
© May 2022 | IJIRT | Volume 8 Issue 12 | ISSN: 2349-6002

IJIRT 154952 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1026

Automated Testing Tools and Frameworks: Benefits,

Pitfalls and Future Works

Amrita Ghosh
1
, Aishwarya Gautam

2
, Gauri Anil Godghase

3
, Omkar Gholap

4
, Pradnya S Kulkarni

5

1,2,3,4
 UG Students, School of Computer Engineering and Technology, Dr. Vishwanath Karad MIT World

Peace University, Pune, Maharashtra, India
5
Assistant Professor, School of Computer Engineering and Technology, Dr. Vishwanath Karad MIT

World Peace University, Pune, Maharashtra, India

Abstract—Software testing has long been an important

element of the software development life cycle, assisting

in analyzing limitations of new softwares. The

emergence of automated testing can largely be

attributed to the low efficiency and high human errors

in manual testing. Recently, automated testing has

made several strides in the field, through the means of

various automated testing frameworks. The main

objective of this paper is to provide a comprehensive

analysis of these frameworks. It summarizes the

different types of automation testing and highlights

popular tools used in each type. Further, the various

tools are compared based on essential parameters such

as applicability, technical support and platform support

etc. Finally, the paper also discusses the future scope of

automated testing and what new possibilities can be

explored to further optimize it.

Index Terms— Wireframe Testing Tools, UI Testing

Tools, Unit Testing Tools, Load Testing Tools,

Integration Testing Tools, Automation Testing Tools,

Automated Frameworks

I. INTRODUCTION

Microsoft Windows, or as commonly known as

Windows have been dominating the majority of the

world's market share since its introduction from

1985. As time passed by, Microsoft made several

improvements in the graphical user interface (GUI)

of this operating system to launch the most recent

version which is Windows 11.Increasing growth of

the Windows operating system also led to the

simultaneous development of many Windows

applications. Windows applications use the graphical

user interface through the controls like radio button,

CheckBox, list item, text box, button etc. These

controls are in turn given by Windows Forms.

Typical Windows applications come in handy in

every sphere of our lives from managing the

workload through calendars, mails, meeting

applications to entertainment purposes like shopping

and media. As applications were being used by so

many people worldwide, it became a necessity to

ensure their quality. Thus, there was a need for

proper testing of the applications to ensure that the

customers have the best experience while using them.

Testing is also required to guarantee that the

applications are meeting their specified requirements

and are bug-free.

Software testing is the practice of reviewing and

validating that a software application accomplishes

what it is designed to do. It helps us in preventing

defects, lowering development costs and achieving

productivity.

Software testing can be manual as well as automated.

As the name suggests in manual testing, test

scenarios are written and executed by the developer

to see if the application is performing as mentioned in

the requirement document or not. Whereas using

automated software testing tools reduces the need for

manual intervention in the testing process. This leads

to a faster process with a more comprehensive test

coverage. Automated testing can provide us with a

higher application quality as well as performance.

And finally, it can also make the process of quality

assurance more cost-effective.

There are several steps involved when developing an

application like generating an idea, designing,

wireframing, coding, testing. And consequently, we

need testing in each of the steps to detect errors as

early as possible in the development cycle. We have

several wireframe testing tools, UI/UX testing tools,

unit testing tools, integration testing tools and

performance testing tools available in the market

today.

© May 2022 | IJIRT | Volume 8 Issue 12 | ISSN: 2349-6002

IJIRT 154952 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1027

This paper is a review or comparative analysis among

the most popular tools in each of the testing domains

so that a user can select the best tool that he needs

according to his purpose. We have done the

comparison of the tools in accordance with the most

prominent features like robustness, performance,

scalability, testability, correctness and usability.

Table 1: Comparison of Wireframe Testing Tools

II. WIREFRAME TESTING TOOLS

The preliminary representation or outline design of

the application under development is referred to as

wireframe. It is usually represented using simple

blocks, buttons and images. The idea behind

wireframe testing is to facilitate incorporating

missing requirements in the application early in the

development cycle and to make the application more

user-friendly. Table 1 provides comparison of various

wireframe testing tools based on parameters such as

licensing cost, applicability, platform support,

browser support etc.

III. UI TESTING TOOLS

UI testing primarily entails testing the application's

UI components and interface to ensure that they meet

specifications and provide a smooth user experience.

Testing the UI prototype manually could be tedious

and time-consuming, and this is where UI testing

tools come into the picture.

© May 2022 | IJIRT | Volume 8 Issue 12 | ISSN: 2349-6002

IJIRT 154952 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1028

Table 2: Comparison of UI Testing Tools

In today's competitive market, user experience is

critical to a project's success, and so the demand for

UI testing tools is rapidly increasing. There are

abundant tools available, and this section compares

them based on various factors. Table 2 provides

comparison of various UI testing tools based on

parameters such as licensing cost, applicability,

platform support, browser support etc.

