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Abstract— WxMaxima is a powerful tool for solving 

advanced mathematical operations. This can 

simplify mathematical equations and solve them, it 

can also plot the graphs, and compute derivatives and 

integration. For structural chemistry, atomic orbital 

calculation comprises a Laplacian Operator, 

associated polynomials, and functions of Laguerre. 

Using the example of the hydrogen atom, we propose 

a precise, quick, and feasible application method for 

solving the radial part of the H-atom equation, plot 

the graphs to illustrate the electronic cloud using 

wxMaxima 

 

Indexed Terms-- Wxmaxima, Laplacian Operator, 

Laguerre polynomials 

 

I. INTRODUCTION 

 

We solve Schrödinger’s equation for several instances. 

For example, the ground-state properties of electrons 

present in an atom, molecule, or solid can be described 

well using Schrodinger’s equation. Therefore, it is 

necessary.  to study hydrogen atom problems and 

observe precise electronic distribution, the shapes of 

orbitals, and their orientations [1]. Also, the solution 

of Schrodinger's equation in reciprocal space gives rise 

to electronic band structure and explains the origin of 

the bandgap with band theory which further executes 

the classification of solids into metals, 

semiconductors, and insulators [2]. The solution of 

Schrodinger’s equation results in quantized properties 

of the quantum particles. Hence, in today’s world, 

energy quantization is played a key role in fabricating 

quantum devices such as laser diodes and light-

emitting diodes.  Most of the semiconductor properties 

such as the behaviour of dopants and their energy 

levels present concerning the observed band structure 

etc are well explained after solving Schrodinger’s 

equations [3]. 

Today it is possible to obtain the suitable dopants for 

a given semiconductor just by solving the 

corresponding Schrodinger’s equation, before 

conducting the experiment on pure materials the real 

estimation of dopants and creating defects can be 

possible by solving the corresponding Schrodinger’s 

equation. The ground-state properties of these defects 

can be well described [4]. Solving Schrodinger’s 

equation for a solid involves the solution of complex 

differential equations [5]. The problem can be worked 

by expressing the differential Schrodinger’s equation 

in momentum space in which the differential 

Schrodinger’s equation is expressed as a set of linear 

algebraic equations rather than complex differential 

equations. Those linear equations can be solved using 

available computational numerical techniques 

accurately to predict the ground-state properties of 

solids [6]. Hence, performing calculations based on 

Schrodinger's equation using suitable computational 

methods makes the problem further simple and easy. 

It is possible to examine the physical system by 

interpreting the energies and wave functions of the 

system. Solving this equation by hand for a single-

dimensional structure is an easy job, but when a three-

dimensional case is considered, and the parameters are 

altered, it consumes more time and errors difficult to 

rectify. We use the wxMaxima to reach this challenge 

and quickly solve Schrodinger’s equation. WxMaxima 

is easy and user-friendly to get a Schrodinger equation 

solution and to plot wave function results or 

probability densities etc. The commands used here are 

quick and easily writable. We can map 2d, and 3d plots 

by using wxMaxima and display two or more 

equations by simple commands in a single plot. We 

can also solve complicated functions and 

mathematical series, using certain commands and by 

calling the functions in the command 
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Hansen, J. has carried out their work on Mathematica 

for solving the time-independent Schrödinger equation 

[7]. Tellinghuisen et al dealt with numerical 

arrangements of the one-dimensional time-

independent Schrödinger equation [8].  Ge, Y. et al 

performed their work by Utilizing a spreadsheet to 

solve the Schrödinger equations for the energies of the 

ground electronic state and the two lowest states of 

H2.[9] However, wxMaxima is a tool that was not used 

to solve Schrodinger's equation. This paper intends to 

use wxMaxima to simplify complex mathematical 

calculations and to clarify the aspects of mathematics 

clearly and simply 

 

II. METHOD 

 

