
© October 2022 | IJIRT | Volume 9 Issue 5 | ISSN: 2349-6002

IJIRT 156966 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 425

A Novel Technique for Temporal Frequent Itemset

Mining

Md. Ghouse Mohiuddin1, Dr. L.Srinivasa Reddy2

1Asst. Prof., Department of Computer Science, Palamuru University, Mahabubnagar
2Associate Professor, Dept. of Information Technology, CBIT, Hyderabad

Abstract: Pattern mining is a powerful tool for analyzing

big datasets and extracting interesting patterns from the

dataset. Temporal datasets include time as an additional

parameter as time-stamps that affects the data mining

results. Traditional data mining techniques of finding

frequent itemsets consider the static data sets and the

instigated rules are relevant across the whole dataset.

However, this is not the case in temporal data because, in

temporal data, there are certain itemsets that are

frequent over a specific period of time but would not be

extracted by traditional data mining methods since their

support is very low over the whole dataset. Our aim is to

extract such patterns with their time intervals. In this

paper, we propose a method that is able to extract

different types of patterns that may exist in the temporal

dataset and it is not needed by the user to specify the time

periods in advance. Here we consider the time stamps as

hierarchical data structures and our algorithm extracts

the periodic patterns along with the time intervals.

Key Words: Frequent Itemset, Local Temporal Frequent

Itemset, Set Superimposition, Time-Cube, Basic Time-

Cube.

I. INTRODUCTION

Data mining is the process of exploring and analyzing

data from different perspectives, using automatic or

semi-automatic techniques to extract knowledge or

useful information and discover correlations or

meaningful patterns and rules from large databases.

Using these patterns, it is possible for business

enterprises to identify new and unexpected trends, and

subtle relations in the data and use them to increase

revenue and cut costs. Data mining has been proven to

be advantageous in many areas. Data mining involves

many different techniques and algorithms to

accomplish different tasks. All these algorithms

attempt to fit a model to the data. The algorithms

examine the data and determine a model that is closest

to the characteristics of the data being examined.

One of the most important characteristics missed by

traditional data mining systems is their capability to

record and process variable time-related aspects of

real-world databases. In simple words, traditional data

mining techniques lack the ability to analyze

variations of data over time and treat them as ordinary

data. Examples of temporal data include stock market

data, banking data, production data, maintenance data,

web mining, and point-of-sale records. Temporal data

mining which mines or extracts knowledge and

patterns from temporal databases is an extension of

data mining with the capability to include time

attribute analysis. Due to the importance and

complexity of the time attribute, a lot of different kinds

of patterns are of interest. Analysis of transactional

data is one of the most important applications of data

mining. Finding the association or correlations among

items in transactions was first proposed by Agarwal et.

Al..[1]. For example, in a given transactional database

of a supermarket, we may have {milk, bread} bought

together with the support of 25%. It means 25% of all

transactions contain milk and bread together.

Databases that evolved from the transactions in a

supermarket, banks, and departmental stores are all

inherently related to time. These are called temporal

databases that contain time-stamping information.

One important extension to frequent pattern mining is

to include temporal features in the dataset. For

example, milk and bread may be purchased together in

80% of all transactions which occurred between the

time interval 7 am to 9 am, while their support in the

whole database is 25%. In fact, interesting patterns can

be extracted from a specific time interval, therefore the

time interval during which they are observed is

important.

From this, it can be concluded that different patterns

can be obtained from different time intervals.

Discovering such patterns may bring useful

© October 2022 | IJIRT | Volume 9 Issue 5 | ISSN: 2349-6002

IJIRT 156966 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 426

knowledge. The discovery of such frequent itemsets

and association rules has been discussed in the

literature. In this context, sequential association rules

[2], Cyclic Association rules [3], Mining Temporal

Association Rules [5&6], and calendar-based

association rules [15&21] are some interesting studies

in recent years.

The problem is to find valid time intervals during

which frequent patterns hold and the discovery of

periodicities that patterns include. In this paper, we

conducted a study on developing an efficient

algorithm to mine frequent patterns and their related

time intervals from transactional databases. Here we

first introduce the new notation Time Cube (TC) to

consider time hierarchies in the mining process. Then

we propose a new algorithm based on two thresholds,

support and density as a novel threshold. Frequent

patterns are discovered and those with neighbouring

time intervals are merged.

The remaining of this paper is organized as: Section 2

provides a related work of the various solutions

proposed for temporal frequent itemset mining, and

Section 3 describes the terms, definitions, and

terminology used in this paper. Section 4 gives the

proposed Algorithms & procedures, Section5

describes the Implementation and results, and Section

6 concludes the study with future research directions.

II. RELATED WORK

The first study related to the association rules

discovery is presented by [1]. This paper introduces

the problem of mining a large collection of basket

datatype transactions for association rules between

sets of items with some minimum specified confidence

and presents an efficient algorithm for this purpose. It

has two parts finding frequent itemsets and generating

association rules. The problem of discovering

association rules that display regular cyclic variations

over time was first proposed by [2]. The cyclic patterns

are those patterns occurred after every regular cyclic

variation over time. Here two algorithms are proposed:

the sequential algorithm and interleaved algorithm.

This technique extracts hourly, daily, monthly, and

quarterly patterns. The pruning technique is applied to

improve the performance of the algorithm. This cyclic

analysis helps in trend analysis and market

forecasting. It should be noted that by their methods,

each cycle rule holds in every cycle with no exception.

