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Abstract: The natural variation of the data signatures of 

airborne aerosols from calibrated cigarette particles 

were quantified using enhanced Bonferroni methods. 

The significance of the problem of improving analytical 

methods for understanding the natural variation of 

airborne particles cannot be understated given the 

positive impact for mitigating harmful airborne 

particles. The data presented in this paper were obtained 

using experiments to examine the effect of a carbon-

brush-based bipolar ionization on filtration efficiency of 

a MERV 10 filter in a recirculating HVAC system. 

Ionization technology is deployed throughout the world 

as a multilayered approach with filtration for improving 

indoor air quality. Despite its wide use, ionization is still 

considered an emerging technology due to a dearth of 

peer-reviewed literature. Poorly designed test protocols 

and a lack of robust statistical methods for analyzing 

experimental data are the primary reasons. Presented 

herein is a statistical groundwork for analyzing 

ionization-efficacy data from highly controlled and 

properly designed particulate-matter test trials. Results 

are presented for three experimental groups where 

bipolar ionization was used to study the behaviors of data 

signatures from cigarette-smoke aerosol particles 

ranging in size from 49.6 to 201.7 nm. Statistical control 

bands of the data from these experimental groups 

revealed that bipolar ionization had significant changes 

to the pdfs and reductions in the natural variation of the 

data signatures for the particle count (number of 

particles) across all particle sizes. Statistical control 

bands may provide enhanced quantitative knowledge of 

variation and provide expanded inference that goes 

beyond examination of percentiles only. The implications 

from this research are profound, as it lays the 

groundwork for the development of highly effective 

ionization-filtration layered strategies to mitigate the 

hazards of airborne particulates and is the first step 

towards creating robust efficacy test standards for the 

industry. 
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1.INTRODUCTION 

 

Air ions were generated by a needlepoint bipolar-

ionization (NPBI®) device. NPBI is a high-density ion 

(ions/cc) technology that produces ion profiles with 

low energy or soft ionization [1] characteristics. 

Quantifying natural-variation (‘common-cause’) and 

special-cause variation by the using control limits for 

univariate problems has a long and rich history in 

analytical studies of univariate problems [2–4]. In 

many applications, though the phenomena of interest 

are data signatures or data footprints (e.g., facial 

recognition, temperature profile, NIR spectral 

signature, etc.). Wong et al. [5] appropriately define a 

“data signature as a mathematical data vector designed 

to characterize a portion of the data set, such as an 

individual time-frame of a scientific simulation or an 

article within a corpus”. As Cohen and Atoui [6] note, 

“three main ideas have emerged in the study of SPC 

applications for data signatures: (1) data-driven 

approach, which is also referred to as statistical 

process monitoring (SPM), that is concerned with the 

collected data from processes to develop a statistical 

monitoring model [7–9]; (2) knowledge-based 

approach that is based on experts [8]; and (3) model-

based approach that requires a priori physical and 

mathematical knowledge of the process [8,9]”. As 

supported by Cohen and Atoui [6], i.e., “the best way 

to implement a monitoring system is to use all three 

approaches because any description (data, expert and 

physical knowledge) of the process provides useful 

information and reinforces system understanding”. 

We think that our study encompasses aspects of all 
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three main approaches, e.g., our approach uses an 

acceptable Bonferroni-based approach with data 

collected from a process that is knowledge from 

experts in aerosol particles and statistical methods, 

and it is model-based from a priori physical 

knowledge of the process. Our study attempts to 

bridge the huge gap between data-science-laboratory 

experiments (95.1%) and industrial applications 

(4.9%) (see Liao et al. [10]). This paper provides a 

cost-effective data-driven approach for engineers and 

scientists that can be implemented for SPC monitoring 

of data signatures. A large body of knowledge exists 

on using wavelet transformations to reduce noise via 

threshold techniques, e.g., [11,12]. Some literature 

exists on using statistics of wavelet coefficients as 

input data for machine-learning applications, e.g., 

[13]. Our approach is aligned with the statistical 

analysis of data in the form of continuous functions 

(smooth curves) or functional data analysis (FDA), see 

Ceriolo et al. [14]. In FDA, each data signature is seen 

as a single entity, rather than a collection of individual 

observations [14–16]. As Morris et al. [17] noted, 

“methods that model functional profiles in their 

entirety have the potential to extract more information 

from the data compared with methods based on 

summary measures” [13,16–22]. Our results are 

closely aligned with Shewhart false alarm rates (α = 

0.003) and similar false alarm rates of the previously 

mentioned literature. 

