match and F1 

scores of all single-model submissions (66.2 percent) 

as of the time of this writing. On the test data, the 

ensemble DCN comes in first place with an exact 

match rate of 71.6% and an F1 rate of 80.4%. 

Multiple estimates of the answer span's start and end 

points can be made by the DCN, each time based on 

previous estimates. So, as shown in Figure 5, the 

model's ability to explore multiple plausible solutions 

is enhanced by doing so. 

Fig. 8 shows an example of a situation in which the 

model makes an incorrect start point and an accurate 

end point guess in Question 1. After adjusting the start 

point in subsequent iterations, the model finally gets it 

right in iteration 3.  The model gradually moves the 

end point in the direction of the correct word, similar 

to the probability mass. 

Question 2 illustrates a situation in which both the start 

and end dates were incorrectly estimated. In the next 

iteration, the model reaches the correct answer. 
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Fig 8. Examples of the The dynamic decoder generates 

start and end conditional distributions. Rows with odd 

numbers (blue) and even numbers (red) represent the 

start and end distributions respectively. The dynamic 

decoder's iteration number is indicated by the letter i. 

Darker areas indicate areas with a higher probability 

of mass. It is shown on the graph's right side, you'll see 

the word with the highest probability mass is offset. 

Underlined in red is the predicted span and underlined 

in green is the ground truth answer span. 

However, despite several iterations, Question 3 shows 

that the Multiple local maxima cannot be chosen by 

the model. due to the model's dynamic nature, which 

allows the model to escape initial maximums 

associated with incorrect answers. Particle beam 

weapons and "charged particle beam weapons" are the 

only two answers that the model will ever accept. 

When trained with maximum iteration of 4, the model 

takes on average 2.7 iterations to converge upon an 

answer. 

 
Fig 9.  The blue dot shows the average F1 for the 

length of the line. An F1 at a given length has a 

standard deviation represented by the vertical bar 

shown here. 

 

 
Fig 10.  Results on both Dev set and Train set. 

Our learning model will be trained and validated on 

the Stanford Question Answering Dataset (SQuAD). 

Questions on Wikipedia document texts are used to 

compile SQuAD, which is a collection of data on 

reading comprehension in which the answer to each 

question is an excerpt from the corresponding text. 

The training and validation sets for this project are 

88581 and 5964 SQuAD entries, respectively. A test 

set of 10,654 data entries will be used to evaluate the 

learning model after sufficient training. 
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A.  DROPOUT LAYER 

The maxout activation layer has been removed from 

the highway network in our model. All highway 

network parameters except the last layer are dropped 

out with a keep probability of 0.9. 

 𝑊(3)[𝑚𝑡
(1)

; 𝑚𝑡
(2)

] + 𝑏(3) 𝑟

= 𝑡𝑎𝑛ℎ (𝑊(𝐷)[ℎ𝑖; 𝑢𝑠𝑖−1
; 𝑢𝑒𝑖−1

]) 𝑚𝑡
(1)

= 𝑊(1)[𝑢𝑡; 𝑟] + 𝑏(1) 𝑚𝑡
(2)

= 𝑊(2)𝑚𝑡
(1)

+ 𝑏(2)  

 

B. LOSS 

It is calculated by averaging the loss of each 

prediction's cross-entropy loss. 

𝑙𝑜𝑠𝑠𝑠 =
1

𝑁
∑

𝑁

𝑛=1

 𝐶𝐸 (𝑦𝑠𝑛
, �̂�𝑠𝑛

) 𝑙𝑜𝑠𝑠𝑒

=
1

𝑁
∑

𝑁

𝑛=1

 𝐶𝐸 (𝑦𝑒𝑛
, �̂�𝑒𝑛

)  

To get an overall loss, simply add up each index's 

losses. 

loss = losss + losse 

 

C .OPTIMIZATION 

As annealing improves, the learning rate of our model 

decreases exponentially. Uses Adam's a stochastic 

gradient descent algorithm. Convex function Gradient 

Descent's output is the partial derivative of its input 

parameters. Scale: The more steep a slope, the greater 

the gradient. Gradient Descent is used iteratively  for 

the parameters to have the best possible values in order 

to minimise the cost function's value. 

 

D .MODEL ABLATION 

An example of this model and its ablations in action is 

depicted in Fig. 11. To test the HMN decoder, we're 

experimenting with different pool sizes for the maxout 

layers, using MLPs instead of HMNs, and limiting the 

decoder iteration to one. Based on our results on our 

development set, we found that a deeper, more 

iterative decoder network consistently improves our 

model's performance. As the maximum number of 

iterations increases, performance improves, but after 4 

iterations, there isn't much of an improvement. The 

encoder's F1 drops by 1.9 points when the coattention 

mechanism is replaced with an attention mechanism 

like Wang & Jiang (2016b) in equation 3. Using the 

coattention mechanism, the document and question 

sequences are encoded more effectively at the costs for 

a softmax calculation and a dot product. The appendix 

contains additional studies, such as how people 

perform without paying attention and how they 

perform on questions that require different types of 

reasoning. 

