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Abstract—Quantum computers are the emerging 

future and special gates, different from those used in 

classical computers, are required to operate them. 

Decades of research has produced many such gates 

which are being used in the existing quantum 

computers, although they are in their infancy. To learn 

quantum computing, it is paramount that a decent 

understanding of many of these basic gates and their 

workings is made before starting to develop any 

quantum algorithm. In the present paper the authors 

have given an exhaustive study on various issues and 

developments of Quantum Gates. 

Index Terms—Quantum Computers, Quantum 

Information, Quantum Gates, Qiskit, Quantum Gate 

Calculations. 

I. INTRODUCTION 

Modern equivalents of the ENIAC machines, 

Quantum computers are highly-complex & highly-

sensitive machines and are perceived as black boxes 

by most, but they are anything but that and they 

have been physically realised by only a handful of 

institutions in the past twenty-five years. 

A library of specially designed quantum logic 

gates[1] are used in these quantum computers to 

manipulate the quantum bits (also called qubits) to 

ensure higher probability of a desired combination 

of bits (here, qubits) at a much faster rate than most 

modern classical computing device.  

This review paper aims at explaining the most 

popular qubit gates in use & thus provide a ground 

for the intuition as to how quantum computers 

essentially work. Using the Bloch Sphere & 

Circuit Diagrams (for multi-qubit gates) generated 

in qiskit (IBM’s open-source software development 

kit build to work with their proprietary quantum 

processors), the effect of each quantum gate on the 

qubit(s) are visualized. 

II. PRELIMINARY CONCEPTS 

Quantum Information is a vast field and there are a 

few concepts of Quantum Mechanics that need to be 

studied and understood before the gates can be 

reviewed. These concepts are used to create 

algorithms suited to operate any quantum computer, 

also called Quantum Algorithms. 

A. Unitary Matrix 

In linear algebra, a complex square matrix U is a 

Unitary Matrix if its conjugate transpose U* is also 

its inverse. 

UU-1 = U*U = UU* = I 

All quantum gates are unitary square matrices of 

dimension 2i (i = number of qubits the gate is acting 

upon). 

 

B. Bra-Ket Notation 

Also called Dirac Notation, this set of notations are 

used everywhere to describe a quantum state. If x is 

a quantum state, then a bra is denoted using ⟨x| and 

a ket is denoted by |x⟩. 

Mathematically, |x⟩ denotes a vector x in a complex 

vector space V and it is a physical representation of 

a quantum state. Every quantum state in this article 

is denoted using this ket notation. 

⟨ f | denotes a linear function f that linearly maps 

each vector in the complex vector space V to a 

scalar in complex plane C (i.e., mathematically, 

f: V→C) 

In quantum mechanics, this is represented by 

⟨ f | x ⟩ ∈ C 

C. Qubit 

A Qubit or Quantum Bit, is the most fundamental 

unit of quantum information. It is a two-state 

quantum mechanical system. Examples of qubits 

are the spin of an electron or the polarity of a 

photon. The peculiar edge that a qubit gives over a 

classical bit is its property of being in a logical 

Superposition of both states simultaneously which 

serves as an essential requirement in all aspects of 

quantum mechanics and information. 

A qubit system is a linear superposition of two 

orthonormal basis states |0⟩ and |1⟩. These 2 states 

span the 2D Hilbert space of a qubit and are together 

called the computational basis. More than 1 qubit 

can be combined to form a quantum register and can 

represented by a superpositioned product state 
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vector in 2n dimensional Hilbert Space (n being the 

number of qubits in a quantum register). For 

example, for a quantum register with 2 qubits, there 

are total of 4 product basis states: 

|00⟩ = [

1
0
0
0

] |01⟩ = [

0
1
0
0

] 

|10⟩ = [

0
0
1
0

] |11⟩ = [

0
0
0
1

] 

III. SINGLE QUBIT GATES 

Qubits cannot be manipulated using logic gates 

implemented in classical computers. They need 

specialized gates created using the theoretical 

concepts of linear algebra & complex numbers, 

which are uniquely suited to manipulate the 

subatomic particle in use. There are several 

quantum gates that act upon only one qubit (called 

Single Qubit Gates). A single qubit gate is 

multiplied to the basis state vector (i.e., the vector 

stating the probability of the qubit of being read as 

quantum states |0⟩ or |1⟩) of a qubit to generate a 

new set of basis states for it. 