In this study, Bonferroni statistical intervals are 

enhanced as prediction control bands for applications 

to quantify the natural variation of data signatures of 

airborne cigarettesmoke aerosols. This is an important 

step in advancing the use of applied statistical methods 

for studying the behavior of aerosols to improve 

indoor air quality and determining the effectiveness of 

treatments for disrupting and changing aerosol 

formation. As Duan et al. [23] note in their study of 

negative-ion air purifiers (NIAPs), people spend more 

than 80% of their time indoors, and it is therefore 

essential to find energy-efficient air-purification 

intervention that reduces small-airway exposure 

[24,25]. In the context of improving indoor air quality, 

statistical control bands in the context of prediction 

intervals were developed to advance the study of the 

treatments from needlepoint bipolar ionization on 

improving indoor air quality. 

The significance of the problem of health toxins from 

airborne aerosols cannot be understated. In 2010, Lim 

et al. [26] estimated that globally, 3.2 million deaths 

per year are attributable to ambient particle pollution, 

while in 2004 the World Health Organization 

estimation was approximately four million [27]. 

Among particulates, PM2.5 and PM0.1 have been 

identified to cause respiratory disease [28], and the 

most effective methods to date for reducing indoor 

particulate matters involve air filters. For example, in 

some parts of the world, indoor air purifiers with 

filters (e.g., HEPA filters) are used, and in some 

countries ventilation and air-conditioning (HVAC) 

systems with air-cleaning systems are the main 

method for controlling indoor aerosols. HVAC 

systems can be equipped with air filters and in some 

cases with electrostatic precipitators for air cleaning. 

Commonly available air filters for HVAC systems 

have a wide range of efficiencies for submicron 

particles. The most efficient, HEPA filter, often causes 

a higher pressure drop that increases over time due to 

additional loading [29]. In 2017, Ng et al. [30] used an 

acoustic wave to increase particles collisions, and 

therefore enhanced particle agglomeration, as a 

preconditioning mechanism to improve filter-

capturing efficiency with no increase in back pressure. 

The concept of preconditioning particles using a 

method to increase coagulation has been discussed by 

many others as a benefit of air ionization [31–35]. In 

those studies, researchers used either a negative ion 

generator or a bipolar ion generator to assist further in 

coagulating particles. 

In this paper we report results of a series of tests using 

a bipolar ionizer that is based on carbon brushes, 

similar to systems used by Park et al. [34,35]. The 

unique problem addressed by this study is to 

statistically quantify the natural variation of the data 

signatures of calibrated cigarette-smoke aerosols 

(ultrafine particles). By quantifying the natural 

variation of aerosol data signatures using analytical-

based control bands, expanded inference from 

experiments are possible, i.e., expanding conclusions 

beyond percentiles or common univariate summary 

statistics. Control-band methods may also establish a 

foundation for the use of statistical methods for real-

time warning systems of aerosol contaminants and AI-

based control for automated treatment technologies. 
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The challenge statistically is to determine if significant 

differences exist in the data signatures of cigarette-

smoke aerosols between control groups and groups 

exposed to needlepoint bipolar ionization. Given that 

problem definition, there were three study objectives: 

(1) Define the data signatures of the aerosol particle 

sizes; (2) Develop an analytical ‘real-time’ method for 

prediction (i.e., control bands) for quantifying the 

natural variation in aerosol-particle-size data 

signatures; and (3) Assess the statistical difference in 

the data signatures for control and ionization-

treatment groups. We compare results from the control 

bands with common summary statistics such as 

percentiles to highlight the expanded inference. 

 

2. MATERIALS AND METHODS 

 

A key challenge in the study of data signatures is 

developing useful analytical methods to quantify their 

natural variation. If the natural variation of the entire 

data signature can be quantified, it is then possible to 

distinguish between natural variation and special-

cause variation (‘events’). The upper control bands 

define 99.7% of the natural variation in the aerosol 

data signatures and follow the philosophy of 

Shewhart’s analytical univariate predictive method of 

statistical process control (SPC) with a false-positive 

rate of α = 0.003. The comparison of control bands 

between the control and treatment experiments allows 

for determining significant differences across the 

multitude of data signatures. This may have broader 

implications for the ‘real-time’ assessment of changes 

in aerosol structures and how to disrupt airborne 

toxins with treatment. The study expands upon the 

concept that was previously published by Young et al. 

[36] by creating a real-time analytical foundation for 

the unique assessment of the data signatures of aerosol 

toxins. 

