
© March 2022| IJIRT | Volume 8 Issue 10 | ISSN: 2349-6002

IJIRT 154326 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 533

Genetic-RTA: A Test Suite Automation for Concurrent

Software Systems

S. Farhana

PG Student, Department of CSE, Jawaharlal Nehru Technological University College of Engineering

(Autonomous) Anantapuramu

Abstract—It gets more difficult to evaluate the

functionality of a software application as it grows

because of addition of features, performance

improvements, and quality enhancement, among other

things. In testing, writing test cases and manually

assessing those test cases by analysing the software

application under test will cost a lot. Mostly, symbolic

execution and genetic algorithms are often used to

generate test cases. However, whatever test cases are

made, are added to the original test suite, which may

comprise a significant number of test cases, and used to

use all those test cases in a sequential bid to achieve the

coverage of targets in the program under test, which may

cause a slight time delay. Moreover, if any further

versions of that program version are patched in the

future, and employ that newly produced test suite to

compute on it, it may require a great deal of testing time

and computational resources. By considering this

problem, the paper proposed Genetic-RTA, to perform

the good testing on the current program version as well

as its upcoming modified versions in the future, it not

only generates the new test cases but also collects the

fittest test cases from it based on maximum coverage and

minimum time consumption, from this, it forms the test

suite that contains the ordered test case sequence as well.

Index Terms—Regression testing, genetic algorithm,

Genetic-RTA (Regression Test suite Automation).

I. INTRODUCTION

Software testing is used to verify the requirements that

are employed on the software products. It detects the

information about the level of quality by removing all

the faults, errors, defects that are elevated in the

software application. It is important to meet the

customer requirements and expectations in terms of

performance, design, dependability, and durability and

the product's cost as well as testing should be done on

every part and corner of the software application to get

the good quality product be delivered.

As the software evolves, due to adding features, fixing

bugs, improving design etc., so, it becomes difficult to

revalidate the functionality of software applications.

Normally regression testing is a dynamic testing used

to evaluate the overall functionality whenever the code

modification occurs. In regression testing, testers start

the testing with executing test cases to which

prioritization and selection of test case techniques are

used to cut down on the expense of testing. Although,

in some cases, previous test cases might not be

sufficient but also need new test cases to examine the

code or system behaviors that exist in the new versions

of the software application.

Writing test cases and computing it manually by

understanding the program application under test will

cost much in testing. So, in order to generate the test

cases automatically, there exists various techniques. In

that, some test case generation techniques use the

evolutionary approach such as Genetic Algorithms

(GA) to produce new test cases [1] as well as in

regression testing, test suite augmentation techniques

are being used to discover code sections impacted by

changes and create test cases to cover those areas [1,8].

Usually GA is the most widely used one of

evolutionary algorithms, since, this shows the most

accurate representation of natural evolution

on computers [4] as well as it belongs to the family of

optimization algorithms that is inspired from the

biological techniques. The survival of the fittest

concept is used in this community-based search

technique. The new populations are generated by

repeatedly applying genetic operators on the

population's current members. Chromosome

representation, selection, crossover, mutation, and

fitness function computation are the core elements of

GA [2].

© March 2022| IJIRT | Volume 8 Issue 10 | ISSN: 2349-6002

IJIRT 154326 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 534

Fig. 1: Process flow of Genetic-RTA.

Prior techniques work in the form of, whatever the test

cases that are generating, are added into the initial test

suite which may form a bulk of test cases and used to

pick those test cases in a sequential manner to meet the

coverage of targets in the program under test, which

may provide a bit delay in the form of time.

By considering the problem and to perform the good

testing on the current program version as well as its

upcoming modified versions in the future, it has to

reduce the computation resources by collecting the

finest test cases from the generated test cases for the

better coverage of the program under test. Even though

there is no extra time to compute all the test cases that

exist in the test suite and to get the maximum coverage

to that program version, the test cases must be

arranged in the order for performing the test.

In this proposed work, Genetic-Regression Test suite

Automation (Genetic-RTA) technique is used to

reduce the test cost whenever the modified version of

a program is under test, firstly, it uses the genetic

algorithm in order to create new test cases, then it

collects some of the feasible test cases from the newly

formed test cases and places those test cases in an

order on the basis of execution time and coverage by

calculating the fitness to those generated test cases,

such that a test suite be created.