However, in real life patterns are not perfect. The

Discovery of interesting patterns in association rules is

presented by [3], where the author proposes a new

technique based on the technique proposed by Ozden

et al. This technique uses user-defined temporal

patterns for rule discovery. Calendar algebra is used to

process the time cycle. But this technique requires

prior knowledge of calendar data expression. In a real-

life scenario, the product purchase history for a

defined cyclic period varies continuously. The product

sold in one cycle may or may not be present in the next

cycle with the same frequency. Hence cyclic pattern

discovery is not an appropriate solution for pattern

discovery.

To overcome the problem of cyclic pattern discovery

as emerged in [3], the periodic pattern

discovery was proposed by [4]. In this technique,

segment-wise periodicity is defined with a fixed length

period. The periodicity-based association rules extract

good results for some time periods but not for all. This

study reveals that the data cube provides an efficient

structure and a convenient way for interactive mining

of multiple-level periodicity. It is important to extend

the method for mining segment-wise periodicities for

an arbitrary length period.

For temporal association rules extraction, [5] proposes

a new technique. This technique stated that every item

set or rule has a specific lifespan. This lifespan is

defined in the database. This technique extracts the

association rules from a specific time period less than

the database time period. The lifetime of each item was

used to define time intervals. The concept of temporal

support was introduced for the first time and the

apriori algorithm was modified to incorporate time.

A new technique Progressive Partition Miner

proposed by [6], explores a new problem of mining

general temporal association rules in publication

databases. In this work author tried to focus on two

problems: 1) Lack of exhibition period for each item

and 2) Lack of equitable support for each item. This

technique initially portioned the publication database

in light of exhibition periods of items and then

progressively calculate the frequency count of each

candidate-2-itemset based on intrinsic partitioning

characteristics. The exhibition of the period is the

same as the life span of an item presented in [5]. This

algorithm is also designed to employ a filtering

threshold in each partition to early prune out those

cumulative infrequent candidate 2-itemsets. The

© October 2022 | IJIRT | Volume 9 Issue 5 | ISSN: 2349-6002

IJIRT 156966 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 427

feature that the number of candidates 2-itemsets

generated by the PPM algorithm is very close to the

number of frequent 2-itemsets allows applying the

scan reduction technique to effectively reduce the

number of database scans. In [7] the author introduced

a weighted model of transaction-weighted association

rules in a time-variant database. He proposed an

efficient progressive weighted miner (PWM)

algorithm to perform the mining. In this algorithm, the

importance of each transaction period is first reflected

by a proper weight assigned by the user. Then, PWM

partitioned the time-variant database in light of

weighted periods of transactions and performed

weighted mining. The algorithm PWM is designed to

progressively accumulate the itemset counts based on

the intrinsic partitioning characteristics and employ a

filtering threshold in each partition to early prune out

those cumulatively infrequent 2-itemsets. With this

design, the algorithm PWM is able to efficiently

produce weighted association rules for applications

where different time periods are assigned with

different weights and lead to results of more interest.

Using the same concept proposed in [5] and [6], the

algorithm segmented-progressive-filter (SPF) was

introduced in [8], to first segment the database into

sub-databases in such a way that items in each sub-

database will have either a common starting time or

common ending time. Then, for each sub-database

SPF progressively filters candidate 2-itemsets with

cumulative filtering thresholds either forward or

backward in time. This feature allows SPF of adopting

the scan reduction technique by generating all

candidate k-itemset(k>2) from candidate 2-itemset

directly. Junheng-Haung [9] proposed a Segment

Progressive Filter (SPFA) algorithm by extending the

SPF algorithm proposed in [8]. SPFA significantly

outperforms other schemes which are extended from

prior methods in terms of execution time and

scalability. The advantage of SPFA becomes even

more prominent as the size of the database increases.

Huang et al.[10], explore the previous studies [8], [9]

to remedy the drawbacks of their algorithms.

Algorithm TWAIN – two end association miner was

presented to find association rules that are absent when

the whole range of the database is evaluated

altogether. This algorithm not only generates frequent

patterns with more precise frequent exhibition periods

but also discovers some interesting frequent patterns.

TWAIN employees start time and end time of each

item to provide precise frequent exhibition periods

while progressively handling itemsets from one

partition to another. Along with one scan of the

database, TWAIN can generate frequent 2-itemsets

directly according to the cumulative filtering

threshold. Then TWAIN adopts the scan reduction

technique to generate all frequent k-itemset (k>2) from

the generated frequent 2-itemsets. Experimental

results show that this algorithm performs better than

the previous algorithm in the quality of frequent

patterns execution time, I/o cost, CPU overhead, and

scalability.

A Genetic algorithm is proposed by [11], to find

temporal association rules. This algorithm

simultaneously searches the next rule in rule space and

temporal space. This technique discovers more

frequent item sets over a short time interval of the

transaction dataset. This approach does not require

prior partitioning. In [12], the authors investigate the

problem of maximum frequent time-window selection

(MFTWS) that appears in the process of discovering

association rules time-windows (ARTW). They

formulate the problem as a mathematical model using

integer programming which is a typical combination

problem with a solution space exponentially related to

the problem size.

