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Abstract—The problem of inducing general functions 

from specific training examples is central to learning. 

This paper considers concept learning: acquiring the 

definition of a general category given a sample of positive 

and negative training examples of the category. Concept 

learning can be formulated as a problem of searching 

through a predefined space of potential hypotheses for 

the hypothesis that best fits the training examples. In 

many cases this search can be efficiently organized by 

taking advantage of a naturally occurring structure over 

the hypothesis space-a generalto-specific ordering of 

hypotheses. This chapter presents several learning 

algorithms and considers situations under which they 

converge to the correct hypothesis. We also examine the 

nature of inductive learning and the justification by 

which any program may successfully generalize beyond 

the observed training data 

Index Terms— General-to specific, concept Learning, 

FIND-S, Boolean-valued Function 

I. INTRODUCTION 

Much of learning involves acquiring general concepts 

from specific training examples. People, for example, 

continually learn general concepts or categories such 

as "bird," "car," "situations in which I should study 

more in order to pass the exam," etc. Each such 

concept can be viewed as describing some subset of 

objects or events defined over a larger set (e.g., the 

subset of animals that constitute birds).  

Alternatively, each concept can be thought of as a 

boolean-valued function defined over this larger set 

(e.g., a function defined over all animals, whose value 

is true for birds and false for other animals). In this 

paper I consider the problem of automatically inferring 

the general definition of some concept, given 

examples labeled as members or non members of the 

concept. This task is commonly referred to as concept 

learning, or approximating a Boolean-valued function 

from examples. 

II. CONCEPT LEARNING TASK 

 

To ground our discussion of concept learning, 

consider the example task of learning the target 

concept "days on which my friend Amar enjoys his 

favorite water sport." Table 1.1 describes a set of 

example days, each represented by a set of attributes. 

The attribute EnjoySport indicates whether or not 

Amar enjoys his favorite water sport on this day. The 

task is to learn to predict the value of EnjoySport for 

an arbitrary day, based on the values of its other 

attributes. What hypothesis representation shall we 

provide to the learner in this case? Let us begin by 

considering a simple representation in which each 

hypothesis consists of a conjunction of constraints on 

the instance attributes. In particular, let each 

hypothesis be a vector of six constraints, specifying 

the values of the six attributes Sky, AirTemp, 

Humidity, Wind, Water, and Forecast. For each 

attribute, the hypothesis will either 

• indicate by a "?' that any value is acceptable for 

this attribute, 

•  specify a single required value (e.g., Warm) for 

the attribute, or  

•  indicate by a "0" that no value is acceptable. 

If some instance x satisfies all the constraints of 

hypothesis h, then h classifies x as a positive example 

(h(x) = 1). To illustrate, the hypothesis that Amar 

enjoys his favorite sport only on cold days with high 

humidity (independent of the values of the other 

attributes) is represented by the expression  

(?, Cold, High, ?, ?, ?) 
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Example Sky AirTemp Humidity Wind Water Forecast EnjoySport 

1 Sunny Warm Normal Strong Warm Same Yes 

2 Sunny Warm High Strong Warm Same Yes 

3 Rainy Cold High Strong Warm Change No 

4 Sunny Warm High Strong Cool Change Yes 

TABLE 2.1 

Positive and negative training examples for the target concept EnjoySport. 

 

The most general hypothesis that every day is a 

positive example is represented by (?, ?, ?, ?, ?, ?) and 

the most specific possible hypothesis that no day is a 

positive example-is represented by (0,0,0,0,0,0) 

 

Notation: Throughout this paper, we employ the 

following terminology when discussing concept 

learning problems. The set of items over which the 

concept is defined is called the set of instances, which 

we denote by X. In the current example, X is the set of 

all possible days, each represented by the attributes 

Sky, AirTemp, Humidity, Wind, Water, and Forecast. 

The concept or function to be learned is called the 

target concept, which we denote by c. In general, c can 

be any booleanvalued function defined over the 

instances X; that is, c : X-> {O, 1). In the current 

example, the target concept corresponds to the value 

of the attribute EnjoySport (i.e., c(x) = 1 if EnjoySport 

= Yes, and c(x) = 0 if EnjoySport = No). 

 

❖ Given:  

o Instances X: Possible days, each described by the 

attributes 

▪  Sky (with possible values Sunny, Cloudy, and 

Rainy), 

▪  AirTemp (with values Warm and Cold), 

▪  Humidity (with values Normal and High), 

▪  Wind (with values Strong and Weak), 

▪  Water (with values Warm and Cool), and 

▪  Forecast (with values Same and Change). 

o Hypotheses H: Each hypothesis is described by a 

conjunction of constraints on the attributes Sky, 

AirTemp, Humidity, Wind, Water, and Forecast. 

The constraints may be "?" (any value is 

acceptable), "0 (no value is acceptable), or a 

specific value.  

o  Target concept c: EnjoySport : X -> (0,l) 

o  Training examples D: Positive and negative 

examples of the target function (see Table 1.1). 

❖ Determine:  

o  A hypothesis h in H such that h(x) = c(x) for all 

x in X. 

 

TABLE 2.2  

The EnjoySport concept learning task 

When learning the target concept, the learner is 

presented a set of training examples, each consisting 

of an instance x from X, along with its target concept 

value c(x) (e.g., the training examples in Table 2.1). 

Instances for which c(x) = 1 are called positive 

examples, or members of the target concept. Instances 

for which C(X) = 0 are called negative examples, or 

non members of the target concept. We will often write 

the ordered pair (x, c(x)) to describe the training 

example consisting of the instance x and its target 

concept value c(x). We use the symbol D to denote the 

set of available training examples. Given a set of 

training examples of the target concept c, the problem 

faced by the learner is to hypothesize, or estimate, c. 

