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Abstract: Pattern mining is a powerful tool for analyzing 

big datasets and extracting interesting patterns from the 

dataset. Temporal datasets include time as an additional 

parameter as time-stamps that affects the data mining 

results. Traditional data mining techniques of finding 

frequent itemsets consider the static data sets and the 

instigated rules are relevant across the whole dataset. 

However, this is not the case in temporal data because, in 

temporal data, there are certain itemsets that are 

frequent over a specific period of time but would not be 

extracted by traditional data mining methods since their 

support is very low over the whole dataset. Our aim is to 

extract such patterns with their time intervals. In this 

paper, we propose a method that is able to extract 

different types of patterns that may exist in the temporal 

dataset and it is not needed by the user to specify the time 

periods in advance. Here we consider the time stamps as 

hierarchical data structures and our algorithm extracts 

the periodic patterns along with the time intervals. 

Key Words: Frequent Itemset, Local Temporal Frequent 

Itemset, Set Superimposition, Time-Cube, Basic Time-

Cube. 

I. INTRODUCTION 

Data mining is the process of exploring and analyzing 

data from different perspectives, using automatic or 

semi-automatic techniques to extract knowledge or 

useful information and discover correlations or 

meaningful patterns and rules from large databases. 

Using these patterns, it is possible for business 

enterprises to identify new and unexpected trends, and 

subtle relations in the data and use them to increase 

revenue and cut costs. Data mining has been proven to 

be advantageous in many areas. Data mining involves 

many different techniques and algorithms to 

accomplish different tasks. All these algorithms 

attempt to fit a model to the data. The algorithms 

examine the data and determine a model that is closest 

to the characteristics of the data being examined. 

One of the most important characteristics missed by 

traditional data mining systems is their capability to 

record and process variable time-related aspects of 

real-world databases. In simple words, traditional data 

mining techniques lack the ability to analyze 

variations of data over time and treat them as ordinary 

data. Examples of temporal data include stock market 

data, banking data, production data, maintenance data, 

web mining, and point-of-sale records. Temporal data 

mining which mines or extracts knowledge and 

patterns from temporal databases is an extension of 

data mining with the capability to include time 

attribute analysis. Due to the importance and 

complexity of the time attribute, a lot of different kinds 

of patterns are of interest. Analysis of transactional 

data is one of the most important applications of data 

mining. Finding the association or correlations among 

items in transactions was first proposed by Agarwal et. 

Al..[1]. For example, in a given transactional database 

of a supermarket, we may have {milk, bread} bought 

together with the support of 25%. It means 25% of all 

transactions contain milk and bread together. 

Databases that evolved from the transactions in a 

supermarket, banks, and departmental stores are all 

inherently related to time. These are called temporal 

databases that contain time-stamping information. 

One important extension to frequent pattern mining is 

to include temporal features in the dataset. For 

example, milk and bread may be purchased together in 

80% of all transactions which occurred between the 

time interval 7 am to 9 am, while their support in the 

whole database is 25%. In fact, interesting patterns can 

be extracted from a specific time interval, therefore the 

time interval during which they are observed is 

important. 

From this, it can be concluded that different patterns 

can be obtained from different time intervals. 

Discovering such patterns may bring useful 
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knowledge. The discovery of such frequent itemsets 

and association rules has been discussed in the 

literature. In this context, sequential association rules 

[2], Cyclic Association rules [3], Mining Temporal 

Association Rules [5&6], and calendar-based 

association rules [15&21] are some interesting studies 

in recent years. 

The problem is to find valid time intervals during 

which frequent patterns hold and the discovery of 

periodicities that patterns include. In this paper, we 

conducted a study on developing an efficient 

algorithm to mine frequent patterns and their related 

time intervals from transactional databases. Here we 

first introduce the new notation Time Cube (TC) to 

consider time hierarchies in the mining process. Then 

we propose a new algorithm based on two thresholds, 

support and density as a novel threshold. Frequent 

patterns are discovered and those with neighbouring 

time intervals are merged.  

The remaining of this paper is organized as: Section 2 

provides a related work of the various solutions 

proposed for temporal frequent itemset mining, and 

Section 3 describes the terms, definitions, and 

terminology used in this paper. Section 4 gives the 

proposed Algorithms & procedures, Section5 

describes the Implementation and results, and Section 

6 concludes the study with future research directions. 

II. RELATED WORK 

The first study related to the association rules 

discovery is presented by [1]. This paper introduces 

the problem of mining a large collection of basket 

datatype transactions for association rules between 

sets of items with some minimum specified confidence 

and presents an efficient algorithm for this purpose. It 

has two parts finding frequent itemsets and generating 

association rules. The problem of discovering 

association rules that display regular cyclic variations 

over time was first proposed by [2]. The cyclic patterns 

are those patterns occurred after every regular cyclic 

variation over time. Here two algorithms are proposed: 

the sequential algorithm and interleaved algorithm. 