A variable neighbourhood search (VNS) algorithm is

developed to solve the problem with near-optimal

solutions. Computational experiments are performed

to test the VNS algorithm against a benchmark

problem set. The results show that the VNS algorithm

is an effective approach for solving the MTFWS

problem, capable of discovering many large frequent-

1 itemsets with time-windows (FITW) with a larger

time-coverage rate than the lower bounds, thus laying

a good foundation for mining ARTW. In [13], the

author proposed a new form of an association rule, i.e.,

an association rule with time windows. The main

purpose of their study was to find the time intervals for

association rules which may be arbitrary in length and

not user specified. The main contribution of this work

includes three aspects. First, the part-time association

rule, the new concept of association rule with time

windows (ARTM) together with the new concept of

frequent itemsets with time windows (FITW), is

presented as a more general form of association rule to

substitute the old term temporal association rule.

Second, a new framework for mining ARTMs on real-

© October 2022 | IJIRT | Volume 9 Issue 5 | ISSN: 2349-6002

IJIRT 156966 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 428

time transaction databases is proposed. The new

framework is an extension of the support confidence

framework, where a new criterion i.e. minimum time

window(minwin) is added to judge an ARTW holding

or not. Third, an efficient algorithm of TW-Apriori is

developed for efficiently generating FITWs from real-

time transaction database. They further optimized the

process of finding time windows by mathematical

modelling [12].

In [14], the author presented a novel technique to

identify Calendar-based (Annual, Monthly & Daily)

periodicities of and interval-based temporal patterns.

An interval-based temporal pattern is a pattern that

occurs across a time interval, then disappears for some

time, again reoccurs across another time interval, and

so on and so forth. Given the sequence of time-interval

in which an interval-based temporal pattern has

occurred, they proposed a method for identifying the

extent to which the pattern is periodic with respect to

a calendar cycle. For this, a function called occurrence

function is defined for a time stamp. A generalized

algorithm was developed for computing the

occurrence function at any time stamp in either a

discrete or continuous domain. They have also

developed another algorithm for finding the local

maxima of the occurrence function. It had shown in

this paper that, how these two algorithms could be

used to determine calendar-based periodicities of an

interval-based temporal pattern in either discrete or

continuous patterns. The work proposed in [15]

applies knowledge discovery techniques on a series of

huge datasets obtained over a partition that contains

many transactions in a consecutive time period,

instead of applying them to the whole database. In

addition, instead of extracting rules throughout the

whole timeline, the rules are extracted from

consecutive time intervals with different time

granularities. The result for that will be developing a

more efficient approach for mining temporal

association rules on large data sets. The main

contribution of this paper is to modify the method of

partitioning the database by selecting the biggest

partition that contains a large number of transactions

instead of periodically time partitioning, in order to

avoid multi-scanning of the database. In addition to it,

the proposed system applies the Apriori Algorithm

only to the selected partition aimed to reduce the time

of extraction of association rules from the dataset.

In the research paper [16] Saleh and Masseglia deal

with the problem of the time periods which

may contain frequent items might be because of the

arbitrary division of the data. They introduced the

definition of solid itemsets, which represent coherent

and compact behaviour over specific periods, and the

concept of SIM- Solid Itemset Mining was proposed

to find the subsets of the database that contains

frequent itemsets. Mazaher Ghorbani & Masoud

Abessi, in [17], extended the concept of [16] and

proposed a new technique to mine frequent itemsets

over temporal data. In this paper, the author proposed

an efficient algorithm to mine frequent patterns and

their related time intervals from the transactional

database. He first presents a new concept of time cubes

(TC), to consider time hierarchies in the mining

process. Then a new algorithm is proposed based on

two thresholds, support and density as a novel

threshold. Frequent itemsets are discovered and those

with neighbouring time intervals of the same frequent

itemsets are merged. This technique assumes that

patterns are either hold in either some or all-time

intervals. This technique proposes a time cube analysis

of frequent patterns. The whole dataset is divided into

the number of time cubes such as (hour, day, month),

(day, month, year), etc. and analysis is done using an

Apriori algorithm over these time cube data. It uses the

temporal support value concept. In [18] the author,

make an effort to enhance conventional rule mining by

introducing temporal soft sets. They define temporal

granulation mappings to induce granular structures for

temporal transaction data. Using this notion, they

define temporal soft sets and their Q-clip soft sets to

establish a novel framework for mining temporal

association rules. A number of useful characterizations

and results are obtained, including a necessary and

sufficient condition for the fast identification of strong

temporal association rules. By combining temporal

soft sets with NegNodeset-based frequent item set

mining techniques, they develop the negFIN-based

soft temporal association rule mining (negFIN-

STARM) method to extract strong temporal

association rules.

In [19] the authors present an integrated approach that

can be used to write efficient codes for pattern mining

problems. The approach includes, (1) cleaning

datasets with the removal of infrequent events, (2)

presenting a new scheme for time-series data storage,

© October 2022 | IJIRT | Volume 9 Issue 5 | ISSN: 2349-6002

IJIRT 156966 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 429

(3) exploiting the presence of prior information about

a dataset when available, (4) utilizing vectorization

and multicore parallelization. They present two new

algorithms, FARPAM (FAst Robust PAttern Mining)

and FARPAMp (FARPAM with prior information

about prior uncertainty, allowing faster searching).