In the present study the authors will discuss the 

following quantum logic gates : 

A. I (or Identity Gate). 

B. Pauli X, Y & Z (or Pauli Gates). 

C. H (or Hadamard Gate). 

D. S, T & P (or Phase Shift Gates). 

E. Rx, Ry, Rz (or Rotation Gates). 

All single qubit gates can be represented using a 

unitary square matrix of size 2 For each gate it’s 

unitary matrix, code snippet to add it to a quantum 

circuit in Qiskit, it’s action on the quantum basis 

state of Initial Qubit |0⟩ shown in Fig. 1 (except for 

the Rotation Gates) and a table (except for the I 

Gate) elaborating it’s action on 6 different axial. 

points (some basic basis and superpositioned 

quantum states), which are  

1. |0⟩ (=[
1
0
]) 2. |1⟩ (=[

0
1
]) 

3. |+⟩ (= 
|0⟩ + |1⟩

√2
) 4. |−⟩ (= 

|0⟩ − |1⟩

√2
) 

5. |i⟩ (= 
0⟩+𝑖∨1⟩

√2
) 6. |-i⟩ (= 

0⟩−𝑖∨1⟩

√2
)  

In most results, the answer are given as another 

axial point or a linear combination of more than one 

axial points. But in some special cases, where the 

result cannot be given as a linear combination of 

axial points, the resultant qubit vector has been 

given. 

A. Identity Gate (I) 

Multiplication with identity Matrix in basic linear 

algebra generates the exact matrix it gets multiplied 

with. Identity Gate or I Gate is made out of the same 

identity matrix. It is denoted using the unitary 

matrix 

[
1 0
0 1

] 

and does not modify the state vector of a qubit. The 

only uses of this gate is to mathematically describe 

the results of many gate operations or when 

discussing circuits made out of multiple qubits. 

From here forth, every single 

qubit gate will act upon the 

qubit represented by the 

Bloch Sphere in Fig. 1. By 

using the code format from 

qiskit below, I gate can be 

added on to a qubit in position 

Qubit_position in a quantum 

circuit Quantum_Circuit: 

Quantum_Circuit.i(Qubit_position) 

B. Pauli Gates (X, Y, Z) 

The next 3 gates are 

Pauli X, Y & Z gates 

(collectively called 

the Pauli Gates). 

They get their name 

from the celebrated 

Austrian theoretical 

physicist Wolfgang 

Pauli, who came up 

with the concept of Pauli Matrices, the unitary 

matrices used for the Pauli Gates. These matrices 

have anti-commute (i.e., -XZ = ZX = iY), 

involutory (i.e., multiplying any one of the Pauli 

Gate with itself gives the I Gate). These 3 gates 

rotate the target qubit in the Bloch Sphere by the 

corresponding axis in the sphere by an angle of π 

radians. 

The first among these three is the Pauli X or σx 

Gate. On applying this gate, the initial qubit rotates  

along the x-axis of the  Bloch sphere by π radians. 

In Fig. 2, it can be seen that Pauli X Gate transforms 

the initial qubit to the axial point |1⟩.  Also note that 

the Pauli X gate is equivalent to the NOT gate in 

classical computing. The unitary matrix of Pauli X 

Gate is 

[
0 1
1 0

] 
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This gate is implemented in qiskit using the 

following code format: 

Quantum_Circuit.x(Qubit_position) 

A slight modification of the Pauli-X Gate is √𝑋 or 

V gate, which can be represented using the unitary 

matrix 

1

2
[
1 + 𝑖 1 − 𝑖
1 − 𝑖 1 + 𝑖

]. 