2.1. Experimental Protocol and Data Description 

The data presented in this paper were obtained using 

carefully conducted experiments to examine the effect 

of bipolar ionization on filtration efficiency in a 

recirculating HVAC system. Current understanding is 

that when bipolar ionized particles are present in the 

air, the electrostatic force causes particles of opposite 

electric charges to attract each other and repel like 

particles. This repulsion–attraction dynamic is 

expected to coagulate ultrafine and fine particles to 

form larger particles. The coagulation process should 

improve the particle-removal efficiency of air filters, 

since typically these filters have very low removal 

efficiency for ultrafine and fine particles [37]. 

All experiments were performed in a 28 m3 chamber. 

The schematic illustrating the experimental setup is 

shown in Figure 1. A bipolar ionizer (GPS-FC-48-AC 

system) that uses carbon-fiber brushes as ion emitters 

was mounted in the air-supply duct and very close to 

the exit point. The ionizer was remotely turned ON 

and OFF as needed during testing trials. The ion 

counter (Air Ion Counter, AlphaLab, Inc., Salt Lake 

City, UT, USA) (Air Ion Counter—AlphaLab, Inc. 

(alphalabinc.com accessed on 12 June 2022)) was 

mounted on a tripod facing upward in the middle of 

the room 1.5 m from the floor. Ion density was 

measured in ions/cc air. 

  

Figure 1. Schematic representation of the 

experimental setup. The room has the volume of 28 

m3. There are two air-recirculating loops indicated as 

1 and 2. Loop 1 is used during the experiments, which 

includes a fan that ensures 6 air changes per hour, a 

MERV10 filter and the ionizer, which is very close to 

the supply register. Loop 2 includes a fan and a HEPA 

filter that is used to clean the room between the tests. 

All measurement devices are at the center of the room. 

The particles from cigarette smoke are introduced to 

the room. This was achieved by using a cigarette 

mounted on one port of a T-junction, compressed air 

coming from one port of a T-junction (inset) and from 

the remaining port smoke exiting into the room. 

The test particles were sprayed into the chamber via 

an injection port shown in Figure 1. This was achieved 

by using compressed air that is connected to a T-
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junction; the cigarette was mounted on the second 

port, and the remaining port was connected to a tube 

that is fed into the room, as shown in the inset of 

Figure 1. The cigarettes used in the experiments were 

all calibrated, research grade cigarettes obtained from 

the University of Kentucky [38]. Upon cigarette 

ignition, the compressed air valve opens, creating a 

vacuum at the T-junction. The vacuum is generated 

from the forward velocity of the compressed air as it 

flows past the T-junction. The drag on the burning 

cigarette injects smoke into the room. The injection 

process ensures a consistent particle mass and size 

distribution, where a ceiling fan evenly distributed the 

smoke particles and/or ions in the room. 

A TSI DustTrak II aerosol monitor was placed on the 

floor in the middle of the room. The device measures 

aerosol concentrations corresponding to PM1.0, PM2.5, 

PM10, and mass concentrations ranging from 0.001 to 

400 mg/m3. The DustTrak II has a resolution of ±0.1% 

for particles in the size range of 0.1 to 10 µm. A 

scanning mobility particle sizer (SMPS) was used to 

capture detailed particle-size distribution of ultrafine 

particles during the experiments (Model 3910 

NanoScan, TSI) (NanoScan SMPS Nanoparticle Sizer 

3910|TSI). The sample setup consisted of a cyclone 

sampler linked by conductive tubing to the SMPS. 

Aerosolized particles in the room were captured at the 

cyclone and delivered to the spectrometer. The SMPS 

measured dN/dlogDp with units of particles per cubic 

centimeter (#/cc) recorded as a function of time, 

whereas the particle mobility diameter was measured 

in nanometers. The air filters used in the trials were 60 

cm × 60 cm × 4.5 cm, MERV10 made by Aeolus 

Corporation. The speed of the HVAC recirculation fan 

was adjusted to achieve 6 air exchanges in the room 

per hour (6 ACH). 

The experimental trials herein consisted of one control 

run (‘ions off’) and one treatment run (‘ions on’). The 

run order did not change over the course of 

experiments. The control run was always conducted 

before the treatment run. To reduce experimental 

error, the room was cleaned between runs and between 

experimental trials. Cleaning consisted of wiping all 

room surfaces and scrubbing the air with an inline, 

HEPA-recirculating loop. A new MERV10 filter was 

installed at the return-air intake for each experimental 

trial. The calibrated cigarette method was used to load 

the room with ultrafine and fine airborne particles as 

described earlier. Data, including particle counts for 

various size ranges and mass densities, were collected 

over the course of 16 h for each trial. Triplicate 

experimental trials were conducted for this study. 