The algorithms are applicable to a wide range of

temporal datasets. They implement a new formulation

of the pattern searching function which reproduces and

extends existing algorithms (such as SPAM and

RobustSPAM), and allows for significantly faster

calculation. The algorithms also include an option of

temporal restrictions in patterns, which is available

neither in SPAM nor in RobustSPAM. The search

algorithm is designed to be flexible for further possible

extensions.

From the above discussion, it is observed that the time

intervals have to be specified by the user. In this paper

our proposal is completely different from the previous

methods for finding temporal patterns, here we

consider time as a hierarchical data structure and then

extract the local periodic patterns from these

hierarchical levels along with the time intervals

without specifying the time intervals in advance by the

user. Our method will extract the time time-intervals

automatically while scanning the dataset in which the

patterns are frequent.

III. DEFINTION & TERRMINOLOGY

Let I = {i1, i2, . . . in} be a set of items and D be a

database of transactions. Each transaction tr is

associated with an identifier transaction ID (TID), a

time stamp TS and a set of items. For all transactions,

Ttr ϵ TS, where TS is the total time span of the

database. Let tst, tet ϵ TS where tst is the start time and

tet is the end time be the time interval in each time

hierarchy, and also it is clear that tst < tet. For example,

(2,6) Month shows the time interval between the 2nd

and 6th months.

We define the local support of an itemset in a time

interval [t1,t2] as the ratio of the number of

transactions in the time interval containing the itemset

to the total number of transactions in that time-interval

for the whole dataset D. We use the notation

Supp[t1,t2](X) to denote the support of item set X in that

time interval. Here we define the Time Interval as

BTC-Basic timecube. The Support of an itemset X in

BTC is calculated as:

SupportBTC(X) = N(X)Cube / |NCube| . (1)

Given a Threshold (σ) we say that an itemset X is

frequent in the BTC if :

SUPBTC(X) >= (σ/100)*TC (2)

Where TC denotes the total number of transactions in

D that are in the BTC.

We say that the set is locally frequent in BTC. We say

that an association rule X=>Y, where X & Y are item

sets, holds in the BTC if and only if given threshold 9,

SUPbtc(XUY) / SUPBTC (X) >= σ/100 (3)

and XUY is frequent in BTC. In this case, we say that

the confidence of the rule is Conf.

For each locally frequent itemsets extracted by the

algorithm, a list of Time intervals are maintained in

TC-Time Cube. Where each interval is represented as

[str-dt, end-dt], where str-dt is the starting Timestamp

of the Time Interval and end-dt is the ending

timestamp of the time interval. (end-dt – std-dt) gives

the length of the time interval (TP). Given two

intervals [std-dt1,end-dt1] & [std-dt2,end-dt2], if the

intervals are non-overlapping and std-dt2>end-dt1,

then std-dt2-end-dt1 gives the distance between the

time-interval.

Minimum support is a threshold to evaluate itemsets.

Since records are not equally distributed in time

intervals, very few records may occur on some

occasions. Therefore, generated patterns may not be

valid, since there is not enough evidence to show that

they exist for that time interval, which causes the

overestimating problem. In order to overcome this

overestimating problem, we have used another

threshold which is called density.

Let us explain the necessity of density with an

example. Consider itemset XY with Sup(X, Y)4−9 = 8

/12 ≥ 60% Where 60% is the minimum support.

However, we can observe from the database that XY

is only frequent during the period 4 to 7 rather than the

whole range of 4 to 9, which is an overestimated time

period. Density not only ensures the validity of the

patterns but also filters out time intervals with few

records which cause overestimating the time periods.

The density of a time interval is calculated as follows:

Avg = N /NBTCs (4)

Density = α × Avg. (5)

© October 2022 | IJIRT | Volume 9 Issue 5 | ISSN: 2349-6002

IJIRT 156966 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 430

where N is the total number of records or transactions,

NBTCs is the number of basic time cubes, and therefore,

Avg. is the average number of transactions per BTC.

A user-specified parameter α ∈ [0, 1] is used to

determine the desired density using equation 4. α is

called density rate. For example, if a dataset contains

2000 records and 10 BTCs, then the average number

of records per basic time-cube is 200. With parameter

α = 0.5, cubes less than 100 records are filtered.

Therefore, an itemset is called frequent if and only if

for each Time-Cube(TC), it satisfies the following

conditions.

1) X =⇒Cube Y has a support greater than or equal to

the minimum support threshold which is defined by

the user.

2) The time interval (Time cube) must be dense to

ensure the validity of the rules.

3.1 Set Superimposition:

In this work, we have used an operator called

superimposition denoted as (S), which was proposed

by (Baruah, 1999). If set A is superimposed over the

set B or B is superimposed over A then, we have:

A(S)B = (A-B) (+)(A ∩ B)2(+)(B-A) (6)

Where (A ∩ B)2 are the elements of (A ∩ B)

represented twice, and (+) represents the UNION of

disjoint sets. To explain this, let us take an example

below:

If A=[a1,b1] and B=[a2,b2] are two time intervals

such that A intersect B != {}, we could get a

superimposed portion, such as:

[a1,b1](S)[a2,b2] =

[(a(1),a(2)) (+) [a(2),b(2)]2(+)(b(1),b(2)] (7)

Where

a(1) = min(a1,a2) a(2) = max(a1,a2)

b(1) = min(b1,b2) b(2) = max(b1,b2)