We use the symbol H to denote the set of all possible 

hypotheses that the learner may consider regarding the 

identity of the target concept. Usually H is determined 

by the human designer's choice of hypothesis 

representation. In general, each hypothesis h in H 

represents a boolean-valued function defined over X; 

that is, h : X -> {O, 1). The goal of the learner is to 

find a hypothesis h such that h(x) = c(x) for all x in X. 

 
III  CONCEPT LEARNING AS SEARCH 

 

Concept learning can be viewed as the task of 

searching through a large space of hypotheses 

implicitly defined by the hypothesis representation. 

The goal of this search is to find the hypothesis that 

best fits the training examples. It is important to note 

that by selecting a hypothesis representation, the 

designer of the learning algorithm implicitly defines 

the space of all hypotheses that the program can ever 

represent and therefore can ever learn. Consider, for 
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example, the instances X and hypotheses H in the 

EnjoySport learning task. Given that the attribute Sky 

has three possible values, and that AirTemp, 

Humidity, Wind, Water, and Forecast each have two 

possible values, the instance space X contains exactly 

3 .2 2 .2 2 .2 = 96 distinct instances. A similar 

calculation shows that there are 5.4-4 -4 -4.4 = 5 120 

syntactically distinct hypotheses within H. Notice, 

however, that every hypothesis containing one or more 

"IZI" symbols represents the empty set of instances; 

that is, it classifies every instance as negative. 

Therefore, the number of semantically distinct 

hypotheses is only 1 + (4.3.3.3.3.3) = 973. Our 

EnjoySport example is a very simple learning task, 

with a relatively small, finite hypothesis space. Most 

practical learning tasks involve much larger, 

sometimes infinite, hypothesis spaces. If we view 

learning as a search problem, then it is natural that our 

study of learning algorithms will exa~the different 

strategies for searching the hypothesis space. We will 

be particula ly interested in algorithms capable of 

efficiently searching very large or infinite hypothesis 

spaces, to find the hypotheses that best fit the training 

data. 

 

General-to-Specific Ordering of Hypotheses 

Many algorithms for concept learning organize the 

search through the hypothesis space by relying on a 

very useful structure that exists for any concept 

learning problem: a general-to-specific ordering of 

hypotheses. By taking advantage of this naturally 

occurring structure over the hypothesis space, we can 

design learning algorithms that exhaustively search 

even infinite hypothesis spaces without explicitly 

enumerating every hypothesis. To illustrate the 

general-to-specific ordering, consider the two 

hypotheses 

 hi = (Sunny, ?, ?, Strong, ?, ?) 

 h2 = (Sunny, ?, ?, ?, ?, ?) 

Now consider the sets of instances that are classified 

positive by hl and by h2. Because h2 imposes fewer 

constraints on the instance, it classifies more instances 

as positive. In fact, any instance classified positive by 

hl will also be classified positive by h2. Therefore, we 

say that h2 is more general than hl. This intuitive 

"more general than" relationship between hypotheses 

can be defined more precisely as follows. First, for any 

instance x in X and hypothesis h in H, we say that x 

satisfies h if and only if h(x) = 1.We now define the 

more_general_than_or_equal_to relation in terms of 

the sets of instances that satisfy the two hypotheses: 

Given hypotheses hj and hk, hj is more-general-than-

or-- equalto hk if and only if any instance that satisfies 

hk also satisfies hj. 

 

Definition: Let hj and hk be boolean-valued functions 

defined over X. Then hj is more-general-than-or-

equal-to hk (written hj >=g hk) if and only if  

 
We will also find it useful to consider cases where one 

hypothesis is strictly more general than the other. 

Therefore, we will say that hj is (strictly) more-

general-than hk (written hj >g hk) if and only if (hj p, 

hk) A (hk 2, hi). Finally, we will sometimes find the 

inverse useful and will say that hj is more-special-than 

hk when hk is more-general-than hj.  

 
FIGURE 2.1 

Instances, hypotheses, and the more-general-than 

relation. The box on the left represents the set X of all 

instances, the box on the right the set H of all 

hypotheses. Each hypothesis corresponds to some 

subset of X-the subset of instances that it classifies 

positive. The arrows connecting hypotheses represent 

the more-general-than relation, with the arrow 

pointing toward the less general hypothesis. Note the 

subset of instances characterized by h2 subsumes the 

subset characterized by h1, hence h2 is more-general-

than h1. 

To illustrate these definitions, consider the three 

hypotheses hl, h2, and h3 from our Enjoysport 

example, shown in Figure 2.1. How are these three 

hypotheses related by the p, relation? As noted earlier, 

hypothesis h2 is more general than hl because every 

instance that satisfies hl also satisfies h2. Similarly, h2 

is more general than h3. Note that neither hl nor h3 is 

more general than the other; although the instances 

satisfied by these two hypotheses intersect, neither set 

subsumes the other. Notice also that the p, and >, 
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relations are defined independent of the target concept. 

They depend only on which instances satisfy the two 

hypotheses and not on the classification of those 

instances according to the target concept. Formally, 

the p, relation defines a partial order over the 

hypothesis space H (the relation is reflexive, 

antisymmetric, and transitive). Informally, when we 

say the structure is a partial (as opposed to total) order, 

we mean there may be pairs of hypotheses such as hl 

and h3, such that hl 2, h3 and h3 2, hl. The pg relation 

is important because it provides a useful structure over 

the hypothesis space H for any concept learning 

problem 

IV SUMMARY 
 

Concept learning can be cast as a problem of searching 

through a large, predefined space of potential 

hypothesis. The general-to-specific partial ordering of 

hypothesis, which can be defined for any concept 

learning problems, a useful structure for organizing 

the search through the hypothesis space. Further the 

study can be done on the FIND-S algorithm. 
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