A special circuit library in qiskit offers various 

functions to implement such special modified gates 

and one of them helps in putting V Gate onto the 

circuit: 

Quantum_Circuit.sx(Qubit_position) 

Table 1 shows output when the 6 different axial 

points are given as input to both X & √𝑋 gates. The 

common expression in any tabular outputs is the 

phase shift above the qubit change that the initial 

qubit goes through on the application of the gate. 

The second is Pauli Y or σy Gate. When this gate is 

applied on an initial qubit, it rotates along the y-axis 

by π radians of the Bloch Sphere. This gate is 

represented in linear algebra using the unitary 

matrix 

[
0 −𝑖
𝑖 0

] 

In qiskit, the following code format is used to 

implement Pauli Y Gate : 

Quantum_Circuit.y(Qubit_position) 

In Fig. 3, it can be seen how Pauli-Y Gate changes 

the initial qubit, but the output is same as the Pauli- 

X Gate. Table 2 

lists the output for 

the 6 axial points on 

applying Pauli-Y 

gate. 

The last of the Pauli 

Gates is Pauli Z or 

σz Gate & a qubit 

rotates by π radians along the z-axis when this gate 

is applied on it. In linear algebra, it is represented by 

the matrix 

[
1 0
0 −1

] 

An example of this is in Fig. 4 when the gate is 

application is when  it  is  applied  to  the  initial  

qubit, which  is same as applying the Pauli Y Gate. 

But changes are seen when it is applied to a qubit 

with initial position of |1⟩ in Table 3. So in 

summary, it keeps input of 

|0⟩ unchanged but flips the 

phase of any other input, 

due to which the Pauli Z 

Gate is also sometimes 

called as the Phase Flip 

Gate. Pauli Z is also an 

example of Phase Shift 

Gate. In qiskit, the 

following code format is used to implement Pauli Z 

Gate: 

Quantum_Circuit.z(Qubit_position) 

C. Hadamard Gate (H) 

The next gate is the 

Hadamard (or H) gate, 

which puts a qubit into 

superposition state & 

when measured 

collapses the 

superposition state of 

the qubit giving either a 

|0⟩ or |1⟩ basis state 

everytime the circuit is 

run with a 50% chance 

of being either of the 

basis states. Putting an H gate to the initial qubit, 

the result is as shown in Fig. 5. As seen, the qubit is 

now neither in basis state |0⟩ or |1⟩. It is in a 

superpositioned state. The unitary matrix of the 

Hadamard gate is 

1

√2
[
1 1
1 −1

] 

In qiskit, the following code format is used to 

implement the Hadamard Gate onto a qubit: 

Quantum_Circuit.h(Qubit_position) 

Table 4 on previous page shows the result when this 

gate is applied on a few initial qubit positions.

Table 1: Pauli X & √𝑋 on several initial qubit positions 

Initial State Final State (X) Final State (√𝑋) 

|0⟩ |1⟩ 1

√2
 (|+⟩ + |–⟩) 

|1⟩ |0⟩ 1

√2
 (|+⟩ + i |–⟩) 

|+⟩ |+⟩ |+⟩ 
|–⟩ – |–⟩* i |–⟩ 
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|𝑖⟩ i | –i ⟩ (
1

√2
 + 

𝑖

√2
) |0⟩ 

| –i ⟩ –i |𝑖⟩ (
1

√2
 - 

𝑖

√2
) |1⟩ 

 