IV. PROPOSED ALGORITHMS

At the time of constructing locally frequent sets, with

each locally frequent set, a list of time intervals (TC)

is constructed in which the itemset is frequent. Here

we use two thresholds mintp1 and mintp2 as user input

values. During execution, while making a pass through

a dataset, if for a particular itemset the time gap

between its current timestamp and the time when it

was last seen(before the current timestamp) is less than

the value of mintp1 then the current transaction is

included in the current time interval(BTC) under

consideration, otherwise, a new time-interval is started

with the current timestamp as the starting point. The

support count of the itemset in the previous time

interval is checked to see whether it is frequent in that

interval or not and if it is then it is added to the list

(TC) maintained for that set. Also for the locally

frequent itemsets, a minimum period length(mintp2)

given by the user and minden(Minimum Density) is

checked against the values of the time-interval (BTC).

If the time-gap (TP) of the BTC and the number of

transactions of the BTC is greater than the mintp2 and

minden then these values are considered. If mintp2 is

not used then an item appearing only once in the whole

dataset will also become locally frequent.

4.1. Procedure for Finding Locally Frequent Itemsets:

4.1.1. Pre-processing the Dataset:

If the dataset is non-temporal then we incorporate the

temporal features i.e. Timestamps in the Dataset. For

this, we have developed a program, which generates a

list of timestamps when an initial timestamp value is

given as input. It generates the timestamps from the

initial timestamp value feed by the user to the end as

per the number of records in the Dataset which is

calculated by the program based on the input dataset.

Program after merging these generated timestamps

with the records of the dataset a new datafile is created

which is used by the algorithm to generate the frequent

itemset.

4.1.2. Compute L1- the set of Locally Frequent-1

Itemsets:

For each item, while scanning the dataset we record a

timestamp called L-timestamp that corresponds to the

time when the item was last scanned. When an item is

found in a transaction and the timestamp is tmstp and

the time-gap between L-timestamp and the tmstp is

greater than the minimum threshold(mintp1) given,

then a new time interval (BTC) is started by setting

starting timestamp of the new time interval (BTC) as

tmstp and ending timestamp of the previous BTC as L-

timestamp. The previous BTC is added to the list (TC)

maintained for that itemset provided that the duration

of the BTC and the support of the itemset in BTC are

© October 2022 | IJIRT | Volume 9 Issue 5 | ISSN: 2349-6002

IJIRT 156966 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 431

both greater than or equal to the minimum thresholds

specified for each. Otherwise, L-timestamp is set to

tmstp, the counter maintained for counting

transactions are increased appropriately and the

process is continued. The Algorithm to compute L1-

list of frequent-1 sets is given below.

Algorithm-1:

def : scan(D,C1):

Input:

 D= Temporal Datafile , C1=Candidate-1 Itemset,

mintp1, mintp2

Output:

 L1=Set of Frequent-1 Itemset with Time

Intervals

Method:

 n=len(C11) # find the length of the C1

 for k in range(n):

 icount=0

 ptcount=0

 trcount=0

 L-timestamp=0

 F-timestamp=0

 for tr in range(len(D)):

 if C1[k].issubset(D[tr]):

 tstmp=tm[tr]

 if L-timestamp = 0:

 F-timstamp=tstmp

 L-timestamp=tstmp

 icount=1

 ptcount=1

 trcount=1

 elif (L-timestamp !=0):

 start=datetime.strptime(lastseen, '%d-%m-%Y')

 end=datetime.strptime(tstmp, '%d-%m-%Y')

 nodays=(end-start).days

 if(nodays<=mintp1):

 L-timestamp= tstmp

 icount=icount+1

 trcount=trcount+1

 ptcount=trcount

 elif (nodays>=mintp2):

 tc.append(C1[k])

 tc.append(F-timestamp)

 tc.append(L-timestamp)

 tc.append(icount)

 sup=round(icount/ptcount,2)

 tc.append(sup)

 firstseen=tstmp

 lastseen=tstmp

 icount=1

 ptcount=1

 trcount=1

 else:

 trcount=trcount+1

 n=5

 tc2=[]

 tc2=[tc[i:i+n] for i in range(0,len(tc),n)

#Return the L1-Frequent-1 itemset with time-

intervals

 return(tc2)

In the above algorithm three support counts icount,

ptcount, trcount are maintained with each item. When

an item is first scanned then these are initialized to 1.

For each item while making a scan through the dataset

when a transaction containing the item is found then

icount for that item is increased. To check whether an

item is frequent in a time interval the total number of

transactions in that time interval will have to be

counted. For this, with each item, two counts ptcount

and trcount are kept. The value of trcount increases

with each transaction, but ptcount changes its value

only when a transaction containing an item is found

within mintp1 from the current value of the L-

timestamp and then it takes the value of ctcount. When

an item is not seen for more than mintp, the time

distance from L-timestamp, then the value of ptcount

is used to compute the percentage support count of the

item between F-timestamp and L-timestamp. If the

count percentage of an item in a time interval is greater

than the minimum support and time period, then only

the itemset is considered as a locally frequent set and

the locality is the time interval. When a new time

interval is started for an item then these three count

values are again initialized to 1.

4.1.3. Compute Lk – Frequent -k Itemsets with Time

Intervals

After this Apriori candidate generation algorithm is

used to find candidate frequent-2 itemset and then the

pruning is applied. With each frequent-2 itemset, the

list of time intervals is associated. In the candidate

generation phase, the list of time intervals (TC) is

empty. During the pruning phase, this list is prepared.