This technique extracts hourly, daily, monthly, and 

quarterly patterns. The pruning technique is applied to 

improve the performance of the algorithm. This cyclic 

analysis helps in trend analysis and market 

forecasting. It should be noted that by their methods, 

each cycle rule holds in every cycle with no exception. 

However, in real life patterns are not perfect. The 

Discovery of interesting patterns in association rules is 

presented by [3], where the author proposes a new 

technique based on the technique proposed by Ozden 

et al. This technique uses user-defined temporal 

patterns for rule discovery. Calendar algebra is used to 

process the time cycle. But this technique requires 

prior knowledge of calendar data expression. In a real-

life scenario, the product purchase history for a 

defined cyclic period varies continuously. The product 

sold in one cycle may or may not be present in the next 

cycle with the same frequency. Hence cyclic pattern 

discovery is not an appropriate solution for pattern 

discovery.  

To overcome the problem of cyclic pattern discovery 

as emerged in [3], the periodic pattern  

discovery was proposed by [4]. In this technique, 

segment-wise periodicity is defined with a fixed length 

period. The periodicity-based association rules extract 

good results for some time periods but not for all. This 

study reveals that the data cube provides an efficient 

structure and a convenient way for interactive mining 

of multiple-level periodicity. It is important to extend 

the method for mining segment-wise periodicities for 

an arbitrary length period.  

For temporal association rules extraction, [5] proposes 

a new technique. This technique stated that every item 

set or rule has a specific lifespan. This lifespan is 

defined in the database. This technique extracts the 

association rules from a specific time period less than 

the database time period. The lifetime of each item was 

used to define time intervals. The concept of temporal 

support was introduced for the first time and the 

apriori algorithm was modified to incorporate time.  

A new technique Progressive Partition Miner 

proposed by [6], explores a new problem of mining 

general temporal association rules in publication 

databases. In this work author tried to focus on two 

problems: 1) Lack of exhibition period for each item 

and 2) Lack of equitable support for each item. This 

technique initially portioned the publication database 

in light of exhibition periods of items and then 

progressively calculate the frequency count of each 

candidate-2-itemset based on intrinsic partitioning 

characteristics. The exhibition of the period is the 

same as the life span of an item presented in [5]. This 

algorithm is also designed to employ a filtering 

threshold in each partition to early prune out those 

cumulative infrequent candidate 2-itemsets. The 
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feature that the number of candidates 2-itemsets 

generated by the PPM algorithm is very close to the 

number of frequent 2-itemsets allows applying the 

scan reduction technique to effectively reduce the 

number of database scans. In [7] the author introduced 

a weighted model of transaction-weighted association 

rules in a time-variant database. He proposed an 

efficient progressive weighted miner (PWM) 

algorithm to perform the mining. In this algorithm, the 

importance of each transaction period is first reflected 

by a proper weight assigned by the user. Then, PWM 

partitioned the time-variant database in light of 

weighted periods of transactions and performed 

weighted mining. The algorithm PWM is designed to 

progressively accumulate the itemset counts based on 

the intrinsic partitioning characteristics and employ a 

filtering threshold in each partition to early prune out 

those cumulatively infrequent 2-itemsets. With this 

design, the algorithm PWM is able to efficiently 

produce weighted association rules for applications 

where different time periods are assigned with 

different weights and lead to results of more interest. 

Using the same concept proposed in [5] and [6], the 

algorithm segmented-progressive-filter (SPF) was 

introduced in [8], to first segment the database into 

sub-databases in such a way that items in each sub-

database will have either a common starting time or 

common ending time. Then, for each sub-database 

SPF progressively filters candidate 2-itemsets with 

cumulative filtering thresholds either forward or 

backward in time. This feature allows SPF of adopting 

the scan reduction technique by generating all 

candidate k-itemset(k>2) from candidate 2-itemset 

directly. Junheng-Haung [9] proposed a Segment 

Progressive Filter (SPFA) algorithm by extending the 

SPF algorithm proposed in [8]. SPFA significantly 

outperforms other schemes which are extended from 

prior methods in terms of execution time and 

scalability. The advantage of SPFA becomes even 

more prominent as the size of the database increases. 

Huang et al.[10], explore the previous studies [8], [9] 

to remedy the drawbacks of their algorithms. 

Algorithm TWAIN – two end association miner was 

presented to find association rules that are absent when 

the whole range of the database is evaluated 

altogether. This algorithm not only generates frequent 

patterns with more precise frequent exhibition periods 

but also discovers some interesting frequent patterns. 