Table 2: Pauli Y Gate on initial qubit positions 

Initial State Final State 

|0⟩ i |1⟩ 
|1⟩ –i |0⟩ 

|+⟩ –i |−⟩ 
|−⟩ i |+⟩ 

|𝑖⟩ |𝑖⟩ 

|−𝑖⟩ – |−𝑖⟩ 
 

Table 3: Pauli Z Gate on initial qubit positions 

Initial State Final State 

|0⟩ |0⟩ 

|1⟩ – |1⟩ 

|+⟩ |−⟩ 

|−⟩ |+⟩ 

|𝑖⟩ |−𝑖⟩ 

|−𝑖⟩ |𝑖⟩ 
 

Table 4: Hadamard Gate on initial qubit positions 

Initial State Final State 

|0⟩ |+⟩ 

|1⟩ |−⟩ 

|+⟩ |0⟩ 

|−⟩ |1⟩ 

|𝑖⟩ |+⟩ − i|−⟩ 

|−𝑖⟩ |+⟩ + i|−⟩ 

*Note: – |−⟩ =  – (
|0⟩ − |1⟩

√2
) = – 

1

√2
 ([

1
0
] – [

0
1
]) = – 

1

√2
 [

1
– 1

] = [
–

1

√2
1

√2

]

D. Phase Shift Gates (S, T, P) 

Phase Shift Gates are a 

family of single-qubit 

gates that keeps the basis 

state |0⟩ unchanged but 

changes basis state |1⟩ to 

eiϕ|1⟩, where ϕ is the angle 

of rotation of the qubit 

along z-axis. Although 

this class of gates doesn’t 

change the probability of 

either |0⟩ or |1⟩, they do 

change the phase of the quantum state. The phase 

shift gate is denoted by the matrix: 

P(ϕ) = [
1 0
0 𝑒𝑖𝜙] 

Identity gate & Pauli 

Z gate are the most 

basic Phase Shift 

Gates where ϕ(or 

angle of rotation) is 

equal to 0 & π 

respectively. Other 

phase shift gates with 

their angles of rotation 

are S(or P(π/2)), T(or 

P(π/4)) which can be 

represented as √𝑍 & √𝑍
4

 respectively. 
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It should be noted that phase shift gates are 

Hermitian (i.e., a matrix whose transpose is equal 

to its complex 

conjugate) 

only when ϕ 

lies in the 

range [0, π]. 

To show it’s 

working, all 

the 3 common 

phase shift 

gates Z, S & T are applied onto the output of 

Hadamard Gate in Fig. 6, Fig. 7 & Fig. 8 

respectively. 

To implement gates S & T, following code snippets 

written in qiskit are used: 

Quantum_Circuit.s(Qubit_position) 

Quantum_Circuit.t(Qubit_position) 

A general phase shift gate is also available which is 

implemented as follows: 

Quantum_Circuit.p(Angle_of_rotation, 

Qubit_position) 

Table 5 on next page shows the result of application 

of S & T gates on the 6 axial points. 

E. Rotation Gates (Rx, Ry, Rz) 

Rotation Gates are analog rotation matrices which 

allow rotation about all the 3 Cartesian Axes of the 

Euclidean Space (The axes collectively are also 

known as SO(3)). There is one for each of the axes 

- Rx(θ), Ry(θ), Rz(θ) - where θ is the angle of 

rotation. For every θ & every b(∈ {x, y, z}), Rb(−θ) 

= Rb(θ)† & Rb(0) =I. For Rx(θ), the unitary matrix is 

[
𝑐𝑜𝑠(𝜃 2⁄ ) −𝑖. 𝑠𝑖𝑛(𝜃 2⁄ )

−𝑖. 𝑠𝑖𝑛(𝜃 2⁄ ) 𝑐𝑜𝑠(𝜃 2⁄ )
] 

for Ry(θ), the unitary matrix is 

[
𝑐𝑜𝑠(𝜃 2⁄ ) −𝑠𝑖𝑛(𝜃 2⁄ )

𝑠𝑖𝑛(𝜃 2⁄ ) 𝑐𝑜𝑠(𝜃 2⁄ )
] 

& for Rz(θ), the unitary matrix is 

e(-i.θ / 2).[
1 0
0 1

] 

The matrix representations for every rotational gate 

for θs: (π/6), (π/4), (π/3), (π/2) are shown are shown 

in Tables 6, 7 & 8. These gates can be represented in 

Qiskit using the following code formats: 

Quantum_Circuit.rx 

(Angle_Of_Rotation_In_Radians, Qubit_pos) 

Quantum_Circuit.ry 

(Angle_Of_Rotation_In_Radians, Qubit_pos) 

Quantum_Circuit.rz 

(Angle_Of_Rotation_In_Radians, Qubit_pos) 

IV. MULTI-QUBIT GATES 

A qubit’s mathematical structure can be generalized 

to higher dimensions of quantum  systems. Any 

quantum state is a normalized vector in a 

complex vector space 

which ensures that 

on measurement, the 

total probability of 

all outcomes is one. 

