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Abstract:  We have reported some of exact bound state 

solutions of the Schrödinger equation generated from the 

already known three term and two term fractional power 

law potentials using the extended transformation 

formalism. The generated quantum systems are found 

anharmonic potentials. The normalized bound state 

energy eigenvalues of the generated potential systems are 

obtained.  
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I. INTRODUCTION 

Almost always Schrödinger equation doesn’t yield 

exact analytic solutions. It is well known that exact 

solution of Schrödinger equation is possible only for 

certain central potentials. In recent years, there has 

been considerable interest in the study of exactly 

solvable quantum mechanical potentials of physical 

interest as it provides maximum information of the 

quantum system [1-5]. One of the important tasks of 

quantum mechanics is to solve the Schrödinger 

equation with a physical. Various methods are used in 

the calculation of exact analytic solutions (EAS) of the 

Schrödinger equation for quantum mechanical 

potentials.  

In this paper we deal with the generation of exactly 

solvable potentials from certain central fractional 

powerlaw potentials. We have used Extended 

transformation method [6-9] to generate new exactly 

solvable potentials from already known exactly solved 

potential. The present work concerns with the arbitrary 

dimensional Schrödinger equation with the generated 

potentials from the three and two term fractional 

powerlaw potentials which may find applications in 

different branches of physics and chemistry. The 

extended transformation (ET) includes a coordinate 

transformation (CT) followed by a functional 

transformation (FT). In quantum multerm potential it 

is possible to generate finite number of different 

exactly solved quantum systems by selecting 

differently the working potential. 

II. FORMALISM AND APPLICATION 

 

(a) Generation of Exactly Solvable Potential from the 

Three  term Fractional power law Potential: 

The exactly solvable three term fractional powerlaw 

potential is given by [10]: 
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Where the parameters of the potential is related by the 

following constraint equation: 
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The exact analytic solution of the already known A-

QS is given by [3, 4]: 
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The energy eigenvalues for the potential system is 

given by [3, 4] 
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Under extended transformation (ET), which consist of 

coordinate transformation [6-9]: 

( )rgr B→
 

and followed by functional transformation: 

( ) ( ) ( )( ).1 rgrfr BAB = −
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This leads to [6-9]: 
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In this method we restrict ourselves to taking only one 

term working potential. 

 

The following ansatze [6-9] leads the Standard 

Schrödinger equation form by selecting the working 

potential as: 
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transformation function [6-9]: 
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Where the integration constant C is assumed to be 

equal to 0. 

Once the transformation function becomes known 

that leads to by ansatze [6-9] 
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And 

( ) ( ).1'2 rVErg BAB −=  

We obtain: 

( ) 621 rCrV BB =  

Where 
2
BC

 is the Characteristic Constant of B-QS.  

Another ansatze is [6-9]: 
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This leads to: 
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Therefore the potential of the newly constructed  

B-QS is found as: 

( ) .2
3

4
2

6
1 rrrrVB  ++=  

Now the parameters of the newly generated B-QS 

potential are defined as: 
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The constraint equation relating the parameters of the 

potential are: 

( )( ).222 3112  +++= BB Dl  

The energy eigenvalues of B-QS comes out to be: 
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The corresponding energy eigenfunctions of B-QS in 

desired -dimensional spaces becomes:         
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(b) Generation of Exactly Solvable Potential from the 

Two term Fractional power law Potential: 

To generate new exactly solved potential we have 

applied our formalism on an exactly solved two term 

fractional power central potential [10] given by: 
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Where the parameters of the potential are connected 

by the Constraint equation: 

( )  .018
4

3
2

3
1

1 =++







+  AA ll  

The energy eigenvalues of the QS is found as: 
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The corresponding energy eigenvalues of A-QS are: 
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Now selecting the following term as working potential 

of the fractional powerlaw potential given by equation 

(ii): 

The transformation function is found as: 
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The Potential of the B-QS system is obtained as: 
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Where 
2
BC  is the characteristic constant of B-QS. 
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The constraint equation relating the parameters of the 

potential are: 
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The energy eigenvalues of B-QS comes out to be: 

( ).2
2 1

2
BBB DlE +=




 

The corresponding energy eigenfunctions of B-QS in 

desired -dimensional spaces becomes:         
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III.CONCLUSION 

 

Using the Extended Transformation method we obtain 

two exactly solved anharmonic potential systems 

taking as the basis   the three term fractional powelaw 

potential and the two term fractional power law 

potential. In this method we restrict ourselves to taking 

only one term working potential. 
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