2.2. Bonferroni Methods as Control Bands 

One approach to developing prediction intervals for 

data signatures is based on enhancing the 

fundamentals originally presented by the Bonferroni 

inequality for univariate data [39], i.e., when 

performing a hypothesis test with multiple 

comparisons, eventually a result could occur that 

appears to demonstrate statistical significance in the 

dependent variable, even when there is none. In such 

a case, the Bonferroni test attempts to prevent data 

from incorrectly appearing to be statistically 

significant by making an adjustment during 

comparison testing. In addition, it is a statistical test 

used to reduce the instance of a false positive. 

A general form of the Bonferroni inequality as noted 

by Milton and Arnold [40] is let A1, A2, . . . , Ac be 

events then, 

P  

         (1) 

As applied to the study of statistical intervals, the 

Bonferroni bound from elementary probability theory 

provides a simple, conservative lower bound on the 

actual α-level for a joint interval-statement [24]. If the 

simultaneous intervals are statistically independent, 

the joint α-level is 

K (2) 

As Hahn and Meeker [41] note, Equation (2) 

“provides a useful way of combining interval 

statements to give a conservative bound for the actual 

joint α-level”. Fisher [42] called this a ‘confidence 

ribbon’ since the pointwise statistical intervals are 

extended until they have the desired simultaneous 

coverage probability of 1 −α. Hahn and Meeker [41] 

provided a two-sided 100(1 −α)% simultaneous 

prediction interval to contain the values of all of m 

future randomly selected observations from a 

previously sampled population (or process) that can be 

described by a normal distribution, 

[yIB, yUB] = x ± r(1−α; µ, v)s (3) 

where [yIB, yUB] is a two-sided statistical interval, x is 

the process average, s is the process standard deviation 

and r(1−α; µ, v) is the factor for calculating a normal 
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distribution twosided 100(1 −α)% prediction interval 

for m future observations using the results of a 

previous sample of n observations. A conservative 

approximation for r(1−α; µ, v) is, 

r(1−α; m, n)  (4) 

where t((1−α)/(2m); n−1) ≈ z(1−α)/(2n) [41]. Thus, normal 

distribution percentiles provide a generally adequate 

approximation for t distribution percentiles when n is 

large and 1 −α/2 is not too large (e.g., t(0.975, 60) = 

2.000 and z(0.975) = 1.960). 

In the spirit of the Bonferroni method, Hardle [39] 

proposed constructing pointwise prediction intervals 

on k observations at each value of x. The form of the 

simultaneous prediction intervals for any data 

signature as proposed by Hardle [39] using the 

Bonferroni method is 

 (5) 

For i = 1, . . . , n, yi is the average curve of k observed 

curves, z(1−α)/(2n) is the 1 −α percentile for the standard 

normal pdf, si is standard deviation across the k curves, 

Equation (5) is the approach followed in this study. In 

this study, only the upper bound of the control bands 

is estimated given the shape of the data signatures 

from the aerosols of cigarettesmoke particles. 

2.3. Control-Band Application Example 

The methods statistically described herein have direct 

applications for standardizing test methods for air-

cleaning technologies, particularly in the HVAC and 

indoor air-quality industry. With the advent of the 

airborne SARS-CoV-2 and the COVID-19 pandemic, 

a multitude of nonfiltration-based air-cleaning 

technologies, some well-established and others new to 

the marketplace, have been deployed in schools, 

homes and many businesses. However, current 

industry test standards are directed at testing filtration 

media-containing devices only. Many of the test 

methods and associated statistics for filtration efficacy 

fall short for nonfiltration devices. In some cases, 

significant modification of current filtration standards 

is required; for others, new standards require 

development from the ground up. Several standards 

organizations are moving forward to address the issue, 

and sound statistical methods must be developed to 

address the efficacy requirements of new standards. 

Technologies include light, ionization, catalytic and 

biological-based air-cleaning devices. Nonfiltration 

technologies offer the potential for enhanced 

protection against infectious airborne agents and a 

significant reduction in pollution indoors. Such 

technologies when integrated with filtration and sound 

building management offer enhanced contaminate 

removal for a healthier indoor environment. 

