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Abstract - In this paper we obtain the Hardy -
Ramanujan — Rademacher series for c¢xn(n) on the lines
of L.W.Kaolitsch. The existence of such series for cdsk(n)
ck1(n)and was asked for by Andrews and later obtained
by Kaolitsch.

Finally we extend the results on g-binomial coefficients
and g-series representation of Andrews to our function
cdkn(n). Andrews has established the two congruences
cp1-2(5n + 3) = Cd2-1 (5n + 3) = O (mod 5). We whow that
the analogous congruence cd22(5n + 3) = O (mod 5) is
false for n = 2. We also study generalised Frobenius
partitions with some restriction on its parts.

Index Terms -Q - binominal co-efficient, Frobenius
partitions, analogous congrevence

INTRODUCTION

Most of the credit in the determination of good
asymptotic formulae for p(n) should go to Hardy and
Ramanujan [12]. First by elementary reasonings they
showed that

zJ2n

log p(n) = A

and then by the use of a Tauberian argument they
could show that

+0(/n)

_ L 2N, 12
p (n) and3 [7( 3 )1 A+0 D).
Finally they showed that the generating function F(x)
of p(n) is essentially a modular form. That is, if we
change the variable x to €2 then the denominator of
F(x) differs only by a simple factor from

Ait12 1o 2 zimt
np=€"" " I1{1-e"7)

By the modular character of F(x), Hardy and
Ramanujan were able to apply to F(x) the general
theory of Cauchy concerning the determination of the
co-efficient in the power series expansion of a known
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function. In this way sf they found the following
expansion of p(n).

2 A,

L1 pn)=17 +0(n").
where
B . -
(1.2) ¢j= ”(U”—M Qun/i
u,]J '
7240 —1 2.3

Un =

6
v=0(n)
and A’s are some constants depending on n and the
24" roots of unity.
At the time (1918) of invention of this formula (1.1)
for p(n) it was not known whether the series does or
does not coverage. However in 1937, D.H. Lehmer
[15] found that the Hardy — Ramanujan expansion
(1.1) of p(n) is divergent. Later H.Rademacher [22,
23] showed that if (un—j) exp (unfj) is replaced by (un
—J) exp (un/j) + (un +j) exp (-un/j) in (1.2) then we get
a convergent series for p(n), that is, an exact formula
for p(n). The actual explicit formula for p(n) obtained
by Rademacher [23] is the following:

(13 p=

L
72

24n-1

) 2 1
. sinh( [ (x-—)]2)
S AMKIE (— K32,
kel X 1/2 X=n
(X_ﬂ)
Where Ax(n) =

Y W, exp(-2zinh/k) with w, , a

O<h<k
(h,k)=1

Certain 24kth root of unity.
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In 1942 P. Erdos [6] proved by entirely elementary
considerations that a formula of the type

o) = AN exp [n(2—3”) Y2 (1 + (1)

holds and later in 1951, D.J. Newman [16] showed
also by elementary methods that Erdos’ constant A

was in fact 1/4\/§ .

The method of steepest descent employed by
G.Szekeres [25, 26] has opened up the possibility of
obtaining the infinite series for p(n) without the use of
elliptic modular functions.

In [2] George E-Andrews posed the problem of
obtaining the Hardy — Ramanujan — Rademacher
series for the F-partition functions ¢m(n) and com(n)
by a full Farey dissection of the integrals representing
then. Recently L.W.Kolitsch [14] obtained the
following representations for ¢m(n) and com(n).

|\M8

(1.4) cg,(n) _T
2 Pu(s)

O<s<p
Oo<t<u
Al + 258 < m
m 12

[ I ol S®expl2(h's—nh)/K]
(h_k)<—1

r.,2m 8t 12
q Ih( [(7—*—16)( 24)]

ol )1

dx My, X
X_i
( 25)

Where 3 is the greatest integer < m/24, p is the greatest
integer < m?/12, pm(j) is the coefficient of gl in

I @-g) S -

I3 eo[2d(hQ(,-

with the outer sum extending over all solutions of H
(c1, ..., cma)—tand Hand Q are the quadratic forms
defined by

(1.5) H(Cl, . . . Cm.1) =

CCH..+Chy+ T (g—c;)’

1<i<j<m-1
(1.6) Q(ay, . . ., am1) = X aa;,

I<i<j<m-1
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h’ satisfies hh’ = -1 (mod k) and on is a certain 24kth
root of unity.