IV. UNIT TESTING TOOLS

Unit testing is a software development approach in

which the smallest testable elements of a program, or

units, are checked separately and independently for

proper operation. This testing technique is used by

software developers and, on occasion, QA staff

during the development process. The main purpose of

unit testing is to isolate written code in order to test

and verify that it functions as expected.

© May 2022 | IJIRT | Volume 8 Issue 12 | ISSN: 2349-6002

IJIRT 154952 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1029

Table 3: Comparison of Unit Testing Tools

Unit testing is an important part of the development

process because, if done correctly, it may help detect

early bugs in code that would otherwise be difficult

to find in later stages. Table 3 compares several Unit

testing tools based on factors like license costs,

applicability, platform compatibility, browser

support, and so on.

V. LOAD TESTING TOOLS

Load testing is a sort of non-functional software

testing in which the performance of a software

application is assessed under a certain load. It

regulates how the software program functions when

several individuals use it at the same time.

© May 2022 | IJIRT | Volume 8 Issue 12 | ISSN: 2349-6002

IJIRT 154952 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1030

Table 4: Comparison of Load Testing Tools

Prior to deployment, load testing is done to detect

performance bottlenecks and ensure that software

programs are stable and run smoothly. Table 4

compares several load testing tools based on factors

like license costs, applicability, platform

compatibility, browser support, and so on.

VI. INTEGRATION TESTING TOOLS

During the integration testing phase of software

testing, individual software modules are connected

and analyzed as a group. Integration testing is

performed to determine whether a system or

component meets specified functional criteria. This

occurs between unit and system testing.

© May 2022 | IJIRT | Volume 8 Issue 12 | ISSN: 2349-6002

IJIRT 154952 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1031

Table 5: Comparison of Integration Testing Tools

Integration testing takes unit-tested modules as input,

groups them into larger aggregates, runs tests against

those aggregates according to an integration test plan,

and generates an integrated system suited for system

testing as an output.

Table 5 compares several Integration testing solutions

based on factors like license costs, applicability,

platform compatibility, browser support, and so on.

VII. DISCUSSION ON AUTOMATION TESTING

TOOLS

Selenium is one of the most popular web application

testing tools. Selenium was developed in 2004 at

ThoughtWorks in Chicago, with Jason Huggins for

an internal Time and Expenses Application [1].

Since that time selenium has taken over other testing

tools and become a popular choice of many. Surely

the success of selenium could be attributed to many

features that the tool provides, but there are also

© May 2022 | IJIRT | Volume 8 Issue 12 | ISSN: 2349-6002

IJIRT 154952 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1032

some pitfalls to using this tool. The starting of this

section will cover some of the advantages and

disadvantages of using selenium.

Selenium is supported by a variety of web browsers

such as Google Chrome, Mozilla Firefox, Internet

Explorer, Microsoft Edge, Opera, Safari. Selenium

WebDriver also supports cross-browser testing.

Testers can see live automated tests being performed

on their computer screens. This makes tracking the

limitations of the software easy. Selenium supports a

variety of languages and frameworks. Usually, for a

developer language could be a hindrance as every

developer has a preferred language, and this is

where selenium works like a charm. Selenium

supports languages such as C#, Java, Python, PHP,

Ruby, Perl, JavaScript, and each of these languages

has dedicated frameworks. A major advantage of

using Selenium is its open-source availability. It is

available for free to everyone, be it an enterprise or

an individual. Selenium offers some advantageous

features that contribute a lot to the popularity of the

tool. Some of these features are regrouping and

refactoring of test cases, parallel test execution with

Selenium Grid, record and playback with Selenium

IDE, ease of integration with other frameworks, less

hardware requirement and many more.

A major drawback of selenium is that it only

supports web application testing and does not work

on testing windows applications or mobile

application testing. Selenium relies on external tools

for generating reports after test execution. Reports

are a critical part of automation testing as it helps to

analyze what went wrong and which part of the

application needs improvement. But selenium does

not have an in-built report generation feature.

Selenium is an open-source tool with no official

technical support available in case of any technical

problems. However, as selenium has become quite

popular it has a large community to back users up.

Questions or queries can be posted on online

forums, but no official customer support is available

for selenium. Some other limitations of selenium are

that it does not have a built-in object repository,

recovery scenario is absent and image testing cannot

be done using the tool.

Selenium is preferred by many, but that does not

restrict one to stick to selenium, there are various

other tools available in the market for test

automation. Some of these tools are widely used and

may provide a viable alternative to selenium. One

such tool is Watir which was primarily developed by

Bret Pettichord and Paul Rogers. Watir (Web

Application Testing in Ruby, pronounced water), is

an open-source (BSD) family of Ruby libraries for

automating web browsers [2]. But every tool has its

pros and cons, this section will further cover the

advantages and disadvantages of Watir.