3. RESULTS AND DISCUSSION 

Three scenarios are presented to illustrate the 

repetitiveness of the statistical method and usefulness 

of statistical control bands for data signatures for 

researchers and practitioners. All three scenarios 

illustrate control bands that indicate reductions in the 

natural variation of the particle count (number of 

particles) for all particle sizes of aerosols, even though 

each reduction was different. 

The 10th, 25th, 50th, 75th and 90th percentiles were 

calculated for each experiment. In some instances, the 

percentiles support the conclusions of reduction in 

aerosol particles drawn from an examination of the 

control bands. However, there is information loss in 

examining percentiles only, i.e., there is no knowledge 

of the data signature and natural variation of data-

signature patterns. 

3.1. Control Bands for Illustrating Reduction in 

Aerosol Particles 

The percentiles for all three experiments support the 

conclusions drawn from the examination of the control 

bands but provide less visual and statistical 

knowledge. As previously indicated, the use of control 

bands provides an ‘analytical’ technique for 

researchers for assessment of the stability and 

effectiveness of experimental treatment in real-time 

settings, i.e., statistical process control (SPC). The 

control bands of the natural variation of cigarette 

aerosol particles from 49.6 to 201.7 nm were all 

reduced for all three experiments (Figures 2–4). This 

reduction in upper control bands for the experiments 

is highlighted in Figure 5. 
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Figure 2. Control bands and data signatures for 

Control Group 1 (top graph) and Treatment Group 1 

(bottom graph). 

  

  

Figure 3. Control bands and data signatures for 

Control Group 2 (top graph) and Treatment Group 2 

(bottom graph). 

 

Figure 4. Control bands and data signatures for 

Control Group 3 (top graph) and Treatment Group 2 

(bottom graph). 
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Data signatures may take many forms that are 

nonuniform in nature; using data signatures from the 

aerosols from cigarette-smoke particles are an 

important first step in quantifying natural variation of 

nonunivariate data in the context of the Shewhart 

philosophy and statistical process control (SPC). As 

indicated in Table 1, the aerosols from cigarette smoke 

particles are non-Gaussian. However, treatment with 

bipolarization ionization technology reshapes the pdfs 

across particle sizes from generalized gamma, 

Fretchet and log-generalized gamma to a generalized 

gamma. This transformation of the pdfs makes 

development of control bands for one pdf more 

practicable. 

 
Figure 5. Comparison of control bands for all three 

treatment groups. 

Table 1. Pdf best fits based on AIC, BIC by particle 

size (nm) and treatment group. 

Group 
Particle Sizes 

(nm) Pdf Best Fit 
AIC 

Range 1 

BIC 

Range 2 

Control 1 49.6–85.1 Generalized 

Gamma 

4052.65–

5304.14 

4063.00–

5314.50 

Control 1 88.2–

101.8 

Frechet 5350.91–

5493.10 

4151.63–

5500.02 

Control 1 
105.5–

201.7 

Log-

Generalized 

Gamma 

5513.84–

5168.65 

4259.64–

5179.00 

Treatment 

1 

49.6–

201.7 

Generalized 

Gamma 

2766.23–

3205.33 

2776.58–

3215.68 

Control 2 49.6–94.7 Generalized 

Gamma 

3799.91–

5367.62 

3810.03–

5377.97 

Control 2 98.2–131 Frechet 5406.52–

5544.93 

5413.44–

5551.85 

Control 2 
135.8–

201.7 

Log-

Generalized 

Gamma 

5505.32–

5195.92 

5551.47–

5606.27 

Treatment 

2 

49.6–

201.7 

Generalized 

Gamma 

2619.74–

4250.55 

2630.09–

4260.91 

Control 3 49.6–

109.4 

Generalized 

Gamma 

3757.70–

5335.38 

3768.05–

5345.73 

Control 3 113.4–

168.5 

Frechet 5351.3–

5238.06 

5358.22–

5244.98 

Control 3 
174.7–

201.7 

Log-

Generalized 

Gamma 

5199.59–

4281.52 

5209.95–

2712.65 

Treatment 

3 

49.6–

201.7 

Generalized 

Gamma 

2886.96–

4275.21 

2897.31–

4291.87 

 

3.2. Validation 

The simulations were closely aligned with physical 

modeling given the collection of real-world data in the 

research, rather than mathematical simulation models, 

which rely on techniques such as Monte Carlo, 

computer gaming, etc. Given the context of the 

research as applied to SPC and rapid innovation for 

practitioners and scientists, this will help bridge the 

gap between laboratory experiments and industrial 

applications. Liao et al. [10] noted this in an extensive 

review of the literature related to data-science 

applications, where they suggest that a huge gap exists 

between data-science-laboratory experiments (95.1%) 

and industrial applications (4.9%). 