(1.7) ¢ (N) —% T
DI N E)

O<s <p
Oo<t<y
t

m(m+1) 12

[ 2 o), T({t)exp[27 (h's—nh)/k]

HMS

O<h<k
(h,k)=1
7..2m 8t 1/2
g S G T 219 (X0 24)] .
(T( M 12 )xln
(x=22) )

24
Where B, pm(j), H, Q, h’, wn are the same as in (1.4)
and y is the greatest integer < m?(m+1)%/12,
TM=
p) i szk exp[27 (hQ(b,,...,b, ,)+b f+..+b, T )/k]

With the outer sum extending over all solutions of
H(cy, ..., Cm1) =t c=ki (mod m+1) and f; = (¢ci —
ki)/m+1.
The object of this paper is to obtain the Hardy —
Ramanujan — Rademacher series for the generalised
Frobenius partition function cmm(n) with m colours
and m’ repetitions. Our discussion is on the lines of
Kolitsch and with suitable generalisations of some of
his results. By putting m =1 in our result (Theorem 1)
we get Kolitsch’s representation (1.7) for ¢m(n)
Substitution m’ = 1 in our result gives a representation
for com(N) which is an alternative to that of Kolitsch.
1.  Method of Approach. First we prove a lemma in
which we obtain an expansion of the generating
function Comm(q) of Comm(n) in terms of the
multidimensional theta functions. While this
result contains Theorems 1 and 2 of Andrews [2]

o 1)"’ aC ot 8 Gy 1)/k] as special cases, its proof happens to be on the

same lines of Andrews.
Lemmal: For|qg <1,

1
@

21)  Comm(a
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X

m m m
%O: é’(ml_l) Eldli +(m'-2) Elei +---+i§1dm'-1i (D),
djj =—o0
Where
(2.Q)=3d §+xdj;.dju.
€ = exp (2ni/m+1) and j varies from 1 to m’, i ranges
from 1 to m with (j, i) # (m’, m) and j', j’ vary from 1
upto m’ with j' <j"and i, i’ range from 1 to m with I
<TI.
Proof : From the general Principle of Section we find
that comm'(q) is the constant term in

(2.3 CGumm (2 =
H(l+ an+1 + o+ Zm'qm‘(n+1) )m
n=0

X (L+zgM+ . . +z™ gmm)m,
We can write C gm, m (2) =

ea =[]
n=0

(l_zm'+lq(m‘+1)(n+l ) (1 Z—m lqn(m+l))
(1_ an+1)m (1_ 7" qn)m

o
= H é/JZQoT(f_JqZ_l)gv where § = exp
j=1

(2mi/m’+1).

1 m.® d (di+y) _d: . jd;
el L2 (Dt ey
(using Jacobi’s triple product identity).

Td; T (djiph) T dj

1 oz Sy 2@ Yo,
(o) I 9=

l<J<m
1<i<m

The constant term in CGmm'(z) is obtained by setting

¥ d;j=0. Thatis, dn',m=-Zdjiwithj=1,...,m’,
i=1,...,mand(j, i) # (m’,m).
Consider
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(2.5)
1<Jz<m Jd 1sj§m‘ dei +mdm n
1<i<m 1<i<m
(J,i)#(m’,m)
= @) Xd,+@-m) Xd, 4
%dm'fll
(substituting for dm | m).
Also
(2.6)
i 1
+1 2
1<Jz‘ém( JI )_E 1g£ (dji +dji)
1<i<m 1<i<m
1 2 2
:_[ (d +d; )+dm'm+dm‘m]
2" il

(3,1)=(m’,m)

1<j<m’ l
1<i<m 15|£|1 sm
(J.1)#(m',m)
(substituting for dym).
Using (2.5) and (2.6) we find that the constant term in
(24)is
1

(@) "

(2.7)

X

m m m
%O: ¢(=m) igld1i Hz-m) i§1d2i+l"+ Eldm'—liQQ(D)
dJ] =—0
Kj<m'
I<i<m
(J)#(m',m)
Where Q(D) is defined by (2.2). If we change d;i i into

giZ:l J—ddf,-i in (2.7), then it becomes the left hand side of (2.1).