TWAIN employees start time and end time of each 

item to provide precise frequent exhibition periods 

while progressively handling itemsets from one 

partition to another. Along with one scan of the 

database, TWAIN can generate frequent 2-itemsets 

directly according to the cumulative filtering 

threshold. Then TWAIN adopts the scan reduction 

technique to generate all frequent k-itemset (k>2) from 

the generated frequent 2-itemsets. Experimental 

results show that this algorithm performs better than 

the previous algorithm in the quality of frequent 

patterns execution time, I/o cost, CPU overhead, and 

scalability. 

A Genetic algorithm is proposed by [11], to find 

temporal association rules. This algorithm 

simultaneously searches the next rule in rule space and 

temporal space. This technique discovers more 

frequent item sets over a short time interval of the 

transaction dataset. This approach does not require 

prior partitioning. In [12], the authors investigate the 

problem of maximum frequent time-window selection 

(MFTWS) that appears in the process of discovering 

association rules time-windows (ARTW). They 

formulate the problem as a mathematical model using 

integer programming which is a typical combination 

problem with a solution space exponentially related to 

the problem size.  

A variable neighbourhood search (VNS) algorithm is 

developed to solve the problem with near-optimal 

solutions. Computational experiments are performed 

to test the VNS algorithm against a benchmark 

problem set. The results show that the VNS algorithm 

is an effective approach for solving the MTFWS 

problem, capable of discovering many large frequent-

1 itemsets with time-windows (FITW) with a larger 

time-coverage rate than the lower bounds, thus laying 

a good foundation for mining ARTW. In [13], the 

author proposed a new form of an association rule, i.e., 

an association rule with time windows. The main 

purpose of their study was to find the time intervals for 

association rules which may be arbitrary in length and 

not user specified. The main contribution of this work 

includes three aspects. First, the part-time association 

rule, the new concept of association rule with time 

windows (ARTM) together with the new concept of 

frequent itemsets with time windows (FITW), is 

presented as a more general form of association rule to 

substitute the old term temporal association rule. 

Second, a new framework for mining ARTMs on real-
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time transaction databases is proposed. The new 

framework is an extension of the support confidence 

framework, where a new criterion i.e. minimum time 

window(minwin) is added to judge an ARTW holding 

or not. Third, an efficient algorithm of TW-Apriori is 

developed for efficiently generating FITWs from real-

time transaction database. They further optimized the 

process of finding time windows by mathematical 

modelling [12]. 

In [14], the author presented a novel technique to 

identify Calendar-based (Annual, Monthly & Daily) 

periodicities of and interval-based temporal patterns. 

An interval-based temporal pattern is a pattern that 

occurs across a time interval, then disappears for some 

time, again reoccurs across another time interval, and 

so on and so forth. Given the sequence of time-interval 

in which an interval-based temporal pattern has 

occurred, they proposed a method for identifying the 

extent to which the pattern is periodic with respect to 

a calendar cycle. For this, a function called occurrence 

function is defined for a time stamp. A generalized 

algorithm was developed for computing the 

occurrence function at any time stamp in either a 

discrete or continuous domain. They have also 

developed another algorithm for finding the local 

maxima of the occurrence function. It had shown in 

this paper that, how these two algorithms could be 

used to determine calendar-based periodicities of an 

interval-based temporal pattern in either discrete or 

continuous patterns. The work proposed in [15] 

applies knowledge discovery techniques on a series of 

huge datasets obtained over a partition that contains 

many transactions in a consecutive time period, 

instead of applying them to the whole database. In 

addition, instead of extracting rules throughout the 

whole timeline, the rules are extracted from 

consecutive time intervals with different time 

granularities. The result for that will be developing a 

more efficient approach for mining temporal 

association rules on large data sets. The main 

contribution of this paper is to modify the method of 

partitioning the database by selecting the biggest 

partition that contains a large number of transactions 

instead of periodically time partitioning, in order to 

avoid multi-scanning of the database. In addition to it, 

the proposed system applies the Apriori Algorithm 

only to the selected partition aimed to reduce the time 

of extraction of association rules from the dataset. 