 
Fig 11.Single model ablations on the development set 

 

5.7 Performance across length 

It's interesting to see how the DCN performs 

depending on the length of the document. As with 

neural machine translation, it's logical to assume that 

the model's performance will degrade with increasing 

sample size (Luong et al.,2015).  There appears to be 

no noticeable performance degradation for documents 

and questions that are longer, as shown in Figure 6. 

Even in the case of very long documents, the encoder 

appears to be able to focus only on the most relevant 

text while overlooking the rest of the document. Our 

results show that longer answers have a negative 

impact on our overall performance. However, given 

the nature of the evaluation metric, this is logical. In 

other words, as the number of words grows, 

determining the correct word span becomes more 

difficult. 

 
Fig 12.  The DCN's ability to handle a variety of 

question types. There are a total of three bars for each 

question type, and their height represents the median 

score for that question type.  The lower the number, 

the more frequently that particular question type has 

been encountered in the test data. 
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Performance across question type Analyzing the 

model's performance across different types of 

questions is a logical next step. The mean F1 of DCN 

(Wang & Jiang, 2016b) is higher than that of previous 

systems (Yu and Jiang, 2016) across all question 

types, as shown in Figure 7. "When" questions are 

easy for the DCN, but the more difficult "why" 

questions are beyond its capabilities. 

Breakdown of F1 distribution    DCN's performance is 

also highly bimodal, which is worth noting. It 

correctly predicts (100 percent F1) 62.2 percent of the 

examples on the development set and incorrectly 

predicts (0% F1) 16.3 percent of the examples. In other 

words, only 21.5 percent of the time does the model 

pick out partial answers. Some of the 0 percent F1 

answers are shown in Appendix A.4;  "answer type," 

such as "person" for "who" questions or "method" for 

"how" questions, tends to be correct when the model 

is incorrect, according to qualitative inspections of the 

answers. 

 

E. ANALYSIS 

 

Fig13. Sample prediction from dev evaluation. 

To train the GloVe vectors, we used 6 billion tokens 

and 400,000 vocabulary from Wikipedia 2014 and 

Gigaword 5. The lack of a large vocabulary led to a 

large number of words being tokenized as . Table 3 

shows how this impacted the accuracy of predicted 

answers. The Common Crawl GloVe vectors, which 

have a larger vocabulary, should be used instead to 

reduce the number of unknown words. 

 
Fig 14. Sample prediction from dev evaluation 

When reading the text in Table 4, it's hard to tell if the 

phrase "Its growth was reversed by the loss of the 

American colonies in 1776" is a reference to British 

colonies in America or something else. Learning 

models may also have difficulty correctly predicting 

the correct answer if they are unable to produce an 

accurate  How the question and the document's text are 

interpreted together. 

 

VII.CONCLUSION AND FUTURE WORK 

 

 This project's primary goal is to implement DCN for 

question answering which becomes very useful for us 

to search for answers. In natural language processing 

(NLP), Natural language processing and machine 

learning are both required for effective QA 

understanding and knowledge of the world around us. 

QA systems are designed to be aware of text similarity 

and to respond to questions that are asked in a natural 

language context. It is possible to use a variety of deep 

learning models to answer questions. To recover from 

incorrect answers, they are unable to use their single-

pass nature. As a solution to this problem, we came up 

with the Dynamic Coattention Network (DCN). For 

the DCN, the question and the document are brought 

together in a way that emphasises their 

interdependence. Iterating over the possible answer 

spans, a dynamic pointing decoder is then used. An 

initial local maxima associated with incorrect answers 

can be recovered using this iterative procedure. This 

DCN ensemble model scores 80.4 percent on the 

Stanford question-answering dataset. 

The Future work for this project is it can be 

implemented for Visual Question Answering, so that 

it can answer for visual question answers. The 

proposed learning model has a maximum input 

sequence length for documents and questions. In order 

to create a model that can accept inputs of any length, 

additional research should be carried out. Recurrent 

neural networks are difficult to parallelize because 

they are sequential in nature. Documents and 

questions can be encoded using convolutional neural 

networks, or other architectures. Another important 

issue for future work will be the application to other 

large datasets, such as VQA and SemEval-cQA of the 

model proposed. 
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