Hydrogen is the simplest element and the most 

common element in the universe. It consists of only a 

positively charged proton with a negatively charged 

orbiting electron. The proton has a mass much larger 

than the electron and is assumed to be located at the 

origin of the centre of mass of the system. It is assumed 

that the proton is stationary while the electron is 

orbiting it [10]. A system of the hydrogen atom is best 

described using spherical coordinates [11]. The 

electron is moving in a Coulomb potential V (r).  if   

𝜓(𝑟, 𝜃, ∅)   is the probability density function of the 

electron, then the Schrodinger time-independent 

equation in spherical polar coordinates is given by 
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Considering the electron potential the above equation 

becomes, 
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The equation related to the above is a partial 

differential equation with variable (r, θ, 𝜙)  and the 

solution of this equation can be attempted by 

separating the variables and obtaining three specific 

differential equations [12]. Each of them will have a 

single variable. 

 

𝜓(𝑟, 𝜃, 𝜙) = 𝑅(𝑟)Θ(𝜃) Φ(𝜙)  

further simplification gives 
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This equation is composed of each term with separate 

variables. Therefore, each equation can be solved 

separately 

 

EQUATION OF RADIAL FUNCTION R(r) 

Now equation (1) can be described for radial function 

as 
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The above equation is 2nd order differential equation 

and its solution is 
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In the case of a hydrogen atom, atomic number Z = 1 

then 
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Where, 𝐿𝑛−𝑙−1
2𝑙+1 (

2𝑟

𝑛𝑎0
) is Laguerre polynomial [13] of 

n+l degree and (2l+1)th derivative of (
2𝑟

𝑛𝑎0
) 

Laguerre function value can be directly obtained using 

wxMaxima [14] by using a simple command diff 

(Laguerre(1,x),x,1); i.e.  𝐿1
1 (𝑥) = −1 

 

We will consider other Laguerre functions in the same 

way  

 

For solving ordinary differential equation, we can use 

following commands 

(%i1) ode2('diff(Ψ,x,2)+2*m*Ψ*(E-

V)/(ħ^2)=0,Ψ,x); 

"Is "(V-E)*m" positive, negative or zero?"positive; 
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(%o1) Ψ=%k1*%e^((%i*sqrt(2*E*m-

2*V*m)*x)/ħ)+%k2*%e^(-(%i*sqrt(2*E*m-

2*V*m)*x)/ħ 

While for finding Laguerre polynomial [15], the 

commands used are  

--> laguerre(1,x); 

(%o1) 1-x 

 --> laguerre(2,x); 

(%o2) x^2/2-2*x+1 

Result and discussion:  

Graphs of radial wave function and radial probability 

density  

For the ground state of the hydrogen atom, the 

quantum number of their possible values is 

appropriate. 

For s-orbit n = 0,1, 2, 3 and l = 0. 

For 1s orbit n = 1, l = 0 and a0 = 0.529A0= 0.529 ×10-

10 m,  𝐿1−0
2(𝑜)+1 (

2𝑟

𝑛𝑎0
) = 𝐿1

0 (
2𝑟

𝑛𝑎0
) = −1 

𝑅1,0(𝑟) =  2𝑎0
− 

3

2𝑒
− 

𝑟

𝑎0                     …… (3) 

 

 

Fig (1):  a plot of 𝑅̅1,0 =  𝑎0
−3/2

𝑅1,0  verses  (
𝑟

𝑎0
) 

 

Equation (3) plotted in above graph using wxMaxima 

[14,15,16] with commands shown 

 (%i1) load(implicit_plot)$ 

(%i2) R10(r) :=2*exp(-r) $ 

(%i3) wxplot2d ([R10],[r,0,20],[y,0,2]) $ 

 

Fig (1) shows the plot of the function R1,0(r) against r. 