In the research paper [16] Saleh and Masseglia deal 

with the problem of the time periods which  

may contain frequent items might be because of the 

arbitrary division of the data. They introduced the 

definition of solid itemsets, which represent coherent 

and compact behaviour over specific periods, and the 

concept of SIM- Solid Itemset Mining was proposed 

to find the subsets of the database that contains 

frequent itemsets. Mazaher Ghorbani & Masoud 

Abessi, in [17], extended the concept of [16] and 

proposed a new technique to mine frequent itemsets 

over temporal data. In this paper, the author proposed 

an efficient algorithm to mine frequent patterns and 

their related time intervals from the transactional 

database. He first presents a new concept of time cubes 

(TC), to consider time hierarchies in the mining 

process. Then a new algorithm is proposed based on 

two thresholds, support and density as a novel 

threshold. Frequent itemsets are discovered and those 

with neighbouring time intervals of the same frequent 

itemsets are merged. This technique assumes that 

patterns are either hold in either some or all-time 

intervals. This technique proposes a time cube analysis 

of frequent patterns. The whole dataset is divided into 

the number of time cubes such as (hour, day, month), 

(day, month, year), etc. and analysis is done using an 

Apriori algorithm over these time cube data. It uses the 

temporal support value concept. In [18] the author, 

make an effort to enhance conventional rule mining by 

introducing temporal soft sets. They define temporal 

granulation mappings to induce granular structures for 

temporal transaction data. Using this notion, they 

define temporal soft sets and their Q-clip soft sets to 

establish a novel framework for mining temporal 

association rules. A number of useful characterizations 

and results are obtained, including a necessary and 

sufficient condition for the fast identification of strong 

temporal association rules. By combining temporal 

soft sets with NegNodeset-based frequent item set 

mining techniques, they develop the negFIN-based 

soft temporal association rule mining (negFIN-

STARM) method to extract strong temporal 

association rules.  

In [19] the authors present an integrated approach that 

can be used to write efficient codes for pattern mining 

problems. The approach includes, (1) cleaning 

datasets with the removal of infrequent events, (2) 

presenting a new scheme for time-series data storage, 
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(3) exploiting the presence of prior information about 

a dataset when available, (4) utilizing vectorization 

and multicore parallelization. They present two new 

algorithms, FARPAM (FAst Robust PAttern Mining) 

and FARPAMp (FARPAM with prior information 

about prior uncertainty, allowing faster searching). 

The algorithms are applicable to a wide range of 

temporal datasets. They implement a new formulation 

of the pattern searching function which reproduces and 

extends existing algorithms (such as SPAM and 

RobustSPAM), and allows for significantly faster 

calculation. The algorithms also include an option of 

temporal restrictions in patterns, which is available 

neither in SPAM nor in RobustSPAM. The search 

algorithm is designed to be flexible for further possible 

extensions. 

From the above discussion, it is observed that the time 

intervals have to be specified by the user. In this paper 

our proposal is completely different from the previous 

methods for finding temporal patterns, here we 

consider time as a hierarchical data structure and then 

extract the local periodic patterns from these 

hierarchical levels along with the time intervals 

without specifying the time intervals in advance by the 

user. Our method will extract the time time-intervals 

automatically while scanning the dataset in which the 

patterns are frequent.  

III. DEFINTION & TERRMINOLOGY 

Let I = {i1, i2, . . . in} be a set of items and D be a 

database of transactions. Each transaction tr is 

associated with an identifier transaction ID (TID), a 

time stamp TS and a set of items. For all transactions, 

Ttr ϵ TS, where TS is the total time span of the 

database. Let tst, tet ϵ TS where tst is the start time and 

tet is the end time be the time interval in each time 

hierarchy, and also it is clear that tst < tet. For example, 

(2,6) Month shows the time interval between the 2nd 

and 6th months. 

We define the local support of an itemset in a time 

interval [t1,t2] as the ratio of the number of 

transactions in the time interval containing the itemset 

to the total number of transactions in that time-interval 

for the whole dataset D. We use the notation 

Supp[t1,t2](X) to denote the support of item set X in that 

time interval. Here we define the Time Interval as 

BTC-Basic timecube. The Support of an itemset X in 

BTC is calculated as: 

SupportBTC(X) = N(X)Cube / |NCube| .     (1)  

Given a Threshold (σ) we say that an itemset X is 

frequent in the BTC if : 

SUPBTC(X) >= (σ/100)*TC      (2) 

Where TC denotes the total number of transactions in 

D that are in the BTC. 

We say that the set is locally frequent in BTC. We say 

that an association rule X=>Y, where X & Y are item 

sets, holds in the BTC if and only if given threshold 9, 

SUPbtc(XUY) / SUPBTC (X) >= σ/100  (3) 

and XUY is frequent in BTC. In this case, we say that 

the confidence of the rule is Conf. 

For each locally frequent itemsets extracted by the 

algorithm, a list of Time intervals are maintained in 

TC-Time Cube. Where each interval is represented as 

[str-dt, end-dt], where str-dt is the starting Timestamp 

of the Time Interval and end-dt is the ending 

timestamp of the time interval. (end-dt – std-dt) gives 

the length of the time interval (TP). Given two 

intervals  [std-dt1,end-dt1] & [std-dt2,end-dt2], if the 

intervals are non-overlapping and std-dt2>end-dt1, 

then std-dt2-end-dt1 gives the distance between the 

time-interval. 

Minimum support is a threshold to evaluate itemsets. 

Since records are not equally distributed in time 

intervals, very few records may occur on some 

occasions. Therefore, generated patterns may not be 

valid, since there is not enough evidence to show that 

they exist for that time interval, which causes the 

overestimating problem. In order to overcome this 

overestimating problem, we have used another 

threshold which is called density. 