Currently, most 

quantum computers 

contain multiple 

qubits, making the 

knowledge of 

construction of the combined qubit system state 

given the states of the individual qubits, which is 

described using the tensor product operation 

(denoted by ⊗). 

These tensor product operations give rise to Multi-

Qubit Gates. The simplest of them is CNOT(also 

called Controlled 

NOT) Gate. It is a 2-

qubit gate which can 

be used to entangle 2 

qubits or disentangle 

already entangled 

qubits (whose 

maximally  entangled states are called Bell States). 

Next is the Toffoli (also called CCNOT) Gate, 

which uses 3 qubits for its execution. 

A. Controlled NOT Gate 

Controlled NOT (or 

CNOT or CX) Gate is a 2 

qubit Gate where one qubit 

is used as control (denoted 

using •) & the other is used 

as target (denoted using 

⊕). The target qubit gets 

flipped if and only if the control qubit is of basis 

state |1⟩, otherwise it is left unchanged (simply put, 

the target qubit acts like the classical XOR Gate). 

The circuit of CNOT Gate is given in Fig. 9 & Table 

9 on the next page shows the result on both qubits 

when the gate is applied. 

Other names given to this gate are CX, Controlled 

Pauli-X & Feynman (after Richard Feynman, who 

developed the early notations of quantum gate 

Table 9: Result of CNOT Gate on all Control-Target 

qubit combinations 

Before After 

Control Target Control Target 

|0⟩ |0⟩ |0⟩ |0⟩ 
|0⟩ |1⟩ |0⟩ |1⟩ 
|1⟩ |0⟩ |1⟩ |1⟩ 
|1⟩ |1⟩ |1⟩ |0⟩ 
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diagrams in 1986) Gates. The matrix to represent 

this gate is 

[

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

] 

and it is Hermitian in nature. These gates are 

essential in many quantum algorithms including 

Deutsch–Jozsa & Bernstein-Vazirani algorithms. 

To implement the CNOT Gate, following qiskit 

code snippet is used: 

Quantum_Circuit.cnot(Control_qubit_pos, 

Target_qubit_pos) 

Any single qubit gate can 

also be controlled using 

the CNOT Gate. A series 

of CNOT & other single 

qubit gate operations are 

needed to be performed to 

control a single qubit 

gate. To control Pauli-Y 

Gate, the operations 

shown in Fig. 10 are performed, i.e., phase shift of 

π/2 on target qubit, a CNOT Gate & another phase 

shift of −π/2 on target qubit. This gate is also called 

Controlled-Y Gate. It is represented using the 

following matrix 

[

1 0 0 0
0 1 0 0
0 0 0 −𝑖
0 0 𝑖 0

] 

 

The gates given in the diagram can be used to create 

the circuit or this can also be done using only one 

instruction in qiskit: 

Quantum_Circuit.cy(Control_qubit_pos, 

Target_qubit_pos) 

Similarly for Pauli-Z Gate, a few logic gates 

can be used to control it. Fig. 11 shows how; a  

Hadamard Gate on target qubit, followed by a 

CNOT Gate & terminated by another Hadamard  

Gate. Fig. 12 in the previous page shows the 2-qubit 

gates used to construct Controlled-Y & Controlled-

Z respectively. Controlled Z Gate is represented 

using the following matrix: 

[

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

] 

Following qiskit instruction can also be used instead 

of creating the Controlled-Z  circuit  shown: 

Quantum_Circuit.cz(Control_qubit_pos, 

Target_qubit_pos) 

B. SWAP Gate 

As it is intuitive, 

CNOT Gates are 

crucial in creating 

multi-qubit systems 

to perform complex 

tasks. They can be 

used for many other 

tasks also. Another 

crucial use of CNOT 

Gates is the SWAP Gate, which just swaps the 

quantum information of 2 qubits. 

