
© July 2022| IJIRT | Volume 9 Issue 2 | ISSN: 2349-6002

IJIRT 156065 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 803

System Level Modeling using SystemC

Ganavi V S1, Dr.Rekha K R2
1Scholar, M. Tech VLSI Design, and Embedded System, SJBIT, India

2Professor, Department of Electronics & Communication Engineering, SJBIT, India

Abstract - System level design and IP interchange are

planned to be made possible via SystemC, a new

modelling language based on C++. This paper first

explains system level modelling features before quickly

reviewing the hardware modelling features included in

SystemC. In the SoC design flow, transaction level

modelling (TLM) is suggested as a prospective

improvement over register transfer level (RTL). In order

to address SoC design processes such as early software

development, architecture analysis, and functional

verification, this article formalises TLM abstractions.

The genuine hardware/software co-design is the most

satisfying aspect of TLM. SystemC allows for modelling

of systems above the RTL level of abstraction, including

those that may be implemented in hardware, software,

or a combination of the two. The new features make

system level design activities easier, by connecting design

specifications to hardware and software

implementations, as shown by a simple design example.

Index Terms - SystemC, Transaction Level Modelling,

Register Implementation, Application of Registers.

I.INTRODUCTION

Several models have been put out to enhance the level

of abstractions and enable hardware-software co-

design. In settings like SpecC, specifying at higher

levels of abstraction is conceivable. If the hardware

modelling descriptions is modeled on the C/C++

languages, which seem to be well-liked in the software

community, then a unified and integrated method to

hardware-software co-design is feasible.

The above-mentioned problems are addressed by the

standard modelling platform SystemC, which is based

on C++ and provides designing abstractions at the

RTL, behavioural, and system levels. This is because

when design complexity rises, very quick executable

specifications are needed to evaluate system concepts,

and only C/C++ is capable of providing the necessary

degrees of abstraction, hardware/software integration,

and performance. SystemC is an attempt to standardise

a C/C++ design approach and consists of a class

library and a simulation kernel.

Fig 1: Process Management flow chart of SystemC

The module, which is a container containing one or

more processes to represent the parallel behaviour of

the design, is the fundamental unit of construction in

SystemC. A module may also contain additional

modules, illustrating the design's hierarchical

structure. The code in each process runs sequentially,

and System C has three different types of concurrent

processes: SC_METHOD, SC_THREAD, and

SC_CTHREAD. The processes are operated on by the

simulation kernel. The test environment and the design

are both parts of a complete SystemC model. An

executable file which simulates the design as in given

test environment is produced after compilation.

Modules use channels for communication whereas

processes inside of them use signals. Modules have

ports which are bound to interface methods, and the

channels are abstract and available through their

interface methods.

II. METHODOLOGY

1) TLM BUS MODELING

© July 2022| IJIRT | Volume 9 Issue 2 | ISSN: 2349-6002

IJIRT 156065 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 804

Fig 2: Block Diagram of Bus modeling using two

Registers

A) REGISTER (R1)

Registers are memory storage units that are utilised to

convey data for the Central Processing Unit (CPU)

immediate data processing process. Any type of data,

including dates, instruction sets, storage locations,

bits, sequences, and characters, can be stored in the

register. In register R1, clock, program counter and

instructions with read or write signal is given.

B) MEMORY

Binary data is stored in memory units as words, which

are collections of bits. Data output lines convey the

information out of the memory after it has been stored

there by data input lines. The direction lines The

direction of data transfer is specified by read and write

operations.

C) REGISTER (R2)

It has clock, read or write data and a target. The target

consists of write data and address.

2) IMPLEMENTATION OF REGISTER

APPLICATIONS

a) 4-bit UP COUNTER

Fig 3: 4-bit Up Counter Implementation

Diagram depicts a 4 bit asynchronous UP counter. It

can count between zero and fifteen. As a result, the flip

flops will switch on and off at each positive or active

edge of clock signal. The first flip flop is connected to

the clock input. The 4-bit counter starts at 4'b0000 and

increases to 4'b1111 before rolling over to 4'b0000. As

long as a running clock is provided and reset is held

high, it will continue to count.

b) 1:2 DECODER

Fig 4: 1:2 Decoder

A digital decoder converts a number of digital input

into an equal decimal code at its output since the word

"decoder" means to convert or decode coded

information from a format into another. A

combinational circuit known as a decoder transforms

binary data from n input signals to a maximum of 2n

distinct output lines.

c) Arithmetic Logical Unit (ALU)

Fig 5: ALU Diagram

An ALU's inputs are the data to be processed, or

operands, and a code designating the operations to be

carried out. The ALU's output would be the outcome

of the processed data. In many architectures, the ALU

also features status inputs, outputs, or both, that

communicate data about an operation's history or

current status to external status registers.

III.RESULTS AND DISCUSSIONS

The Results obtained using EDA playground is

depicted in below Figure 6:

Fig 6: The data transaction output between two

registers

The results of applications of registers is shown in

Figure 7, 8 and 9:

© July 2022| IJIRT | Volume 9 Issue 2 | ISSN: 2349-6002

IJIRT 156065 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 805

Fig 7: The 4-bit counter Output

Fig 8: The 1:2 Decoder Output

Fig 9: The ALU Output

IV.ADVANTAGES

1. Cycle-Accurate model for Software Algorithm.

2. Interface of SoC (System-on-Chip).

3. Modeling at higher level of abstraction increases

performance.

4. Executable Specification

V.APPLICATION

1. The complexity level of SoC sub-modules can be

reduced.

2. Modeling contributes to a successful software and

hardware organization.

VI.CONCLUSION

The SystemC modeling plays a very imporatant role in

SoC design cycle. It incorporates both software and

hardware models. So, it reduces complexity of using

SoC submodules. Here, we had implemented how the

transaction takes place between two registers using

common bus. By using this register transfer process,

we had applied to the 4-bit up_counter, 1:2 decoder,

arithmetic logical unit (ALU) and the waveform is

obtained, and the result is analyzed.

VII. FUTURE SCOPE

The approach applies to a wide range of SoC design

applications. It can still be implemented for ADC or

DAC operations for reduction of SoC design and its

sub-modules.

REFERENCE

[1] Automated Design Understanding of SystemC-

based Virtual Prototypes: Data Extraction,

Analysis and Visualization, Mehran Goli and Rolf

Drechsler Cyber-Physical Systems, DFKI GmbH,

28359 Bremen, Germany Institute of Computer

Science, University of Bremen, 28359 Bremen,

Germany 2020.

[2] Scalable Simulation-based Verification of

SystemC-based Virtual Prototypes, Mehran Goli

and Rolf Drechsler Cyber-Physical Systems,

DFKI GmbH, 28359 Bremen, Germany Institute

of Computer Science, University of Bremen,

28359 Bremen, Germany 2019.

[3] SystemC - A modeling platform supporting

multiple design abstractions, Preeti Ranjan Panda

Synopsys Inc. 700 E. Middlefield Rd. Mountain

View, CA 94043, USA 2001.

[4] A Tractable and Fast Method for Monitoring

SystemC TLM Specifications Laurence Pierre,

Member, IEEE, and Luca Ferro, 2008.

[5] On the Mutation Analysis of SystemC TLM-2.0

Standard Nicola Bombieri, Franco Fummi and

Graziano Pravadelli Department of Computer

Science University of Verona Verona, Italy, 2009.

[6] Fast and Accurate Protocol Specific Bus

Modeling using TLM 2.0, H.W.M. van Moll, H.

Corporaal Technical University, V. Reyes, M.

Boonen, NXP Semiconductors, Eindhoven, The

Netherlands, 2009.