Let us explain the necessity of density with an 

example. Consider itemset XY with Sup(X, Y)4−9 = 8 

/12 ≥ 60% Where 60% is the minimum support. 

However, we can observe from the database that XY 

is only frequent during the period 4 to 7 rather than the 

whole range of 4 to 9, which is an overestimated time 

period. Density not only ensures the validity of the 

patterns but also filters out time intervals with few 

records which cause overestimating the time periods. 

The density of a time interval is calculated as follows:  

Avg = N /NBTCs                                   (4) 

Density = α × Avg.         (5)  
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where N is the total number of records or transactions, 

NBTCs is the number of basic time cubes, and therefore, 

Avg. is the average number of transactions per BTC. 

A user-specified parameter α ∈ [0, 1] is used to 

determine the desired density using equation 4. α is 

called density rate. For example, if a dataset contains 

2000 records and 10 BTCs, then the average number 

of records per basic time-cube is 200. With parameter 

α = 0.5, cubes less than 100 records are filtered. 

Therefore, an itemset is called frequent if and only if 

for each Time-Cube(TC), it satisfies the following 

conditions.  

1) X =⇒Cube Y has a support greater than or equal to 

the minimum support threshold which is defined by 

the user.  

2) The time interval (Time cube) must be dense to 

ensure the validity of the rules. 

3.1 Set Superimposition: 

In this work, we have used an operator called 

superimposition denoted as (S), which was proposed 

by (Baruah, 1999). If set A is superimposed over the 

set B or B is superimposed over A then, we have: 

A(S)B = (A-B) (+)(A ∩ B)2(+)(B-A)  (6) 

Where (A ∩ B)2 are the elements of (A ∩ B) 

represented twice, and (+) represents the UNION of 

disjoint sets. To explain this, let us take an example 

below: 

If A=[a1,b1] and B=[a2,b2] are two  time intervals 

such that A intersect B != {}, we could get a 

superimposed portion, such as: 

[a1,b1](S)[a2,b2] =  

[(a(1),a(2)) (+) [a(2),b(2)]2(+)(b(1),b(2)]  (7) 

Where 

a(1) = min(a1,a2) a(2) = max(a1,a2)  

b(1) = min(b1,b2)  b(2) = max(b1,b2) 

 

IV. PROPOSED ALGORITHMS 

At the time of constructing locally frequent sets, with 

each locally frequent set, a list of time intervals (TC) 

is constructed in which the itemset is frequent. Here 

we use two thresholds mintp1 and mintp2 as user input 

values. During execution, while making a pass through 

a dataset, if for a particular itemset the time gap 

between its current timestamp and the time when it 

was last seen(before the current timestamp) is less than 

the value of mintp1 then the current transaction is 

included in the current time interval(BTC) under 

consideration, otherwise, a new time-interval is started 

with the current timestamp as the starting point. The 

support count of the itemset in the previous time 

interval is checked to see whether it is frequent in that 

interval or not and if it is then it is added to the list 

(TC) maintained for that set. Also for the locally 

frequent itemsets, a minimum period length(mintp2) 

given by the user and minden(Minimum Density)  is 

checked against the values of the time-interval (BTC). 

If the time-gap (TP) of the BTC and the number of 

transactions of the BTC is greater than the mintp2 and 

minden then these values are considered. If mintp2 is 

not used then an item appearing only once in the whole 

dataset will also become locally frequent. 

4.1. Procedure for Finding Locally Frequent Itemsets: 

4.1.1. Pre-processing the Dataset: 

If the dataset is non-temporal then we incorporate the 

temporal features i.e. Timestamps in the Dataset. For 

this, we have developed a program, which generates a 

list of timestamps when an initial timestamp value is 

given as input. It generates the timestamps from the 

initial timestamp value feed by the user to the end as 

per the number of records in the Dataset which is 

calculated by the program based on the input dataset. 

Program after merging these generated timestamps 

with the records of the dataset a new datafile is created 

which is used by the algorithm to generate the frequent 

itemset. 

4.1.2. Compute L1- the set of Locally Frequent-1 

Itemsets: 

For each item, while scanning the dataset we record a 

timestamp called L-timestamp that corresponds to the 

time when the item was last scanned. When an item is 

found in a transaction and the timestamp is tmstp and 

the time-gap between L-timestamp and the tmstp is 

greater than the minimum threshold(mintp1) given, 

then a new time interval (BTC) is started by setting 

starting timestamp of the new time interval (BTC) as 

tmstp and ending timestamp of the previous BTC as L-

timestamp. The previous BTC is added to the list (TC) 

maintained for that itemset provided that the duration 

of the BTC and the support of the itemset in BTC are 
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both greater than or equal to the minimum thresholds 

specified for each. Otherwise, L-timestamp is set to 

tmstp, the counter maintained for counting 

transactions are increased appropriately and the 

process is continued. The Algorithm to compute L1-

list of frequent-1 sets is given below.  