But the constant term in CGum(2) i CoOmm(q). Thus
equating the constant terms we obtain (2.1) and this
proves Lemma 1.

Remark : Putting m =1 in (2.1) we obtain Andrews’
representation for ¢m'(q). The substitution m’ = 1 in
(2.1) yields Andrews’ identity for Cdm(q).

To obtain the expansion for cdm m’(n) we use the Hardy
— Ramanujan method of Farey fraction dissection of
the integral

INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 289



© December 2022| 1JIRT | Volume 9 Issue 7 | ISSN: 2349-6002

1 ;M da,
27 q

Where C is a circle centered at the origin with radius
less than 1,

(2.8) R (d) =
m m m
v f(m‘_l) izld1i Hm=2) i§1d2i+'"+ iidm'—lti(D)

)
djj:—oo

Kj<m'
1<i<m

(J.i)#(m’"m)

Where ¢ =exp (2ri/m'+1), P (q) = IEiO[l (1-9)%, Q(D)

is defined by (2.2). By Cauchy’s integral theorem the
above integral is equal t0 Cdmm'(n). Our method of
approach is similar to that of Kolitsch [14]. However
the representation (2.1) is a generalisation.

3. Some Lemmas. In Lemma 2 of this paper we obtain
a transformation of our generalised representation
(2.1) by using the well-known transformation formula
for the multidimensional theta functions. It is a
generalisation of Theorem 2.1 of Kolitsch [14]. The
proof is similar to Kolitsch’s proof of the particular
case. A special case of this lemma obtained in
Corollary 1 is used to split cémm'(n) into three
convenient sums stated in Lemma 3. These sums are
estimated in Lemma 4 and this leads to the proof of
our main theorems.

Lemma 2. For all zwith Re z > 0.

31) R (exp [2rmi(iz + h)/K]) =

1 1 1 mm-t
——)mm'-1(—) 2
AJmm' (m'+1) (kz)
X 3 exp ( —H(C)

cii== " 'mm’'(m'+1)*kz
(m'+1)k-L ) 1
Z:Q exp [272(hQ(AH+—— 1 Za;c;) /K]
Where
(32) HC)=xcl +Z(crr—Cji-)?,
Q is as defined in (2.2), the principal branch of z'2 is
selected and j', j’ vary from 1 to m’ with j' <j"and i, i’
range from 1 upto m with I' <i'. Here and in what
follows j varies from 1 to m’ and i varies from 1 upto
m with (j, i) # (m’, m).
Proof. : By (2.1) we have
(3.3) R (exp [2ri(iz + h)/K]) =
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Ms

T g™ e(2(m 1)2d,,+ +2dm Jim+),
J

]—00

Writing
(3.4) djj=(m’+1) kcji—aji ,
Where ajje?m 1)k the integers modulo (m'+1)k and
Cjicez. Substituting (3.4) in (3.3) we obtain
R (exp [2ri(iz + h)/K]) =

» iz+h 1 -1 m
ae(Z%‘i;ke [ (—Q( ) 111 |ljam jl)]

exp[—272z(m'+1)*kQ(C)]

QZ mm -1

exp(2z(m+1)[ Zc; (2a; iy Z al,)])

s el (MQ( A% L )

ng(Tnmﬂl)k
Where 6 (X, T) is the multldlmensmnal theta function
given by

0 (X,

exp [2i(c, X) -(c, Tc)]

me -1

T) =

With (, ) denoting the inner product of the two column
vectors involved, the components of x are x; = -

iZm+1) X 285+ gy Z () and T s

nkz(m'+1)? times the (mm’ — 1) X (mm' — 1) matrix
with 2’s on the digonal and 1's in all other positions.
Applying the transformation formula.
0(x,T) =
mm'-1
p s 2 |-|- |—1/2 eXp(—ﬂ'z
We get

35) R(exp(27i (iz+h)/k]) =7

(X, T™X)) O(iaT *x,7°T ™)

mm'-1

|F |—1/2

X
m-1 m

> eml2i(- Q- -

1
aez m+193 3

exp[-r?(x, TX)]0(inT1x, n°T™).