II. SOFTWARE TESTING

Software testing [5], the aim of software testing is to

detect mistakes, and a good test is one that has a wide

chance of finding an error. As a result, a software

engineer should consider testability while designing

and implementing a computer-based application

program. Simultaneously, the tests must have a

combination of qualities that enable it to identify the

most faults with the least amount of work.

Each and every developing product can be assessed in

two distinct ways: (1) realizing the every particular

function that a product is programmed to deliver, tests

can be performed to illustrate that function is operative

while also looking for errors in every function, and (2)

understanding the inner structure of a product, tests

can be conducted to ensure that internal activities are

performed as per specifications, and all system

components are in working order.

Fig. 2: Quadratic equation program as motivating

example

In this, functional testing is the first method, while

structural testing is the second. The term "functional

testing" refers to tests performed at the

application interface. Black box testing is another

name for this type of testing. It evaluates certain

essential characteristics of a system while paying

minimal attention to the software's core logical

structure. Software is anticipated through structural

testing, which involves a careful analysis of

procedural detail. It’s often referred to as "white box"

testing. Test cases that exercise particular sets of

criteria and/or loops are provided to exercise logical

paths across the application and interactions between

subsystems.

III. GENETIC ALGORITHM

© March 2022| IJIRT | Volume 8 Issue 10 | ISSN: 2349-6002

IJIRT 154326 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 535

For machine learning, pattern classification, and

optimization problems, genetic algorithms are

frequently employed. Holland and his student

introduced it in 1970, and it is mostly used for adaptive

exploration and dynamic system design. To find a

solution to an issue, GA employs reintegration and

modification operators. The solution consists of

numerical strings, such as bit-String, which represent

the genes [6].

Fig. 3: Example CFG of quadratic equation.

Operators [3] that are widely used in the GA are

encoding schemes, selection, crossover and mutation.

These operators also include a variety of approaches

and methodologies. The following is a quick rundown

of the GA operators.

The first is encoding schemes, which play an essential

role in most computational problems and demand that

supplied information be encoded in a certain bit string,

which is varied according to the domain issues.

Binary, octal, hexadecimal, permutation, value-based,

and tree are quite known encoding techniques.

Second is the selection, which is a crucial phase in

genetic algorithms that decides whether or not a

specific string will engage in the replication process.

The reproduction operator is another term for the

selection step, and the stability of GA is influenced by

the evolutionary changes. Roulette wheel, rank,

tournament, boltzmann, and stochastic universal

sampling are some of the widely used selection

strategies.

Table 1: Example paths for quadratic equation

program.
Path1 S 1 2T 3 E

Path2 S 1 2F 5 6T 7 E

Path3 S 1 2F 5 6F 9T 10 11 E

Path4 S 1 2F 5 6F 9F 13 14 15 16 E

Third, crossover, which is a technique for integrating

the specific genes of two or even more parents to

produce offspring. Single point, two-point, k-point,

uniform, partially matched, order, precedence

preserving crossover, shuffle, reduced surrogate, and

cycle are often used crossover operators.

Finally, mutation, it ensures that genetic

diversification is maintained from one group towards

the next. Displacement, simple inversion, and

scramble mutation are three quite known mutation

operators. Example of a basic genetic algorithm in

activity is in the following.

1) Create a starting number of individual populations.

2) Using the fitness function, assess the fitness of

every individual in the population.

3) Keep looping until the termination condition isn't

met:

a) Pick individuals out from population who look

to be better in the form of fitness than the rest

of the population.

b) Reassemble the people that were chosen in the

first place (a).

c) Individuals be altered.

d) Make a new population of people.

IV. RELATED WORK

T. Yu et al. featured ConTesa, a concurrent software

tool for enhancing regression tests that may reuse

current test suites besides newly generated test cases.

It handles the issues of test input creation and

interleaving discovery in the same way, with fresh test

inputs created through test reuse guiding investigation

of the effected interleaving space which isn't yet

covered by existing inputs. It may also use an active

scheduler to replay regression concurrency problems.

On a collection of multithreaded Linux apps, tested on

ConTesa. Regarding execution speed, coverage

of testing and fault detection capabilities, their

findings demonstrate that it trumps state-of-the-art

approaches.