Algorithm-1: 

def : scan(D,C1): 

Input:      

    D= Temporal Datafile , C1=Candidate-1 Itemset, 

mintp1, mintp2 

Output: 

 L1=Set of Frequent-1 Itemset with Time 

Intervals 

Method: 

 n=len(C11)  # find the length of the C1         

    for k in range(n): 

        icount=0 

        ptcount=0 

        trcount=0 

        L-timestamp=0 

        F-timestamp=0 

        for tr in range(len(D)): 

            if C1[k].issubset(D[tr]): 

                tstmp=tm[tr] 

                if L-timestamp = 0: 

                   F-timstamp=tstmp 

                   L-timestamp=tstmp 

                   icount=1 

                   ptcount=1 

                   trcount=1 

                   elif (L-timestamp !=0): 

        start=datetime.strptime(lastseen, '%d-%m-%Y') 

        end=datetime.strptime(tstmp, '%d-%m-%Y') 

                    nodays=(end-start).days 

                    if(nodays<=mintp1): 

                        L-timestamp= tstmp 

                        icount=icount+1 

                        trcount=trcount+1 

                        ptcount=trcount 

                    elif (nodays>=mintp2): 

                        tc.append(C1[k]) 

                        tc.append(F-timestamp) 

                        tc.append(L-timestamp) 

                        tc.append(icount) 

                        sup=round(icount/ptcount,2) 

                        tc.append(sup) 

                        firstseen=tstmp 

                        lastseen=tstmp 

                        icount=1 

                        ptcount=1 

                        trcount=1               

            else: 

                trcount=trcount+1 

    n=5     

    tc2=[] 

    tc2=[tc[i:i+n] for i in range(0,len(tc),n)  

#Return the L1-Frequent-1 itemset with time-

intervals 

    return(tc2)  

In the above algorithm three support counts icount, 

ptcount, trcount are maintained with each item. When 

an item is first scanned then these are initialized to 1. 

For each item while making a scan through the dataset 

when a transaction containing the item is found then 

icount for that item is increased. To check whether an 

item is frequent in a time interval the total number of 

transactions in that time interval will have to be 

counted. For this, with each item, two counts ptcount 

and trcount are kept. The value of trcount increases 

with each transaction, but ptcount changes its value 

only when a transaction containing an item is found 

within mintp1 from the current value of the L-

timestamp and then it takes the value of ctcount. When 

an item is not seen for more than mintp, the time 

distance from L-timestamp, then the value of ptcount 

is used to compute the percentage support count of the 

item between F-timestamp and L-timestamp. If the 

count percentage of an item in a time interval is greater 

than the minimum support and time period, then only 

the itemset is considered as a locally frequent set and 

the locality is the time interval. When a new time 

interval is started for an item then these three count 

values are again initialized to 1. 

4.1.3. Compute Lk – Frequent -k Itemsets with Time 

Intervals 

After this Apriori candidate generation algorithm is 

used to find candidate frequent-2 itemset and then the 

pruning is applied. With each frequent-2 itemset, the 

list of time intervals is associated. In the candidate 

generation phase, the list of time intervals (TC) is 

empty. During the pruning phase, this list is prepared. 

The procedure for preparing is that when the first 

subset of itemset appearing in the previous level is 

found then that list is taken as the list of time intervals 

associated with the set. When the subsequent sets are 

found then the list is reconstructed by taking all 

possible pair-wise intersections of subsets one from 

each list. If this list becomes empty at any point in time 

or when a particular subset of the itemset under 

consideration is not found in the previous level then 

the set is pruned. The pairwise intersection of the 

interval list is taken for the following reasons. If the 

interval say[t1,t1’] and [t2,t2’] in which the itemsets 



© October 2022 | IJIRT | Volume 9 Issue 5 | ISSN: 2349-6002 

IJIRT 156966 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 432 

 

say {A,B} is frequent then there exists two time 

periods [t1,t1’] and [t2,t2’] in which the itemsets {A} 

& {B} are respectively, frequent and [t,t’] subset 

[t1,t1] intersection [t2,t2’]. Using this concept we 

described below the modified Apriori algorithm for 

the problem under consideration. 