We can easily show that |T| = mm’ [nkz(m'+1)%]™m"!
and the matrix T is [kz(m'+1)?]™"! times the (mm’-
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1) X (mm'-1) matrix with mm'-1 on the disgonal and -
1 in all other positions. The components of I"x are —
igji/m (m’+1)k,

-ni? (X, 1x) =
%(A) (c,id*x)= 1 1ch,aj,,
(c,m’Iic) = M where H is defined by
' mm'(m'+1)°kz
(3.2).
Making these substitutions in (3.3) we obtain
3. 6) R(exp[Zni(iz + h)/k])=
mm'-1
mm'-1
J_ m+1) ( )
i mim 27h
anE“,,‘]‘Al m+]l J=t i=t J)a +7Q(A)]
-aH(C 2
xp[ ©) + Xcza;)

acz™ o mm'(M+1)*kz+1  (M+DkK
If we now interchange the order of summation in (3.6)
we obtain (3.1) and this proves Lemma 2.
Corollary 1. For all zwith Re z > O,

mm'-1
(3.7. R(exp[2ni(iz + h)/K])= \/_( ) 2
—7
2 U _
X (J)exp(mm (D) kZ)
Where
(3.8. U(j) =

2 3 e@[27i(hQ(®) + b, f,)/K]

With the outer sum extending over all solutions of
HC)=H (Ci,...,Clmm.fl) = j where for all i = 1,...,m,
cji= k(m'-j) (mod m'+1) for j = 1,...,m’-1 and Ccni= O
(mod m’+1), while for all i = 1,...,m, (m'+1)fji = ¢j —
k(m' - j) for j = L...m-1 and (m+Dfni = Cmi
djiez "

branch of z is selected.

Proof : Replacing aji by kd;i + bji where djie Zn~1 and
bji vary from 0, 1,...,k-1 in (3.6), we get

3.9. R(exp[2mi(iz + h)/k])=

bji vary from O to k-1 and the principal

m+1’

1 1 mn; =
Jmm (\/m'+1) ( )
IJIRT 157484

-H(EC) —27zlm“"
expl—————~—— Y e m-j)b .
acz M- Xp[mm'(m'_l_l)zkz bji=0 m4l i=li= 1( J) ]
1
exp[f(hQ(B) el 2 1exp( Zd &t

Where for all i varying from 1 to m, a;ji = ¢ji — k(m -)
forj=1,...,m"-1 and dm’1 = Cm1.

Since T (—Zd i)

ji€ m+1

JiFg

= deizzo exp (—m'+1d a)

= (m+1)™"1 if m'+1 divides oj and O otherwise,
setting c¢ji = (m'+1)fj + k(m'-j) for j = 1,...,m’-1 and
Cowi = (m'+1)fyi foralli=1,...,m in (3.9) it reduces to
(3.7) and this establishes corollary 1

To obtain the Farey fraction dissection of

f R(q)[|cn>+(lq)]”‘”’ dq

27 = q
we first set g = p exp (2ni¢), 0 <¢< 1, |p| < 1 and then
set p = exp (-2rN?), We then get
1

Chmm(N) =

j R(exp[27(iz +h)/k])
(3.10)  Comm(n) =

[p (exp[2mi(iNZ + ¢ )])]™ exp (2nnN?) —
2ming) do.
Using the notation of [1], we define &, and 6,
for (h, k) = 1 as follows :

. 1
6. = h=0,k
KON 41
=1
. h'+h
B KTk 00T
k
. h"+h h
O Tk k
O<h<k
h' h h"
Where — , — and —— are three
k' k K"

successive terms in the Farey fraction sequence of
order N. Let Gy denote the interval — 6, <0< 6}, .
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1
mm

Lemma 3. COmm (M) = [

N
3 ol exp(-2zinh /)