© March 2022| IJIRT | Volume 8 Issue 10 | ISSN: 2349-6002

IJIRT 154326 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 536

Fig. 4: Process flow of test case generator
Z. Xu et al. provided a new structured technique for

augmentation integrating different test case generation

algorithms and varied configurations of possibly

important elements and presented the findings of the

first controlled experiment on test suite augmentation,

as well as the first experiment of its kind to assess

alternative test case creation approaches in the context

of augmentation (genetic and concolic). Their findings

contribute to the growing body of evidence that guided

test suite augmentation approaches can be successful.

The findings indicate important considerations for

investigators and experimentalists when developing

and testing guided test suite augmentation approaches.

N. Chuaychoo et al. presented a genetic algorithm-

based approach for generating test cases, in this the

paths of the graph are determined by following path

coverage criteria after a flow graph is constructed from

the application source code. The genetic algorithm is

then utilized to create test inputs.

Finally, employed mutation testing to assess the test

cases' efficiency. Experiments demonstrate that the

tests provided by their technique are quite good at

detecting flaws as well as based on the suggested

technique, this research has built a test case generating

tool.

Rijwan et al. proposed a novel approach for generating

better automated test cases that combines mutation

analysis with a genetic algorithm. GA operations

mutation and Crossover are used to create these

additional test cases. When calculating randomly

produced test cases, the mutation score was very low,

but when GA was applied to randomly generated test

cases, the mutation score improved.

Fig. 5: Example for single point crossover technique.

X. Yao et al. constructed a mathematical methodology

for creating data for multiple route coverage testing

then, to solve the established model, a multi

population individual sharing genetic algorithm is

provided, and the performance of the suggested

technique is not only theoretically examined, but also

to a variety of applications that are being tested. The

results of the experiments demonstrated that the

suggested technique greatly improves the rapidity with

which test data may be generated for a variety of paths.

Alsmadi developed and analysed a test case generation

approach based on genetic algorithm principles to

create test cases with high coverage of the paths tested

or visited within the application and was able to test

the overall sequence created by each test case by

encoding the position of the controls (in contrast to the

chromosomes) and displaying it in binary code. The

aim the work has chosen is to generate a "new" test

case each time.

V. PROPOSED WORK

In this proposed work, the algorithm shows the

procedure of Genetic-RTA, fig.1 illustrates the

process flow of the proposed system. It consists of

three main components, test case generator, for

generating test cases, time evaluator, for evaluating

time, and test suite generator, for generating test suite.

In the proposed work, genetic operators used are:

selection, to select test cases. Crossover, to produce

offspring. Mutation, to mutate the generated test

cases. Fitness function, to collect the fittest ones.

Quadratic equation program, fig.2 is represented as

the motivating example, initially, it identifies the

paths that exists in the program by analyzing each

instruction and generates the Control Flow Graph

(CFG) that consists of nodes and edges (line 1), fig.3

depicts its CFG and Table 1 shows its example paths

of a program.

Algorithm: Genetic-RTA

© March 2022| IJIRT | Volume 8 Issue 10 | ISSN: 2349-6002

IJIRT 154326 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 537

Test case generator generates the test cases in two

steps, as fig. 4 illustrates its process flow, firstly, it

performs the program analysis [6,7]. In the second

step, it uses the genetic algorithm approach to

generate the test cases based on binary and value

encoding scheme. In this, existing test cases are used

as the initial population, then a selection process is

performed to select the test cases from the initial test

cases by using roulette wheel selection technique

(line 7). After selecting, perform crossover on the

selected test cases to generate new test cases using

single point crossover technique (line 8), fig.5 shows

the example of crossover that, at a random location

on both parent’s genes, is chosen as the 'crossover

point.' Between both the parent genes, bits towards

the right from that location are exchanged. As a

result, two individuals are generated, with each some

genetic variation from both parents. To that, mutation

process is performed to mutating the genes of the

generated test cases for maintaining the diversity

between the test cases by flipping of bits (at random

positions) by using simple inversion mutation

technique (fig. 6). From this process, new test cases

are generated.

Fig. 6: Example for simple inversion mutation

technique

Time evaluator evaluates the time by assessing test

cases in the concrete execution of the program under

test and updates whether the path is covered or not.