Algorithm2: 

Modified Apriori 

Initialize k=1 

C1=Candidate-1 Itemset 

L1=Frequent-1 Itemset with Time intervals (TC) 

 #L1 is computed from Algorithm1 

K=2 

While(L(k-1) != {}) : 

 Ck = Cand-Gen(L[k-1],k)   

#Candidate generation by setting the TC =0  

 Prune(Ck)   

#drop all lists of time-interrvals(TC) maintained with 

the sets in Ck(Candidate itemset) which does not                                                   

satisfy the threshold conditions. 

freq-Gen(Ck,minsup,dbslen) 

 

Compute Lk from Ck   

#Lk can be computed from Ck using Algorithm1 

K=k+1 

Lk = Lk-1 U Lk-2 U….U Lk-i  (where i=1 to k) 

Return (Lk)   

# Set of Frequent-k itemsets  

Algorithm3: 

 

def freq-Gen(Ck,minsup,dbslen): 

l = Ck 

nopart=int(len(l)) 

if nopart != 0: 

         a=dbslen/nopart 

        den=a 

 else: 

       print("No. of Partitions are zero") 

       print("Frequent Set cannot be generated") 

     

    for i in range(len(l)): 

        l2=l[i] 

        st=datetime.strptime(l2[1], '%d-%m-%Y') 

        et=datetime.strptime(l2[2], '%d-%m-%Y') 

        tp=(et-st).days 

        if (l2[4]>=minsup and tp>=3): 

            l3.append(l2) 

    return(l3) 

Algorithm4: 

def Cand-Gen(Lk, k):   #creates Ck 

lenLk = len(Lk) 

for i in range(len(Lk)): 

for j in range(i+1, lenLk):  

     L1 = list(Lk[i])[:k-2]; L2 = list(Lk[j])[:k-2] 

     L1.sort(); L2.sort() 

     if L1==L2:               #if first k-2 elements are equal 

     retList.append(Lk[i] | Lk[j])           #set union 

    return (retList)     

Algorithm5: 

def prune(Ck,l5)  

 for i in range(len(Ck)): 

    temp1=Ck[i] 

    for j in range(len(l5)): 

       if l5[j][0].issubset(temp1): 

           temp2=l5[j][1] 

           temp3=l5[j][2] 

             for k in range(j+1,len(l5)): 

               if l5[k][0].issubset(temp1): 

                   temp4=l5[k][1] 

                   temp5=l5[k][2]        

             dt1=datetime.strptime(temp2, '%d-%m-%Y') 

              dt2=datetime.strptime(temp4, '%d-%m-%Y') 

                   gap1=abs((dt2-dt1).days) 

             dt3=datetime.strptime(temp3, '%d-%m-%Y') 

              dt4=datetime.strptime(temp5, '%d-%m-%Y') 

                    gap2=abs((dt4-dt3).days) 

        if l5[k][0].issubset(temp1) and gap1<=2  

                 and gap2<=2: 

d1=pairwise-intersection(temp2,temp3,temp4,temp5) 

            d2.append(temp1) 

            d2.append(d1) 

            tp.append(d1) 

    return(d2) 

 

4.1.4. Explanation of the Algorithm with an Example 

To explain the working of the algorithm, we have 

taken a small dataset consisting of timestamps and the 

list of items at the corresponding dates. We have 

assumed the dataset is collected for a period of two 

months i.e. 01-01-2021 to 28-02-2021 and the market 

is open all days of the week. The total number of items 

are 5, total number of transactions are 59. We have 

assumed the mintp1=2 days and the mintp2=5 days 

and min-support=50%. We executed the algorithm to 

find the locally frequent itemset. The dataset statistics 

are given below: 

Database length= 182 Transactions 

Total Number of frequent itemsets =  31 

The Execution Time is : 0.859375 msec 

Read the dataset to find the list of time intervals where 

the itemsets are frequent. Read the transactions one by 

one to find the F-timestamp, L-timestamp, and the 

support of the itemset in [F-timestamp, L-timestamp]. 

After the first scan of the dataset, we get the set local 

frequent-1 itemset along with the time interval as 

follows: 
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--------------------------------------------------------------| 

|           The frequent one itemset is                        | 

|--------------------------------------------------------------| 

|Item   Starting Date   Ending Date  Item Count   Item 

Support | 

|--------------------------------------------------------------| 

[{'curd'}, '30-01-2022', '02-02-2022', 4, 1.0] 

[{'curd'}, '13-02-2022', '19-02-2022', 5, 0.71] 

[{'curd'}, '19-03-2022', '25-03-2022', 5, 0.71] 

[{'curd'}, '07-04-2022', '11-04-2022', 4, 0.8] 

[{'curd'}, '17-04-2022', '20-04-2022', 3, 0.75] 

[{'detergent'}, '30-01-2022', '02-02-2022', 4, 1.0] 

[{'detergent'}, '11-02-2022', '19-02-2022', 5, 0.56] 

[{'detergent'}, '19-03-2022', '25-03-2022', 4, 0.57] 

[{'detergent'}, '07-04-2022', '11-04-2022', 3, 0.6] 

[{'salt'}, '30-01-2022', '05-02-2022', 6, 0.86] 