O<h<k
(h,k)=1
(1I-mm")/2 s
(£ U()) exp(————
J‘ le2k j=o0 mm'(m'+1)“ kz
<
h,k
exp
[mm'ﬂ 2nz mm'’
12kz  k
1 N
+[\/—. g wny exp(=27inh /K)
mm O<h<k
(hk)=1
(I-mm")/2 F) .
(s U(j) exp(——3
J‘ Z1/2 k j=0+1 mm'(m'+1)2 kz
h,k
exp
mm'z 27zZ _mm'
el zpmm expl2zi(t'+iz ") j/K]) dg]
1 N
+] . El oy exp(-2znh/k)
mm S_h<k
(h,k)=1
a2 Uy exp———A 5
J‘ lezk j=o+1 mm'(m'+1)“ kz
%k
exp
[mm'fz 27zz mm
12kz k 24

j=p'+1
Where 0 is the greatest integer > m?>m?(m'+1)%/12, p’
is the greatest integer < mm'/24, pmm'(j) is the

coefficient of gl in [p(q)]™ where P(q) = _l_[l(l-qi)‘1
i=

N
. Chmm () = kle exp (—2znh / k)

O<h<k
(h,k)=1

[ R(exp[2zi(iz +h) /K]) [ p(exp[ 27i(iz + h])]™

hk
Using Lemma 2 and the following transformation
formula for all zwith Re z > 0.
P (exp [2nl (iz+h) /K]) = wnk zV2 exp [r(z
~2)/12 K]
X P (exp [2ni (h' +izY) 1 K])
Where (h,k) = 1, h' satisfies hh’ = -1 (mod k), wnk is
a 24kth root of unity and the principal branch of z*? is

(3.11)

exp (2mz/k) d.

+—(n ——)] Z P (1) €XP[27 (N'+iz™ 1) j/K]) dglected, we find that (3.11) becomes

1
mm'

(n) =

C(I)m,m’

N
=z wny exp (—2znh/k)

O<h<k
(h,k)=1
(I-mmY/2 o :
(x U(®j) exp(——3——

J‘ Z1/2 k j=0 mm'(m’ +1)2 kz

g

h,k
exp

mm'z  2nz mm' - mm'
[12kZ 0 (n- )][p(eXp[ZM(th NIKD) ™ dgl

The result stated in Lemma 3 is obtained by splitting
the above expression of Comm'(N) into three sums as
indicated.

We now find the estimates of the three sums say %1, %,
and X3 (respectively) stated in Lemma 3. As in [14]
we show that X, contributes the principal estimate for
Comm’' (n) and the contributions from X, and X3 are

i pmm j)exp[27(h'+iz” )j/k]) dr@ﬁgligible. For this we show that |X,| and|Xs| approach

zero as N tends to infinity for n fixed. To establish this
we first find the bounds for the integrands in X, and
23.

Considering the integrand in X, we have

1/2 (1-mm’)/2 7Z]
and wnx is a certain 24kth root of unity. |27k J% 1(U (1) exp mm' (m' +1) kz
Proof : Dividing the interval of integration at the
mediants of the Farey fraction sequence of order N and eXp )

h mm'z 272z, mm ey
replacing ¢ by ¢ + m and z by k(N2 - i¢) in (3.10) we [ 10k +T(n 2 )](2 P (J) Xp[27 (h'+i2 ™) j1K])]
obtain U2y, 0-mm)i2 e j mm', 1

<7k expl—\————= Re-
|2 R ()|><|0[k(mm(m Y TS
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exp[27r(n——)Re ](2 pmm(J)exp[—Re—])