From this, it extracts the real time entry and exit of the

test case. Similarly, it evaluates time for all the newly

generated test cases and updates the status as covered

or uncovered based on the program coverage (line 11).

Fig. 7: Process flow of test suite generator.
The test suite generator, fig. 7 illustrates its process

flow, that generates the test suite, it calculates the

fitness to the generated test cases which are covered

by using the fitness function (line 13) in terms of

maximum program coverage and minimum time in the

first step. In the second step, it collects the fittest test

cases from the first step and then in the third step it

arranges those collected test cases in an order on the

basis of time to reduce the testing cost of the program.

From this process, it yields the test suite that can

reduce the testing cost whenever the updated versions

are tested, which helps the testers to consume less time

in testing the product.

VI. EXPERIMENTAL SETUP

In this paper, the experimental setup was made on the

7 programs in which 6 are of the sequential programs

and 1 is of the concurrent program to address our

approach. Programs are listed in the following with

its brief description.

© March 2022| IJIRT | Volume 8 Issue 10 | ISSN: 2349-6002

IJIRT 154326 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 538

Triangle classifier: the program determines whether

or not the triangle's sides form a triangle. It identifies

the triangle is isosceles, equilateral, or scalene

assuming together make a triangle. Quadratic

equation: the program takes three inputs and

determines if the inputs may be combined to make a

quadratic equation or not. It also discovers the roots

of the problem if it constitutes a quadratic equation.

Point circle: this program receives the positions of a

point in the x-y Cartesian plane as well as the radius

of a circle with the origin as its center. Then it

determines if the point is within, outside, or on the

circle's perimeter. Quadrant: the program intakes the

points that coordinates and calculates the quadrant

wherein the point lies. Even odd: the program

consists of two threads that contain the logic of

displaying even, odd numbers respectively, these are

intercommunicated with one variable and provide the

output accordingly.

Character classifier: the program that consists of one

variable that can be determined whether the given

character value is either integer or lower case or upper

case. Anagram: the program contains two input

variables which are of string data type, determines

whether the given string is anagram or not.

Table 2: Identified input variables and paths by

Genetic-RTA

S.no Programs

Predicted

input
variables

Identified

input
variables

Identified

paths

1
Triangle

classifier
3 3 8

2
Quadratic

equation
3 3 4

3
Point

circle
3 3 3

4 Quadrant 2 2 4

5 Even odd 1 1 2

6
Character

Classifier
1 1 4

7 Anagram 2 2 2

Table 3: Program coverage of total test cases vs

selected test cases.

S.no Programs

Total test cases vs Selected

test cases

(Coverage)

1 Triangle classifier =

2 Quadratic equation =

3 Point circle =

4 Quadrant =

5 Even odd =

6 Character Classifier =

7 Anagram =

This approach generated the test cases for all the above

programs, initially, the existing test cases should be

given and then repeatedly after testing the program,

the previously generated test suite can be considered

to choose the parents for generating additional test

cases, that gives the highest possibility of obtaining the

optimized test suite.
As well as, when considering all these test cases that

are generated, gave the maximum coverage of the

program, besides, the fact of capturing point is the

selected test cases that are considered fittest, also

provide the same coverage with the least amount of

time.

Table 2, illustrates the variables that are predicted

from the program manually in column 2, in column

3,4 the identified variables and paths for the programs

under test by Genetic-RTA respectively. Table 3

depicts the program coverage that is obtained from

this approach, which gives the equal (=) coverage for

both the total test cases and the selected test cases in

column 3, table 4 shows the total time taken for

concrete execution of programs under test that

presents the difference between both the perceptions.

Table 4: Total execution time for both total test

cases and selected test cases.

S.no Programs

Total test cases

(Execution time

in sec)

Selected test

cases
(Execution time

in sec)

1
Triangle

classifier
8.5666E-3 8.724E-4

2
Quadratic

equation
5.2116E-3 3.125E-4

3
Point

circle
3.629E-3 2.064E-4

4 Quadrant 4.533E-3 2.463E-4

5 Even odd 0.4291 0.0313

6
Character

Classifier
4.502E-3 5.532E-4

7 Anagram 0.01972 5.920E-5

Table 5: Comparison of coverage and execution time

for existing vs new method.

