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Abstract - In this paper we obtain the Hardy – 

Ramanujan – Rademacher series for ck,h(n) on the lines 

of L.W.Kolitsch. The existence of such series for c1,k(n) 

ck,1(n)and was asked for by Andrews and later obtained 

by Kolitsch.  

Finally we extend the results on q-binomial coefficients 

and q-series representation of Andrews to our function  

ck,h(n). Andrews has established the two congruences 

c1-2(5n + 3)  C2-1 (5n + 3)  O (mod 5). We whow that 

the analogous congruence c2,2(5n + 3)  O (mod 5) is 

false for n = 2. We also study generalised Frobenius 

partitions with some restriction on its parts.  

Index Terms -Q – binominal co-efficient, Frobenius 

partitions, analogous congrevence 

 

INTRODUCTION 

 

Most of the credit in the determination of good 

asymptotic formulae for p(n) should go to Hardy and 

Ramanujan [12].  First by elementary reasonings they 

showed that 

 log p(n) = )(
3

2
nO

n
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and  then by the use of a Tauberian argument they 

could show that  

p (n) = 
34

1

n
exp  )).1(1(])
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Finally they showed that the generating function F(x) 

of p(n) is essentially a modular form.  That is, if we 

change the variable x to 2it then the denominator of 

F(x) differs only by a simple factor from  

 (t) = )1( 2

1

12/ imt
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By the modular character of F(x), Hardy and 

Ramanujan were able to apply to F(x) the general 

theory of Cauchy concerning the determination of the 

co-efficient in the power series expansion of a known 

function.  In this way sf they found the following 

expansion of p(n). 
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and A’s are some constants depending on n and the 

24th roots of unity.  

At the time (1918) of invention of this formula (1.1) 

for p(n) it was not known whether  the series does or 

does not coverage. However in 1937, D.H. Lehmer 

[15] found that the Hardy – Ramanujan expansion 

(1.1) of p(n) is divergent.  Later H.Rademacher [22, 

23] showed that  if (un – j) exp (un/j) is replaced by (un 

– j) exp (un/j) + (un + j) exp (-un/j) in (1.2) then we get 

a convergent series for p(n), that is, an exact formula 

for p(n).  The actual explicit formula for p(n) obtained 

by Rademacher [23] is the following: 
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Certain 24kth root of unity. 
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In 1942 P. Erdos [6] proved by entirely elementary 

considerations that a formula of the type 

p(n) = ))1(1(])
3

2
([exp 2/11 O

n
An +−   

holds  and later in 1951, D.J. Newman [16] showed 

also by elementary methods that Erdos’ constant A 

was in fact 34/1  . 

The method of steepest descent employed by 

G.Szekeres [25, 26] has opened up the possibility of 

obtaining the infinite series for p(n) without the use of 

elliptic modular functions.  

In [2] George E-Andrews posed the problem of 

obtaining the Hardy – Ramanujan – Rademacher 

series for the F-partition functions m(n) and cm(n)  

by a full Farey dissection of the integrals representing 

then. Recently L.W.Kolitsch [14] obtained the 

following representations for m(n) and cm(n). 
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Where  is the greatest integer < m/24,  is the greatest 

integer < m2/12,  pm(j) is the coefficient of qj in  


=


1i
 (1 – qi)-m, S(t) = 
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with the  outer sum extending over all solutions of H 

(c1, . . . , cm-1) – t and H and Q are the quadratic forms 

defined by  

(1.5) H(c1, . . ., cm-1)  = 
2
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(1.6) Q(a1, . . ., am-1)  = ,
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h’ satisfies hh’ = -1 (mod k) and h,k is a certain 24kth 

root of unity.  
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Where , pm(j), H, Q, h’, wh,k are the same as in (1.4) 

and  is the greatest integer < m2(m+1)2/12, 

T (t) =  

]/)...).,..,((2exp[ 1111111
kfbfbbbhQi mmm

kZb m −−−


+++
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 With the outer sum extending over all solutions of  

H (c1, . . . , cm-1)  =  t, ci ki (mod m+1) and fj = (ci – 

ki)/m+1. 

The object of this paper is to obtain the Hardy – 

Ramanujan – Rademacher series for the generalised 

Frobenius partition function cm,m’(n) with m colours 

and m’ repetitions.  Our discussion is on the lines of 

Kolitsch and with suitable generalisations of some of 

his results.  By putting m = 1 in our result (Theorem 1) 

we get Kolitsch’s representation (1.7) for m’(n)  

Substitution m’ = 1 in our result gives a representation 

for cm’(n)  which is an  alternative to that of Kolitsch.  

1. Method of Approach. First we prove a lemma in 

which we obtain an expansion of the generating 

function cm,m’(q) of cm,m’(n) in terms of the 

multidimensional theta functions.  While this 

result contains Theorems 1 and 2 of Andrews [2] 

as special cases, its proof happens to be on the 

same lines of Andrews.  

Lemma 1 :  For |q| < 1, 

(2.1)  Cm,m’ (q)  = 

')(

1
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Where 

(2.2. Q(D) = 
2

jid  +  ,'''''' ijij dd  

 = exp (2i/m+1) and j varies from 1 to m′, i ranges 

from 1 to m with (j, i)  (m′ , m) and  j′, j′ vary from 1 

upto m′ with j′ < j′ and i′, i′  range from 1 to m with I′ 

< I′ . 