mm'-1

<21/4 N—l/Z k(l—mm)/2 Z r(J)(mm k) T

exp

-7 ] mm' mm

— 42 N~ Z eX
a1 0 INI(E e (o9 )
(where r(j) is the number of solutions of

. . o 1
H(Cp,...,Coyrg) =1J) since [zY4< 2Y4 N2 and —

Re ! >%for debhk and |UG)| < r(j) (mm'k)em-72,

exp
YA 1 '
mmﬂ 272, mm'.. F .
(3.12) [12k ” —(n- 24)](EO P (1) Xp [27(h+i2) 1K) dg
27 1 u
| = ep[——(MQ(a,..a,,)+ Zca)ll<(mk) 2 1
aez M k j=1 = '
Since the two sums in the above estimate of the vmm
integrand of X, are convergent it is easy to see that the N mm’ o
integrand is bounded in absolute value by ciN2 exp k%l ) @ €Xp (=27 /K)
(2mnN2), where ¢, is a constant independent of N. ?h,’kfﬂ
Similarly for the igtegrand in Z3, we hal/e . gr{ k 712 |12 gy [mm'n L 27z (n— mmu)]
| ZY2 K12 5 () exp 7 )) ' 12kz  k 24
j=0 mm'(m'+1)*kz s U 27h's « t 2611 d
exp O05i<a (t) pmm(s) eXp [ _E(mm (m +1) + S)] ¢
mmz 2z, mm e Oss</
[12kz +T(n 24 )]( P (] (j)exp[2A(h+iz™) jIK]) | We separate this into the sums as follows :
H 1 mm'
F412 | @-mm)/2 % 1 [ — 2 @y €Xp (=27nh/k)
<|z"7k 2 IU(J)IEXD[(—.( 1)k Re Z]) | Jmm %Ek“)likl
mm —2m,. mm'. _ 1 1 2 o JE—
exp[27( 2 )Re ]( . Po ()€ U= )Re;]) ‘. Gk e epZ2(n-T0)]
F! mm'-1 H ’
<2]./4 —l/2klmm )12 (E I‘(j)(mm k) Ty eXp[ ﬂ] 2]) z U(t)
=0 2mm'(m'+]) Ost <0
O<s<p )
mm' T L
exp[27N (n——)]( E Pun (1) €XP [_”(J_E)D mm'(m"+1) 12
It is easy to show that thls is bo_unded by coN"Y2 exp ZMEHS(S) ju mm t
(2rnN2). Where c; is a constant independent of N. exp [ —( T —2s)] dg.
"k 12 mm (m'+1)°
Thus 22 and Zsare bounded in absolute value by
N j 1 mm’
Y 2y % — N2 +[ 2 w, . exp (—2znh/k)
cN exp(2nnN-2) O‘i;ik é/h’k d¢ = cNY2 exp m oihik h,k
(hk)=1 (hio=1

1

@nnN?) [ do
0

= cN2 exp (2nnN?)
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Where c is a constant independent of N. Clearly, forn
fixed this approaches zero as N tends to infinity.
We now consider the first sum Z; in Lemma 3.

21 =

mm'

N
I oy exp(-2inh/K)

O<h<k
(h,k)=1

M S U e (— A
* j=0 mm'(m'+1)°kz

293
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2z mm'
2 — —(n—
k exp [ ” (n o )]

]
Sk

2 U@
O<t <0
O<s<p!
t +252m—m‘
m(m+1)? 12
Pmm(S)
27h's 7 ,mm' t
ex +— - +2s)] dg.
Pl k kz(12 mm' (m'+1)* )1dg

= Z1a +Z1p, (sAY),
Now we show that X1, is bounded in absolute value
by a constant times N2 exp(2anN?). For this we
consider the integrand in Xy,

1 1I-mm'

2nz mm

|sz2 exp[T(n— o )]
2 U@
O<t <0
O<s<p'
S Y s
mm'(m'+1)2 12
Pmm'(s)
27ih's 7  mm' t
oxp [ZNS At o))
k  kz 12 mm'(m'+)
1 1-mm' !
1 zmm mm z
<|z?k 2 exp[2x(h——) Re—
| Plern= ) Reyd
2 U@ P (s)
O<t <0
O<s<p
t +2s> M0
mm'(m'+1)2 12
exp [= 10— : 7 +25) Rel]l
k 12 mm'(m+l) z
1 -1 1-mm’ !
c2iNZK 2 epl2an-TI)N ]
2 @
O<t <4
O<s<p' )
;JrZSZm
mm'(m'+1)2 12
(mm’k)(mm’-l)/Z Pmm’(s)
z  mm t

-29)].

P [E( 12 mm'(m'+1)?
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It is easy to show that this is bounded by csN™?
exp(2nnN-2), where cs is a constant independent of N.
As before, [Z1p] Ca(mm’)¥? NY2 exp (2rnN-?) which
tends to zero as N tends to infinity for fixed n.