The procedure for preparing is that when the first

subset of itemset appearing in the previous level is

found then that list is taken as the list of time intervals

associated with the set. When the subsequent sets are

found then the list is reconstructed by taking all

possible pair-wise intersections of subsets one from

each list. If this list becomes empty at any point in time

or when a particular subset of the itemset under

consideration is not found in the previous level then

the set is pruned. The pairwise intersection of the

interval list is taken for the following reasons. If the

interval say[t1,t1’] and [t2,t2’] in which the itemsets

© October 2022 | IJIRT | Volume 9 Issue 5 | ISSN: 2349-6002

IJIRT 156966 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 432

say {A,B} is frequent then there exists two time

periods [t1,t1’] and [t2,t2’] in which the itemsets {A}

& {B} are respectively, frequent and [t,t’] subset

[t1,t1] intersection [t2,t2’]. Using this concept we

described below the modified Apriori algorithm for

the problem under consideration.

Algorithm2:

Modified Apriori

Initialize k=1

C1=Candidate-1 Itemset

L1=Frequent-1 Itemset with Time intervals (TC)

 #L1 is computed from Algorithm1

K=2

While(L(k-1) != {}) :

 Ck = Cand-Gen(L[k-1],k)

#Candidate generation by setting the TC =0

 Prune(Ck)

#drop all lists of time-interrvals(TC) maintained with

the sets in Ck(Candidate itemset) which does not

satisfy the threshold conditions.

freq-Gen(Ck,minsup,dbslen)

Compute Lk from Ck

#Lk can be computed from Ck using Algorithm1

K=k+1

Lk = Lk-1 U Lk-2 U….U Lk-i (where i=1 to k)

Return (Lk)

Set of Frequent-k itemsets

Algorithm3:

def freq-Gen(Ck,minsup,dbslen):

l = Ck

nopart=int(len(l))

if nopart != 0:

 a=dbslen/nopart

 den=a

 else:

 print("No. of Partitions are zero")

 print("Frequent Set cannot be generated")

 for i in range(len(l)):

 l2=l[i]

 st=datetime.strptime(l2[1], '%d-%m-%Y')

 et=datetime.strptime(l2[2], '%d-%m-%Y')

 tp=(et-st).days

 if (l2[4]>=minsup and tp>=3):

 l3.append(l2)

 return(l3)

Algorithm4:

def Cand-Gen(Lk, k): #creates Ck

lenLk = len(Lk)

for i in range(len(Lk)):

for j in range(i+1, lenLk):

 L1 = list(Lk[i])[:k-2]; L2 = list(Lk[j])[:k-2]

 L1.sort(); L2.sort()

 if L1==L2: #if first k-2 elements are equal

 retList.append(Lk[i] | Lk[j]) #set union

 return (retList)

Algorithm5:

def prune(Ck,l5)

 for i in range(len(Ck)):

 temp1=Ck[i]

 for j in range(len(l5)):

 if l5[j][0].issubset(temp1):

 temp2=l5[j][1]

 temp3=l5[j][2]

 for k in range(j+1,len(l5)):

 if l5[k][0].issubset(temp1):

 temp4=l5[k][1]

 temp5=l5[k][2]

 dt1=datetime.strptime(temp2, '%d-%m-%Y')

 dt2=datetime.strptime(temp4, '%d-%m-%Y')

 gap1=abs((dt2-dt1).days)

 dt3=datetime.strptime(temp3, '%d-%m-%Y')

 dt4=datetime.strptime(temp5, '%d-%m-%Y')

 gap2=abs((dt4-dt3).days)

 if l5[k][0].issubset(temp1) and gap1<=2

 and gap2<=2:

d1=pairwise-intersection(temp2,temp3,temp4,temp5)

 d2.append(temp1)

 d2.append(d1)

 tp.append(d1)

 return(d2)

4.1.4. Explanation of the Algorithm with an Example

To explain the working of the algorithm, we have

taken a small dataset consisting of timestamps and the

list of items at the corresponding dates. We have

assumed the dataset is collected for a period of two

months i.e. 01-01-2021 to 28-02-2021 and the market

is open all days of the week. The total number of items

are 5, total number of transactions are 59. We have

assumed the mintp1=2 days and the mintp2=5 days

and min-support=50%. We executed the algorithm to

find the locally frequent itemset. The dataset statistics

are given below:

Database length= 182 Transactions

Total Number of frequent itemsets = 31

The Execution Time is : 0.859375 msec

Read the dataset to find the list of time intervals where

the itemsets are frequent. Read the transactions one by

one to find the F-timestamp, L-timestamp, and the

support of the itemset in [F-timestamp, L-timestamp].