Proof  :  From the general Principle of Section we find 

that cm,m’(q)  is the constant term in  

(2.3)  CGm,m’ (z)  =  
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(using Jacobi’s triple product identity).  
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The  constant term in CGm,m′(z) is obtained by setting 

 dji = O.  That is, dm′ , m = -  dji with j = 1, . . . , m′ , 

i = 1, . . . , m and (j, i)  (m’,m). 
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  (substituting for dm’ , m). 
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 (substituting for dm’m). 

Using (2.5) and (2.6) we find that the constant term in 

(2.4) is  
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Where Q(D) is defined by (2.2).  If we change dji i into 

– dji in (2.7), then it becomes the left hand side of (2.1). 

But the constant term in CGm,m’(z) is  Cm,m’(q). Thus 

equating the constant terms we obtain (2.1) and this 

proves Lemma 1. 

Remark :  Putting m = 1 in (2.1) we obtain Andrews’ 

representation for m′(q).  The substitution m’ = 1 in 

(2.1) yields Andrews’ identity for Cm(q).  

To obtain the expansion for cm,m’(n) we use the Hardy 

– Ramanujan method of Farey fraction dissection of 

the integral 
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Where C is a circle centered at the origin with radius 

less than 1,  
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Where    = exp (2i/m′+1), P (q) = 


=


1i
 (1-qi)-1, Q(D) 

is defined by (2.2).  By Cauchy’s integral theorem the 

above integral is equal to cm,m′(n). Our method of 

approach is similar to that of Kolitsch [14].  However 

the representation (2.1) is a generalisation.  

3. Some Lemmas.  In Lemma 2 of this paper we obtain 

a transformation of our generalised representation 

(2.1) by using the well-known transformation formula 

for the multidimensional theta functions. It is a 

generalisation of Theorem 2.1 of Kolitsch [14]. The 

proof is similar to Kolitsch’s proof of the particular 

case. A special case of this lemma obtained in 

Corollary 1 is  used to split cm,m′(n) into three 

convenient sums stated in Lemma 3.  These sums are 

estimated in Lemma 4 and this leads to the proof of 

our main theorems. 

Lemma 2.  For all z with Re z > 0. 
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Where 

(3.2)  H(C) = 
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ijc   +  (cj’ i’ – c j ‘ ‘ i ‘ ‘)2 , 

Q is as defined in (2.2), the principal branch of z1/2 is 

selected and j′, j′ vary from 1 to m′ with j′ < j′ and i′, i′  

range from 1 upto m with I′ < i′ .  Here and in what 

follows j varies from 1 to m′ and i varies from 1 upto 

m with (j, i)  (m’, m). 

Proof. :  By (2.1) we have  
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(3.4)  dji = (m’ + 1)  kcji – aji  , 

Where ajjZ
(m’+1)k the  integers modulo (m′+1)k and 
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Where  (x, T) is the multidimensional theta function 

given by  

 (x, T) = 

Tc)] (c, -  x)[2i(c, exp
1'−


mmZc

 

With ( , ) denoting the inner product of the two column 

vectors involved, the components of x are xji = -

iz(m′+1) X )2 ''),()','( ijijijji aa

+  and T is 

kz(m′+1)2 times the (mm′ – 1) X (mm′ – 1) matrix 

with 2’s on the digonal and 1′s in all other positions.  

Applying the transformation formula. 
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We can easily show that |T| = mm′ [kz(m′+1)2]mm′-1 

and the matrix T-1 is [kz(m′+1)2]mm′-1 times the (mm’-
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1) X (mm′-1) matrix with mm′-1 on the disgonal and -

1 in all other positions.  The components of -1x are –
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If we now interchange the order of summation in (3.6) 

we obtain (3.1) and this proves Lemma 2. 

Corollary 1. For all z with Re z > O,  
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Where for all i varying from 1 to m, ji = cji – k(m′-j) 

for j = 1, …,m′-1 and m’1 = cm′1. 
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is the greatest integer < mm′/24, pmm’(j) is the 

coefficient of qj in [p(q)]mm′ where P(q) =  



=


1i
(1-qi)-1 
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The result stated in Lemma 3 is obtained by splitting 

the above expression of  cm,m’(n) into three sums as 

indicated. 

We now find the estimates of the three sums say 1, 2 
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Since the two sums in the above estimate of the 

integrand of 2 are convergent it is easy to see that the 
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It is easy to show that this is bounded by c2N-1/2 exp 

(2nN-2). Where c2 is a constant independent of N.  

Thus 2 and  3 are bounded in absolute value by  
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It is easy to show that this is bounded by c3N-1/2 

exp(2nN-2), where c3 is a constant independent of N.  

As before, |1b|  c3(mm’)-1/2 N-1/2 exp (2nN-2) which 

tends to zero as N tends to infinity for fixed n.  

We now consider the integral appearing in 
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(where we assume c < N-2 and
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represents the loop 

integral along the contour. 

= 
i

1
   (Lk – I1 – I2 – I3 – I4 – I5 – I6 ), say. 

 

w- plane cut along the negative real axis 

 

We now show that the sums associated with I2, I3, I4 

and I5 are negligible.  For this, we first find the bounds 

for them. 
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We can similarly show that I5 is also bounded by k-3/2 
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4. The Main Theorem. 
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Substituting this in the formula for cm,m’(n) obtained 

in Lemma 3, we get  
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 + O (N-1/2)  + O (N-1/2 exp(2nN-2) ). 

If we now let N approach infinity, we obtain the 

desired identity for cm,m’ (n). 
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