Watir is an open-source tool that is easy to use, and

like many open-source tools available today, Watir

also has a community to help people with technical

challenges. Watir is supported by a wide range of

browsers such as Google Chrome, Internet Explorer,

Firefox, Safari, and Edge. It also supports cross-

browser automation testing which is a bonus. Watir

is essentially developed in Ruby language. Like

other programming languages, Ruby gives the

power to connect to databases, read data files and

spreadsheets, export XML, and structure the code as

reusable libraries[2].

In Spite of being quite popular as an easy-to-use

tool, WATIR has a few disadvantages also. WATIR

is compatible with the Ruby test framework only

and testing of mobile browsers is not supported

properly by it. Another major limitation of WATIR

is that it can only be used for web-based

applications and there is no feature available for

recording so scripts can only be written manually.

An exhaustive comparative study of Selenium and

WATIR tools can be found in the work of Gogna

and Nisha[2]. One of the key differences pointed out

between these two tools in this paper is the need to

learn Ruby language for using WATIR whereas

there is no such language barrier for Selenium.

WATIR uses a separate library for each web

browser. Though there is no recording feature

available in WATIR as in Selenium, Frames and

popups can be used easily with the help of API in

WATIR while one may face trouble recording

Frames and popups in Selenium.

VIII. AUTOMATED TESTING FRAMEWORKS

Various testing frameworks are designed to

standardize the process of automated testing. One of

them is Robot Framework [3]. Robot framework is

prevailing, keyword driven and easily extendible. In

this framework simple APIs are provided for

building custom libraries in python and java. Robot

© May 2022 | IJIRT | Volume 8 Issue 12 | ISSN: 2349-6002

IJIRT 154952 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1033

framework has high level architecture with simple

and tabular syntax. It contains Generic as well as

remote test libraries. Plugins for Jenkins and Maven

are also available. High quality reports are generated

containing detailed logs. However, no provision for

debugging is present within the framework.

Moreover, support of external libraries and third-

party extensions is limited and often unstable. In

addition, the Robot framework has several

integrated development environment difficulties.

TestNG is another framework inspired from JUnit

and NUnit with some additional functionalities. The

comparison of JUnit and TestNG is provided in the

work of [4]. TestNG and JUnit both support test

annotations and test suite initialization. Both have an

integrated development environment (IDE).

However, only TestNG provides support for parallel

testing and generation of test reports. In addition,

JUnit does not support test groups and only has

limited support for Parameterized Tests.

IX. CONCLUSION AND FUTURE WORKS

In the current scenario, manual testing is giving way

to automation testing, and as time goes by, the

dependence on automated work will grow. In this

paper, we tried to condense and compare the various

tools based on different types of testing. In the end,

it could be concluded that the number of

tools/frameworks available for web applications

testing is far greater than that of windows

applications testing. Therefore, for the future, we

propose a framework using the latest technologies

like PyCharm, Python, and Pywinauto for testing

windows applications. The proposed tool will have a

user-friendly interface and provide a detailed report

after every test scenario execution. With our

framework, we are trying to achieve the goal of

creating a robust tool for testing windows

applications for hassle-free user experience.

REFERENCES

[1] Brown, C. T., Gheorghiu, G., and Huggins, J.,

An introduction to testing web applications with

twill and selenium., O’Reilly Media, Inc., 2007.

[2] Nisha Gogna, “Study of Browser Based

Automated Test Tools WATIR and Selenium,”

International Journal of Information and

Education Technology, vol. 4, pp. 336-339,

August 2014.

[3] Neha S Batni and Jyoti Shetty, "A

Comprehensive Study on Automation using

Robot Framework," International Journal of

Science and Research (IJSR), vol. 9, Issue 7,

pp. 1033–36, July 2020.

[4] Manasi Patil and Mona Deshmukh,

“Comparative Analysis of JUnit and TestNG

framework,” International Research Journal of

Engineering and Technology (IRJET), vol. 05,

May 2018.

[5] Dheeraj Kakaraparthy, "Overview and Analysis

of Automated Testing Tools: Ranorex, Test

Complete, Selenium," International Research

Journal of Engineering and Technology (IRJET),

vol. 04, Issue 10, Oct 2017.

[6] Milad Hanna, Amal Elsayed Aboutabl, and

Mostafa-Sami M. Mostafa, “Automated

Software Testing Framework for Web

Applications,” International Journal of Applied

Engineering Research, vol. 13, pp. 9758-9767,

2018.

[7] Sarathy Venkatakrishnan and Chethana G.,

"Automated Testing - A Literature Review, "

International Journal of Emerging Technologies

and Innovative Research, vol. 07, Issue 6, pp.

670-681, June 2020.

[8] Devi, Jyoti and Bhatia, Kirti and Sharma, Rohini,

“A Study on Functioning of Selenium

Automation Testing Structure,” International

Journal of Advanced Research in Computer

Science and Software Engineering, vol. 07, Issue

05, pp. 855-862, May 2017.