Table 5: S & T Gates on several initial qubit position 

Initial State Final State (S) Final State (T)  

|0⟩ |0⟩ |0⟩  

|1⟩ i |1⟩ 
[

0
1

√2
(1 + 𝑖)] 

 

|+⟩ |+⟩ 1

√2
[

0
1

√2
(1 + 𝑖)] 

 

|−⟩ |-i⟩ 1

√2
[

0
−1

√2
(1 + 𝑖)] 

 

|𝑖⟩ |−⟩ 1

√2
[

0
1

√2
(𝑖 − 1)] 

 

|-𝑖⟩ |+⟩ 1

√2
[

0
−1

√2
(𝑖 + 1)] 

 

 

Table 6: Matrix of Rx Gate on different Angles Of Rotation 

Rx(π/6) 1

4
[

(√6 + √2) −𝑖(√6 − √2)

−𝑖(√6 − √2) (√6 + √2)
] 

Rx(π/4) 

1

2

[
 
 
 √√2 + 2 −√√2 − 2

−√√2 − 2 √√2 + 2 ]
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Rx(π/3) 1

2
[√3 −𝑖

−𝑖 √3
] 

Rx(π/2) 1

√2
[
1 −𝑖
−𝑖 1

] 

 

Table 7: Matrix of Ry Gate on different Angles Of Rotation 

Ry(π/6) 1

4
[

(√6 + √2) (√6 − √2)

−(√6 − √2) (√6 + √2)
] 

Ry(π/4) 

1

2

[
 
 
 √2 + √2 −√2 − √2

√2 − √2 √2 + √2 ]
 
 
 

 

Ry(π/3) 1

2
[√3 −1

1 √3
] 

Ry(π/2) 1

√2
[
1 −1
1 1

] 

 

Table 8: Matrix of Rz Gate on different Angles Of Rotation 

Rz(π/6) (√6+√2)−𝑖(√6−√2)

4
 . [

1 0
0 1

] Rz(π/4) (√2+√2)−(√2−√2)

2
 . [

1 0
0 1

] 

Rz(π/3) √3−𝑖

2
 . [

1 0
0 1

] Rz(π/2) 1−𝑖

√2
 . [

1 0
0 1

] 

 

It is created by putting a 

reversed CNOT Gate in 

between 2 CNOT Gates. 

Fig. 13 shows 1 possible 

way of doing it. The other 

way is only to invert each 

CNOT gate (i.e., to make each control bit the target 

bit and vice versa). 

The matrix used to represent the SWAP Gate is 

[

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

] 

and in circuit diagram notation, it is represented 

using the symbol in Fig. 14. This gate can be 

represented in qiskit using the following code 

snippet: 

Quantum_Circuit.swap(Qubit1_pos, 

Qubit2_pos) 

C. Toffoli Gate 

The Toffoli Gate or CCNOT (Controlled-

Controlled-NOT) Gate (named after Tommaso 

Toffoli who invented 

this gate), is a 3-qubit 

universal reversible 

quantum logic gate 

(i.e., any classical 

reversible logic circuit 

can be constructed 

using this gate. It 

contains 2 control & 1 target qubit and performs 

Pauli-X operating on the target qubit iff (if & only 

if) both the control states are in basis state |1⟩. So, 

the target qubit’s final state gets equal to AND of 

the control qubits (When the target qubit is initially 

at basis state |0⟩, otherwise NAND of the basis 

states of the control qubit occurs). This can be done 

by a comparatively bigger quantum circuit given in 

Fig. 15 but can also be done using a single gate 

shown in Fig. 16, both of which are given on the 

next page. 