It shows that the function goes maximum at r =0 and 

decays exponentially with r and there is no radial node   

For 2s orbit n = 2, l = 0 and a0 = 0.529A0= 0.529 ×10-

10 m,  
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Fig (2) is a plot of 𝑅̅2,0 = 𝑎0
3/2

𝑅2,0  verses  (
𝑟

𝑎0
) 

 

Equation (4) plotted in above graph using wxMaxima 

with commands shown 

 

(%i4) R20(r) := (1/(sqrt(2)))*(1-r/2)*exp(-r/2) $ 

(%i5) wxplot2d ([R20],[r,0,40],[y,-0.1,1]) $ 

 

 

However, the radial wave function R2,0(r) in fig (2) 

also decays exponentially, and further, it goes negative 

at 
𝑟

𝑎0
≅ 2, this point is called a radial node, it is a clear 

indication of the 2s orbit of the H atom 

For 3s orbit n = 3, l = 0 and a0 = 0.529A0= 0.529 ×10-

10 m,  
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Equation (5) plotted in above graph using wxMaxima 

with commands shown 

 (%i6) R30(r) :=(2/(sqrt(27)))*(1-

(2*r/3)+(2*r^2/27))*exp(-r/3) $ 
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(%i7) wxplot2d ([R30],[r,0,25],[y,-0.1,0.4])$ 

 

 

Fig (3) is a plot of 𝑅̅3,0 = 𝑎0

3

2𝑅3,0  verses  (
𝑟

𝑎0
) 

 

Fig (3) shows that R3,0(r) for 3s orbit decreases 

exponentially with r and shows two radial nodes at 
𝑟

𝑎0
≅ 2 𝑎𝑛𝑑 

𝑟

𝑎0
≅ 7 [17] 

 

Radial probability density: – 

 

The function 𝑅𝑛,𝑙
2 (𝑟)𝑟2 gives radial probability 

densities [17,18] for the hydrogen atom. The radial 

probability densities are plotted against r in the 

following figures 

 

 
Fig (4): plot of the radial probability density function 

𝑅1,0
2 (𝑟)4𝜋𝑟2𝑎0 verses  (

𝑟

𝑎0
) 

 

wxMaxima Commands -  

 (%i8) Ρ10(r) :=(16)*(π)*(r^2)*exp(-2*r) $ 

 

(%i9)wxplot2d(Ρ10],[r,0,20],[y,0,7]) $ 

The probability density of radial wave function 

4πr2R2(r) for 1s orbit fig (4), shows a peak, which goes 

maximum at (
𝑟

𝑎0
) = 1, therefore r =a0 . It is   Bohr’s 

1st orbit with radius a0 = 0.529 ×10-10 m 

 

 
Fig(5) is a plot of a radial probability density function 

𝑅2,0
2 (𝑟)4𝜋𝑟2𝑎0 verses  (

𝑟

𝑎0
) 

 

wxMaxima Commands  

 (%i10) P20(r) :=(2)*(%pi)*(r^2)*(1-r/2)^2*(exp(-r)) 

$ 

(%i11) wxplot2d([P20],[r,0,20],[y,0,3]) $  

 

Fig (5) the plot shows, for 2s orbit shows two peaks, 

maxima at  (
𝑟

𝑎0
) ≅ 5, therefore  𝑟 ≅ 5𝑎0, it is Bohr’s 

2nd orbit of radius 𝑟 = 4𝑎0 

 

 
Fig (6) is the plot of a radial probability density 

function 𝑅3,0
2 (𝑟)4𝜋𝑟2𝑎0 verses  (

𝑟

𝑎0
) 

 

wxMaxima Commands - 

(%i12) P30(r) :=(16/27)*%pi*(r^2)*exp(-2*r/3)*(1-

(2*r/3)+(2*r^2/27))^2 $ 
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(%i13) wxplot2d([P30],[r,0,30],[y,0,3]) $ 

It shows for 3s orbit shows two peaks, maxima at  

(r/a_0 )≅13, therefore  r≅13a_0, is its Bohr’s 3rd orbit 

of radius r=9a_0[18] 

 

CONCLUSION 

 

The radial wave function of a hydrogen atom depends 

on the principal quantum number and orbital quantum 

number. Graphs (1), (2), and (3) interpret each radial 

wave function of the H-atom obtained which can be 

used to determine the energy spectrum of the hydrogen 

atom, and radial probability graphs (4), (5), and (6) to 

find the electron at a distance ‘r’ from the centre of an 

atom. 
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