[{'salt'}, '11-02-2022', '19-02-2022', 6, 0.67] 

[{'salt'}, '19-03-2022', '25-03-2022', 5, 0.71] 

[{'salt'}, '07-04-2022', '11-04-2022', 4, 0.8] 

[{'salt'}, '17-04-2022', '20-04-2022', 3, 0.75] 

List L is  [[{'curd'}, {'detergent'}, {'salt'}]] 

In the second level we get the candidate itemsets as 

follows: 

--------------------------------------------------------------| 

|           The Frequent-TWO itemset is                        | 

|--------------------------------------------------------------| 

|Item   Starting Date   Ending Date  Item Count   Item 

Support | 

|--------------------------------------------------------------| 

[{'curd', 'detergent'}, '30-01-2022', '02-02-2022', 4, 

1.0] 

[{'curd', 'detergent'}, '13-02-2022', '19-02-2022', 4, 

0.57] 

[{'curd', 'detergent'}, '19-03-2022', '25-03-2022', 4, 

0.57] 

[{'curd', 'detergent'}, '07-04-2022', '11-04-2022', 3, 

0.6] 

[{'curd', 'salt'}, '30-01-2022', '02-02-2022', 4, 1.0] 

[{'curd', 'salt'}, '13-02-2022', '19-02-2022', 5, 0.71] 

[{'curd', 'salt'}, '19-03-2022', '25-03-2022', 5, 0.71] 

[{'curd', 'salt'}, '07-04-2022', '11-04-2022', 4, 0.8] 

[{'curd', 'salt'}, '17-04-2022', '20-04-2022', 3, 0.75] 

[{'salt', 'detergent'}, '30-01-2022', '02-02-2022', 4, 

1.0] 

[{'salt', 'detergent'}, '11-02-2022', '19-02-2022', 5, 

0.56] 

[{'salt', 'detergent'}, '19-03-2022', '25-03-2022', 4, 

0.57] 

[{'salt', 'detergent'}, '07-04-2022', '11-04-2022', 3, 

0.6] 

 

In the third level we get the frequent-3 itemset as: 

 

 

 

 

 

--------------------------------------------------------------| 

|           The Frequent-THREE itemset is                        

| 

|--------------------------------------------------------------| 

|Item   Starting Date   Ending Date  Item Count   Item 

Support | 

|--------------------------------------------------------------| 

[{'curd', 'salt', 'detergent'}, '30-01-2022', '02-02-2022', 

4, 1.0] 

[{'curd', 'salt', 'detergent'}, '13-02-2022', '19-02-2022', 

4, 0.57] 

[{'curd', 'salt', 'detergent'}, '19-03-2022', '25-03-2022', 

4, 0.57] 

[{'curd', 'salt', 'detergent'}, '07-04-2022', '11-04-2022', 

3, 0.6] 

V.  IMPLEMENTATION & RESULTS 

The above algorithm we have implemented in python 

3.10.2 on Intel(R) Core(TM) i5-10210U CPU @ 

1.60GHz   2.11 GHz on Windows 11 Home Single 

Language. We have taken the dataset from 

http://fimi.uantwerpen.be/data/ -FIMI – Frequent 

Itemset Mining Dataset Repository. We conducted 

the experiments on different datasets. The results and 

the details of the datasets are as follows: 

Table1- Executed data Statistics 

SN

O 

DATASET-

NAME 

NO.OF 

TRANSACT

IONS 

NO. OF 

FREQU

ENT 

ITEMS 

EXECUT

ION 

TIME (IN 

msecs) 

1 GROCERY.

TXT 

159 30 1.09375 

2 KOSARK.T

XT 

50877 4174 194.9062

5 

3 RETAIL.T

XT 

95050 7114 614.0937

5 

4 T10I4D100

K 

100059 16375 903.4687

5 
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From the above Figures, it can be seen that in Figure 

1, as the No. of Transactions increases the No. of 

Frequent items also increased. Similarly in Figure 2, it 

can be observed that a more number of transactions 

takes more amount of Execution time. 

 

VI.  CONCULSION 

 

In this paper, we mainly focused on extracting local 

frequent itemsets along with Time Intervals. Here we 

have used a time hierarchy structure Time Cube to 

store the time intervals.  

Our Algorithm is successfully used a set operator 

called Set Superimposition. This Algorithm is able to 

partition and extract the Time intervals automatically 

from the dataset, as it is not needed to specify the dates 

to partition the dataset by the user which was required 

in the previous studies. As can be seen that this 

Algorithm generates more frequent items and takes 

more amount of time for Execution as the size of the 

data increases.  

In the future, we try to overcome the pitfalls of this 

algorithm by: 

• Reducing the amount of Execution Time  

• Generate interesting Frequent Itemset and 

Association Rules.  
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