A lot of things that work for CNOT Gate, work for 

the Toffoli Gate as well. The gate can be 

represented using the following 8x8 matrix: 

[
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0]

 
 
 
 
 
 
 

 

The following instruction in qiskit is used to put a 

Toffoli Gate on a quantum circuit: 

Quantum_Circuit.toffoli(Control1_qubit, 

Control2_qubit, Target_qubit) 

We can also use the concept of Toffoli Gates for 

other gates, such as the Fredkin (or Controlled-

SWAP or CSWAP) Gate, a 3-qubit gate with 1 

control & 2 target qubits, which swaps the 2 target 

qubits iff the control qubit is in basis state |1⟩. The 

gate is represented using the following matrix: 

[
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1]

 
 
 
 
 
 
 

 

The following instruction in qiskit is used to put a 

CSWAP Gate on a quantum circuit: 

Quantum_Circuit.cswap(Control_qubit, 

Target1_qubit, Target2_qubit) 
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V. CUSTOMIZATION 

Below given is a random unitary matrix generated 

using python which can act on 2 qubits (a qubit 

vector of 2 qubits can be considered as 

[

𝛼
𝛽
𝛾
𝛿

] 

α being the probability of qubit state |00⟩ being read 

on measuring, β being the probability of |01⟩, γ 

being the probability of |10⟩ & δ being the 

probability of |11⟩) & would return a new qubit 

vector for the 4 possible combinations of those 

qubits.  

Coupling it with the fact that matrix-multiplication 

of multiple unitary matrices also produces a unitary 

matrix as a result, it can be conclude that even the 

largest of quantum circuits can also be 

represented using a unitary matrix. A unitary 

matrix U can be represented as a gate in qiskit using 

the following code snippet: 

U_gate = UnitaryGate(Unitary_Matrix) 

Quantum_Circuit.append(U_gate, 

[List_Of_Qubit_Positions]) 

[

(−0.523053 − 0.456867𝑖) (0.334272 + 0.046708𝑖) (−0.054205 − 0.010454𝑖) (−0.179382 + 0.607078𝑖)
(−0.349395 − 0.509972𝑖) (−0.198202 + 0.016963𝑖) (0.053563 − 0.459960𝑖) (0.381165 − 0.467505𝑖)

(−0.150407 − 0.261038𝑖) (−0.586501 + 0.041197𝑖) (−0.240314 + 0.702790𝑖) (0.107837 + 0.016244𝑖)
(−0.198604 − 0.073030𝑖) (−0.032696 − 0.706937𝑖) (0.450475 + 0.167119𝑖) (−0.411814 − 0.232267𝑖)

] 

VI.CONCLUSION 

Building block of all quantum algorithms, quantum 

gates are fundamental at every step of quantum 

computation and information. With such a wide 

variety of gates provided by circuit libraries like the 

one in qiskit helps quantum computing enthusiasts 

tweak with IBM’s quantum processors from any 

part of the world. 

Researchers are now focusing on more complex 

problems as technology is advancing, quantum 

computing is also helping in solving complex 

problems like protein modelling by using physics of 

quantum mechanics. 

There are several key challenges right now. First 

being unclear on selecting appropriate approach for 

a quantum project implementation, as there are 

different approaches. As it costs high to create 

quantum circuits, even few trials and errors of 

different approaches would cost heavily in both 

time and finance. Secondly, for a better stability and 

control of qubits, organizations like IBM keep the 

temperature of their quantum processors at very low 

levels (15 milliKelvin) and that results in zero 

ambient noise or heat that would excite the 

superconducted qubits and such factors require 

huge investments in state-of-the-art technologies. 

Despite the setbacks and limitations in quantum 

computing and information, the field is gradually 

increasing with more talent pooling in to contribute 

to quantum information research. This naturally 

started bringing more innovation in better quantum 

gates and algorithms which resulted in refined 

results, freer of errors. 
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