After the first scan of the dataset, we get the set local

frequent-1 itemset along with the time interval as

follows:

© October 2022 | IJIRT | Volume 9 Issue 5 | ISSN: 2349-6002

IJIRT 156966 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 433

--|

| The frequent one itemset is |

|--|

|Item Starting Date Ending Date Item Count Item

Support |

|--|

[{'curd'}, '30-01-2022', '02-02-2022', 4, 1.0]

[{'curd'}, '13-02-2022', '19-02-2022', 5, 0.71]

[{'curd'}, '19-03-2022', '25-03-2022', 5, 0.71]

[{'curd'}, '07-04-2022', '11-04-2022', 4, 0.8]

[{'curd'}, '17-04-2022', '20-04-2022', 3, 0.75]

[{'detergent'}, '30-01-2022', '02-02-2022', 4, 1.0]

[{'detergent'}, '11-02-2022', '19-02-2022', 5, 0.56]

[{'detergent'}, '19-03-2022', '25-03-2022', 4, 0.57]

[{'detergent'}, '07-04-2022', '11-04-2022', 3, 0.6]

[{'salt'}, '30-01-2022', '05-02-2022', 6, 0.86]

[{'salt'}, '11-02-2022', '19-02-2022', 6, 0.67]

[{'salt'}, '19-03-2022', '25-03-2022', 5, 0.71]

[{'salt'}, '07-04-2022', '11-04-2022', 4, 0.8]

[{'salt'}, '17-04-2022', '20-04-2022', 3, 0.75]

List L is [[{'curd'}, {'detergent'}, {'salt'}]]

In the second level we get the candidate itemsets as

follows:

--|

| The Frequent-TWO itemset is |

|--|

|Item Starting Date Ending Date Item Count Item

Support |

|--|

[{'curd', 'detergent'}, '30-01-2022', '02-02-2022', 4,

1.0]

[{'curd', 'detergent'}, '13-02-2022', '19-02-2022', 4,

0.57]

[{'curd', 'detergent'}, '19-03-2022', '25-03-2022', 4,

0.57]

[{'curd', 'detergent'}, '07-04-2022', '11-04-2022', 3,

0.6]

[{'curd', 'salt'}, '30-01-2022', '02-02-2022', 4, 1.0]

[{'curd', 'salt'}, '13-02-2022', '19-02-2022', 5, 0.71]

[{'curd', 'salt'}, '19-03-2022', '25-03-2022', 5, 0.71]

[{'curd', 'salt'}, '07-04-2022', '11-04-2022', 4, 0.8]

[{'curd', 'salt'}, '17-04-2022', '20-04-2022', 3, 0.75]

[{'salt', 'detergent'}, '30-01-2022', '02-02-2022', 4,

1.0]

[{'salt', 'detergent'}, '11-02-2022', '19-02-2022', 5,

0.56]

[{'salt', 'detergent'}, '19-03-2022', '25-03-2022', 4,

0.57]

[{'salt', 'detergent'}, '07-04-2022', '11-04-2022', 3,

0.6]

In the third level we get the frequent-3 itemset as:

--|

| The Frequent-THREE itemset is

|

|--|

|Item Starting Date Ending Date Item Count Item

Support |

|--|

[{'curd', 'salt', 'detergent'}, '30-01-2022', '02-02-2022',

4, 1.0]

[{'curd', 'salt', 'detergent'}, '13-02-2022', '19-02-2022',

4, 0.57]

[{'curd', 'salt', 'detergent'}, '19-03-2022', '25-03-2022',

4, 0.57]

[{'curd', 'salt', 'detergent'}, '07-04-2022', '11-04-2022',

3, 0.6]

V. IMPLEMENTATION & RESULTS

The above algorithm we have implemented in python

3.10.2 on Intel(R) Core(TM) i5-10210U CPU @

1.60GHz 2.11 GHz on Windows 11 Home Single

Language. We have taken the dataset from

http://fimi.uantwerpen.be/data/ -FIMI – Frequent

Itemset Mining Dataset Repository. We conducted

the experiments on different datasets. The results and

the details of the datasets are as follows:

Table1- Executed data Statistics

SN

O

DATASET-

NAME

NO.OF

TRANSACT

IONS

NO. OF

FREQU

ENT

ITEMS

EXECUT

ION

TIME (IN

msecs)

1 GROCERY.

TXT

159 30 1.09375

2 KOSARK.T

XT

50877 4174 194.9062

5

3 RETAIL.T

XT

95050 7114 614.0937

5

4 T10I4D100

K

100059 16375 903.4687

5

0

50000

100000

150000

1 2 3 4

Comparison of Frequent
Items & Transactions

NO.OF TRANSACTIONS

NO. OF FREQUENT ITEMS

© October 2022 | IJIRT | Volume 9 Issue 5 | ISSN: 2349-6002

IJIRT 156966 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 434

From the above Figures, it can be seen that in Figure

1, as the No. of Transactions increases the No. of

Frequent items also increased. Similarly in Figure 2, it

can be observed that a more number of transactions

takes more amount of Execution time.

VI. CONCULSION

In this paper, we mainly focused on extracting local

frequent itemsets along with Time Intervals. Here we

have used a time hierarchy structure Time Cube to

store the time intervals.

Our Algorithm is successfully used a set operator

called Set Superimposition. This Algorithm is able to

partition and extract the Time intervals automatically

from the dataset, as it is not needed to specify the dates

to partition the dataset by the user which was required

in the previous studies. As can be seen that this

Algorithm generates more frequent items and takes

more amount of time for Execution as the size of the

data increases.

In the future, we try to overcome the pitfalls of this

algorithm by:

• Reducing the amount of Execution Time

• Generate interesting Frequent Itemset and

Association Rules.

REFERENCES

[1] R. Agrawal, T. Imielinski, and A. Swami,

“Mining association rules between sets of items in

large databases,” ACM SIGMOD Rec., vol. 22,

no. 2, pp. 207–216, 1993.