We now consider the integral appearing in
Z1a.Replacing z by kw this integral becomes

1/2 exp[2ﬂw(n—m)+i mmw___t
g[ w 247 Kiw 12 mm(m'+l)
h,k
Since z = k(N2 - ip),we have w = N2 - i$p. Also since
Cnk represents the interval - 6, , <¢ 8, ,, the above

2-25))dg

integral can be written as

mm, 7 mm' t -1

20 Lep[am(n-—)+ o (——-———2-25)] (—)d

J~N LI oL N ()
N+if)
1 (Oer) _f —g—JEHE,k N_Z—J.mr;,k —5+j.9r‘1,k
R & —e— 6y, N=2+i6,
- — 1

S mm, 7 ,mm t

[ - Dweep2ain- —)+ S (——-———2-25)] do
~e+if), ,g) oLz 24) kzw(12 mm'(m'+1) )

(0+)
(where we assume ¢ < N2 and J represents the loop
—0

integral along the contour.

1
=T (Lk—|1—|2—|3—|4—|5—|5), say.

w- plane cut along the negative real axis

We now show that the sums associated with Iy, I3, 14
and Is are negligible. For this, we first find the bounds
for them.
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Replacing w by - e + iv, we get [l =
-4k 1 '
.\ mm .
—e+V)2exp[2z(n——) (- +iv dv
|| o emian- U o) o 1

mm' t

(where a= - -25).

12 mm'(m'+1)°

<T@%w¥muﬂmmﬁ ™
0 U7 K —e+iv)

<s(e’+0,,) epl-22 (=016,
. 1
Since Re — = ———<0.
-&+lV. g +V

<

(&% +k=N7)"* (kN) " exp [—Zz(n—%)], since 6, , <(kN)™

This approaches k-#? N2 as ¢ tends to zero.

We can similarly show that Is is also bounded by k372
N2 (as ¢ tends to zero) and so the sums of I, and Is
are bounded in absolute value by a constant
(independent of N) times N'¥2, On exactly similar
lines we can show that I3 and I, are bounded in
absolute value by 2Y4 k2 N-52 exp (2znN2 + mm'n/3)
(as € approaches zero) and the sums associated with
these are bounded in absolute value by N-1/2 exp
(2znN-2). All these bounds tend to zero (for n fixed) as
N tends to infinity. Thus we have proved the
following lemma.

1
Lemma 4. Chm,m’ (n) = .
mm
N 2—mm
kzl ony k2 exp(=2znh/k)
0<h<k
(h,k)=1
3 U (t) Pmm' (s) exp (27ih's/k)
O<t<o
O<s<p
t mm
+2s
mm'(m'+1)?2 12

[%(Lk —11—1g)] + O(N2) + O(NY2 exp (2rnN2)).

4. The Main Theorem.
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Theorem 1.
1 w  2—mm
ch, w(N)=—F—++—=— Xk ?
e (M) T/ 2mm' k=L
L p O E, vl
Sessy (h k(=)
+Zs<m—ml
mm'(m'+1)? 12
sin (1M~ B gy (x- "
d k™ 3 mm'(m'+))
—( : ) ]
dX (X_M)UZ X=n

Proof: If we let e tend to zero then Lk — |1 — ls can be
replaced by the integral.

o2 egl2an-") 2 (Mt
K 24" k2w 12 mm'(m'+1)?
Where K is the circle |W—£|=.1 travelled

2 2

counterclockwise from the origin. The substitution w
= 1/v changes the above integral into

T+io 1 1

_ 2r, mm. v ,mm t
I v e[ n-—) 4 S (e 2-28)] O,
i "l v( 24) kz( 12 mm'(m'+1) )
Since E(n;_rzn mm'(r:1'+1)2 —2S) is positive

this integral can be expressed in terms of Bessel
functions as follows :

7..2mm 8t mm’y 4/,
0 d(SI h( k[( 3 m‘ms) (X‘E)] )) |
e L
24

Substituting this in the formula for ¢ m+(n) obtained
in Lemma 3, we get

Chm,m (n) =

1
mm

2 o kK& MMH2 exp (—2zinh /k)

O<h<k
(h,k)=1
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“exp[27 (h's—nh)/K]

-25)] dw,
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: [11]
¥ U (t) P () exp (27ih's /k)
0<t<o [12]
O<s<p'
t mm'
%2+25 <—
mm'(m'+1) 12 [13]
I (LI S TR M SLILLY
| [i( k™ 3 mm(m'+l) 24
72'\/5 dx (X_m)llz X=n [14]
24
+ 0 (N2) + 0O (N2 exp(2rnN-2)).
If we now let N approach infinity, we obtain the
desired identity for cdmm (N). [15]
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