Simulations for the Gaussian and generalized gamma 

pdfs were conducted. Simulated data signatures based 

on these pdfs were developed for K = 100, K = 500, K 

= 1000. 

The Shewhart control chart in SPC is considered the 

fundamental charting method by practitioners. Given 

that the Shewhart univariate control charts have a 

fixed false-positive rate of α = 0.003 assuming the 

Gaussian pdf, the Bonferroni-modified method, if 

useful as applied to data signatures, is anticipated to 

have similar results. The simulated data signatures for 

the Bonferroni-modified method had a slightly higher 

false-positive rate for the Shewhart control chart for 

the 100th percentile of the simulated data signatures 

(Table 2). For the generalized gamma pdf, the 

simulated data signatures had a slightly higher false 

positive rate but was comparable to the simulated 

signatures under the assumptions of the Gaussian pdf. 

The false-positive rate performed well for the data 

signatures greater than the 99th percentile. It seems 

plausible that practitioners may have to tune the 

control bands using this method based on the type of 

data signature, i.e., control bands may more closely 
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mimic Shewhart control limits’ false-positive rates for 

different percentiles. 

Table 2. Count of ‘out-of-control’ data signatures for 

simulated data signatures for the control bands 

compared by percentiles for the Gaussian and 

generalized gamma pdfs. 

Simulated 

Data 

Signatures 

 Gaussian pdf  

90th 95th        99th          99.7th 100th 

100 0 0            0               0 2 

500 0 0            0               0 5 (0.5%) 

1000 0 0      10 (0.1%)    10 (0.1%) 47 

(0.5%) 

  Generalized Gamma pdf  

90th 95th 99th 99.7th 100th 

100 12 6 3 2 2 

500 23 

(4.6%) 

7 (1.4%) 3 

(0.6%) 

3 

(0.6%) 

3 (0.6%) 

1000 59 

(5.9%) 

19 (1.9%) 9 

(0.9%) 

7 

(0.7%) 

7 (0.7%) 

 

4. CONCLUSIONS 

 

Control bands were developed to quantify the natural 

variation of the data signatures of cigarette smoke for 

aerosol particles using Bonferroni-based methods. 

Study results for three experimental groups using 

needlepoint ionization clearly demonstrate disruption 

in the natural variation of the data signatures of 

airborne particles. The Bonferroni-based method for 

control bands showed a statistical increase in the 

particle-capture rate using needlepoint bipolar 

ionization in conjunction with conventional MERV 10 

filters versus the control for all three groups of 

particles in the range of 49.6–201.7 nm. 

We think statistical control bands as developed in this 

research in the context of Shewhart’s SPC philosophy 

use an accepted statistical technique that is easy to 

interpret and can be quickly adopted for application by 

practitioners and scientists. Control bands may 

provide enhanced knowledge and possible inference 

going beyond that derived from the examination of 

percentiles only. Control-band methods may establish 

an important basis for improved experimental 

inference for researchers. Analytical methods such as 

control bands for data signatures may be an important 

first step for AI-based control for new technologies. 

The analysis using control bands can serve as a 

standard for analyzing the impact of particle-control 

methods such as ionization and filtration for indoor 

air. This is not only important for common fine and 

ultrafine aerosols associated with many healthrelated 

issues, and in light of current pandemic, this is 

particularly important for airborne pathogens such as 

Influenza A and Coronavirus, which are in the range 

of 98–110 nm [37]. 

A possible limitation of this research is that the data 

signatures of airborne particles from cigarette-smoke 

particles are somewhat uniform in the range of 49.6–

201.7 nm and therefore parametric methods such as 

the Bonferroni-derived control bands may not be as 

suitable for data signatures that have nonuniform 

patterns or are not continuous signatures. In the future, 

we will expand this study to real-world indoor spaces 

to test the robustness of the techniques described in 

this paper. This will allow for the examination of 

possibly more extreme pdfs other than the generalized 

gamma model for the data signatures of airborne 

particles highlighted this study. The next phase of this 

research will be to examine control bands using 

nonparametric splines with applications to airborne 

pathogens. However, control bands based on 

nonparametric splines may not be as easy to 

implement for practitioners and scientists without 

some nonparametric statistical training. 
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