[2] R.Agarwal & R.Srikanth, Mining Sequential

Patterns, in Proc. IEEE 11th Intl. Conf. Data Eng.

1995

[3] B.Ozden, S. Ramaswamy, and A. Silberschatz,

“Cyclic Association Rules,” in Proc. IEEE 14th

Int. Conf. Data Eng., 1998, pp. 412–421.

[4] S. Ramaswamy, S. Mahajan, and A. Silberschatz,

“On the discovery of interesting patterns in

association rules,” in Proc. 24th Int. Conf. Very

Large Data Bases, 1998, pp. 368–379.

[5] J. Han, W. Gong, and Y. Yin, “Mining segment-

wise periodic patterns in time-related databases,”

in Proc. Int. Conf. Knowl. Discovery Data

Mining, 1998, pp. 214–218.

[6] J. M. Ale and G. H. Rossi, “An approach to

discovering temporal association rules,” in Proc.

ACM Symp. Appl. Comp.-vol. 1, 2000, pp. 294–

300.

[7] C.-H. Lee, M.-S. Chen, and C.-R. Lin,

“Progressive Partition Miner: An efficient

algorithm for mining general temporal association

rules,” IEEE Trans. Knowl. Data Eng., vol. 15,

no. 4, pp. 1004–1017, Jul./Aug. 2003.

[8] C-H. Lee, J.C. Ou, & M.S. Chen, “Progressive

Weighted Miner: An efficient method for time-

constraint mining”, in Advances in knowledge

Discovery and Data Mining. NewYork. Ny. USA:

Springer,2003 pp 449-460.

[9] C.Y. Chang, M.S. Chen, and C.H. Lee, “Mining

general temporal association rules for items with

different exhibition periods,” in Proc. IEEE Int’l.

Conf. Data Mining, 2002, pp.59–66.

[10] W.-W. Junheng-Huang, “Efficient algorithm for

mining temporal association rule,” Int. J. Comput.

Sci. Netw. Sec., vol. 7, no. 4, pp. 268–271, 2007.

[11] J.W. Huang, B.R. Dai, and M.S. Chen, “Twain:

Two-end association miner with precise frequent

exhibition periods,” ACM Trans. Knowl.

Discovery Data, vol. 1, no. 2, 2007, Art. no. 8.

[12] S. G. Matthews, M. A. Gongora, and A. A.

Hopgood, “Evolving temporal association rules

with genetic algorithms,” in Research and

Development in Intelligent Systems XXVII. New

York, NY, USA: Springer, 2011, pp. 107–120

[13] Y. Xiao, Y. Tian, and Q. Zhao, “Optimizing

frequent time-window selection for association

rules mining in a temporal database using a

variable neighbourhood search,” Comput. Oper.

Res., vol. 52, pp. 241–250, 2014.

0

200

400

600

800

1000

1 2 3 4

Execution Time

EXECUTION TIME (IN msecs)

© October 2022 | IJIRT | Volume 9 Issue 5 | ISSN: 2349-6002

IJIRT 156966 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 435

[14] Y. Xiao, R. Zhang, and I. Kaku, “A new

framework of mining association rules with

timewindows on real-time transaction database,”

Int. J. Innov. Comput., Inf. Control, vol. 7, no. 6,

pp. 3239–3253, 2011.

[15] Mulla Dutta & Anjana Kakoti Mahanta,

“Detection of Calendar-based periodicities of

Interval based Temporal Patterns”, International

Journal of Data Mining & Knowledge

Management Process (IJDKP) Vol.2, No.1,

January 2012.

[16] Abdel Rahman Mahmoud, Dr. Nagy Ramadan,

and Abdel Moniem Helmy, “An Enhanced

Algorithm for Association Rule Mining in Huge

Temporal Database,” International Research

Journal of Advanced Engineering and Science,

Volume 4, Issue 3, pp. 254-261, 2019.

[17] B. Saleh and F. Masseglia, “Discovering frequent

behaviors: Time is an essential element of the

context,” Knowl. Inf. Syst., vol. 28, no. 2, pp.

311–331, 2011.

[18] Mazaher Ghorbani and Masoud Abessi, "A New

Methodology for Mining Frequent Itemsets on

Temporal Data", in IEEE Transactions on

Engineering Management, Vol. 64, Issue. 4, pp.

566 - 573, Nov 2017

[19] Mining Temporal Association Rules with

Temporal Soft Sets Xiaoyan Liu, 1 Feng Feng,

Qian Wang, Ronald R. Yager, Hamido Fujita, and

Jose´ Carlos R. Alcantud, Hindawi Journal of

Mathematics Volume 2021, Article ID 7303720,

17 pages

[20] Fast implementation of pattern mining algorithms

with time stamp uncertainties and temporal

constraints, Sofya S. Titarenko, Valeriy N.

Titarenko, Georgios Aivaliotis and Jan

Palczewski, Titarenko et al. J Big Data (2019)

6:37, Springer. https://doi.org/10.1186/s40537-

019-0200-9

[21] Anjana Kakoti Mahanta, Fokrul Alom

Mazarbhuiya, Hemath K. Barauh, Finding

Calendar-based Periodic Patterns, 0167-8655/$

Elsevier.B.V. 2008.01.020.