S.no Programs
Existing vs

New method

(Coverage ↑)

Existing vs New

method

(Executing Time in
sec ↓)

1
Triangle

classifier
= N (1.08E-3)

© March 2022| IJIRT | Volume 8 Issue 10 | ISSN: 2349-6002

IJIRT 154326 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 539

2
Quadratic

equation
= N (4.01E-3)

3 Point circle = N (3.04E-3)

4 Quadrant = N (2.77E-4)

5 Even odd = N (1.12E-3)

6
Character

Classifier
= N (1.41E-3)

7 Anagram = N (1.72E-4)

such as total generated test cases and the selected test

cases which consists of fittest test cases in column 3

and 4 respectively. Table 5 shows the coverage of

existing vs new methods in which ‘=’ describes the

two provides equal coverage in column 3, where as in

the column 4, ‘N’ shows that the new methods

consumed less time than the existing with the seconds

shown in the parenthesis.

VII. CONCLUSIONS AND FUTURE WORK

This paper proposed a technique called Genetic-RTA,

a test suite automation based on the Regression Test

suite Augmentation (RTA) technique, to perform

good testing on the current program version as well as

future modified versions; it not only creates additional

test cases by using the genetic algorithm but also

collects the best test cases from it, regarding the

maximum coverage and minimum time consumption

using fitness function; through this, it forms the new

test suite that produces the ordered test case sequence

which helps the tester to consume less testing cost in

the initial stages itself. Genetic-RTA generates the test

cases in two steps, in the first, it analyses the program

and generates the path and in the second step it

generates the test cases based on the binary and value

based encoding schemes using the genetic algorithm,

and then it employs the newly generated test cases on

the program under test in concrete execution and

extracts the testing time, updates whether the program

is covered or not for every test case. In the last, it

collects the fittest test cases by using the fitness

function on the metrics of time and coverage and then

it provides those test cases in an ordered sequence on

the basis of time to form a test suite that is capable of

consuming less time with the less utility of test cases

as well as with the high coverage. Genetic-RTA gave

satisfied results in generating the test cases as well as

defining the ordered sequence of test cases in less time

which made the testing cost less expensive for the

programs under test.

Other encoding schemes like octal and hexadecimal

are also used in generating test inputs, as in the future,

the current work can be extended to generate more

testcases using those encoding schemes using genetic

algorithm.

REFERENCES

[1] Z. Xu, Y. Kim, M. Kim, G. Rothermel, and M. B.

Cohen, “Directed test suite augmentation:

Techniques and tradeoffs,” in Proc. 18th ACM

SIGSOFT Int. Symp. Found. Softw. Eng., 2010,

pp.257-266.

[2] M. Srinivas and L. M. Patnaik, "Genetic

algorithms: a survey," in Computer, vol. 27, no. 6,

pp. 17-26, June 1994, doi: 10.1109/2.294849.

[3] Katoch, S., Chauhan, S.S. & Kumar, V. A review

on genetic algorithm: past, present, and future.

Multimed Tools Appl 80, 8091–8126 (2021).

https://doi.org/10.1007/s11042-020-10139-6.

[4] P. A. Vikhar, "Evolutionary algorithms: A critical

review and its future prospects," 2016 International

Conference on Global Trends in Signal Processing,

Information Computing and Communication

(ICGTSPICC), 2016, pp. 261-265, doi:

10.1109/ICGTSPICC.2016.7955308.

[5] R. S. Pressman, “Software Engineering: A

Practitioner’s Approach,” 6th Edition, McGraw-

Hill Publication, New York, 2005.

[6] Ruchika Malhotra, Chand Anand, Nikita Jain and

Apoorva Mittal. Article: Comparison of Search

based Techniques for Automated Test Data

Generation. International Journal of Computer

Applications 95(23): 4-8, June 2014.

[7] Chuaychoo, Nuntanee and Supaporn Kansomkeat.

“Path Coverage Test Case Generation Using

Genetic Algorithms.” Journal of

Telecommunication, Electronic and Computer

Engineering 9 (2017): 115-119.

[8] T. Yu, Z. Huang and C. Wang, "ConTesa: Directed

Test Suite Augmentation for Concurrent Software"

in IEEE Transactions on Software Engineering,

vol. 46, no. 04, pp. 405-419, 2020.

