
© January 2023| IJIRT | Volume 9 Issue 8 | ISSN: 2349-6002

IJIRT 157797 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 45

Malware Detection Using Machine Learning Algorithms

Buddhadev Pusti

Center for Cybersecurity Systems and Networks Amrita Vishwa Vidyapeetham, Amritapuri, India

Abstract—Malware is a critical security risk on Internet

today. Malware is a set of programs designed to damage

Internet- connected devices such as servers, computer

resources, networks. Criminals are using Malware to

send spam and to steal personal, financial, business

information. Malware detection is the primary tool to

stop unauthorized access of sensitive information. These

days Windows OS is the most commonly used Operating

System worldwide(77% to 88.8%) also it is the most

targeted OS by malware attackers. In this paper

detection of malware is done by simple observation of

Portable Executable(PE) headers. In this paper, I use

four methodology: 1. collect the data- set from

https://www.kaggle.com/c/malware-detection /data 2.

use an ExtraTreesClassifier for feature importance 3. use

a ”most frequent” strategy for baseline model 4. use

Random Forest classification algorithm as a benchmark

model.

My data-set contains 140849 benign samples and 75503

malware samples. In the data-set, the feature

“legitimate” has values “0” and “1”, defines valid and

malware files respectively. My experiments to detect

malware by Portable Executable(PE) headers have a

precision score of 98% and an f1-score of 98%. My

experiments indicate that it is easy to detect malware

files by observing Portable Executable(PE) headers.

Index Terms—Malware, Malware detection, Portable

Executable(PE) headers, Internet-connected devices,

security

I.INTRODUCTION

Malicious software is an integral component of many

security breaches. Malware is growing exponentially

and has been causing a huge amount of financial

damages. Some of the malware are Computer viruses,

Worms, Ransomware, Spyware, Adware, and so on. A

computer virus is a type of malicious program

designed in such a way that, it can spread the whole

internal system or spread from one computer to

another computer by replicating the malicious codes

itself when the user executes the infected program.

After the successful replication of a computer virus, it

can destroy data or corrupt the whole file system. The

worm is a type of malware that replicates itself without

human interaction and damage computer internal

resource. A ransomware attack is the most serious

cyber threat that encrypts the data files or locked the

computer until the victim pays the demanded money

within some specific time. In 2019 the damaged cost

due to the Ransomware attack was 120 Billion Dollars

and it is predicted that in 2021 the damaged cost due to

the Ransomware attack will be 210 Billion dollars [1].

Spywares are type malicious code that secretively

installed on our computer and after activation of

spyware, it can monitors user behavior on the Internet

and also can steal user passwords, keystrokes. Adware

is unwanted malicious software that displays irrelevant

advertisements on a computer its objective is to

monitor user web surfing activities or may create

remote communication for transferring user activities

or install other malicious software and make the

system vulnerable. The top 10 real world malware is

showing as the following:

Figure 1: Top 10 Malware [2].

In this paper, I use a faster method to detect malware

or benign file by simply observing the properties of

Portable Executable(PE) headers. For example,

”DllCharacteristics” feature describes the

characteristics of a dynamic link library and

”Characteristics” features have an enumeration value

that allows associated member’s values to show some

characteristics of the file. For example, it has some

constants that define the respective file as an

executable file or system file, etc. ”BaseOfCode”

feature characterizes the address of the beginning-of-

http://www.kaggle.com/c/malware-detection/data
http://www.kaggle.com/c/malware-detection/data

© January 2023| IJIRT | Volume 9 Issue 8 | ISSN: 2349-6002

IJIRT 157797 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 46

code area relative to the picture base when the picture

is stacked into memory.

In summary, this paper has the following

contributions:

Use PE-Header-Parser with the help of Extra-

TreesClassifier to extract the metadata from PE

headers and collects the 10 most important features

that uniquely detect malware.

Conduct several classification algorithms and analysis

evaluation metrics

Report that Random Forest classification is the best

classification algorithm to solve detection of malware

problem.

A. Overview of PE File Format

PE file header is a windows-based file format used by

windows executable files(.exe files), Dynamic Link

Library(DLL) file format, object code file format in 32

bit or 64 bit Windows OS. This format is one type of

data structure that wraps the relevant information

required for the loader of Windows OS to address

executable codes. PE header controlling exactly where

to store different sections of a program what type

of DLL files to load in memory .The basic structure of

PE format as following figure [3].

Figure 2:PE file Format structure.

PE record header format is made up of MS-DOS

Header, PE Header, Discretionary Header, Segment

Table. MS-Dos header involves the primary 64B of the

record. All .exe files starts with the magic number

0x54AD known as DOS header. PE header contains

the metadata of file some of them are Machine,

Number of Sections, TimeDateStamp,

PointerToSymbolTable, Number of Symbol Table,

Characteristics, Size of Optional Header. The optional

header contains the details of the loader. Optional

headers have three parts as Standard COFF Fields,

Windows Specific Fields, Data Directories. In this

header contains metadata like dllCharacteristics,

SizeOfImage, Checksum, SizeOfCode, BaseOfCode

etc. Section Table stores images of an executable file.

Section table contains metadata like Virtual Address,

SizeOfRawData, PointerToRawData.

PE file section header typically contains Code, Data,

and Imports sections. The code section contains the

executable code for a particular application. The data

section typically stores initialized variables for an

application. The imports section gives information

about the actual functionality of a program or

application. A combination of import sections is

known as linking. There are 3 types of linking:

Dynamic linking: Where libraries are copied into the

executable image when the program is executed(at

the run time).

Static linking: Where all library routines that are used

in the program are copied into the executable image.

Runtime linking libraries are only copied into the

executable image when they are needed.

II.RELATED WORK

Detection of malware is an ongoing challenge as

day by day malware types are becoming powerful and

continuously increasing. Previous works to detect

malware [4] [5] are also similar in motivation and

area of applications but my work is different in the

analysis of validation techniques, evaluation metric

between Dummy-Classifier and Benchmark model.

[4] presented malware location utilizing PE header, in

that work they utilize random forest classifier and

accomplish 99.51% on accuracy score, they

accomplish 99.24% accuracy by decision tree, by

basic neural systems with a single covered up layer

accomplish 99.21% on accuracy. [5] presented a

modern system for hardware-assisted malware

discovery based on persistent checking and classifying

virtual memory get to designs utilizing machine

learning strategies. They utilize 3 classifiers like

logistic regression, SVM, and random forest

algorithm. The system encompasses a discovery rate

of 99.0% with less than 5% false positives. [6]

introduced Hardware- Based Malware Detection, in

this work On dataset 70%-30% splitting for training

and testing is used. This technique gives a maximum

of 90% accurately detect malware on different ML

classifiers(BaysNet, J48, SGD, Jrip, MultiLperc,

OneR, REPTree, SMO). [7] presented behavior-based

© January 2023| IJIRT | Volume 9 Issue 8 | ISSN: 2349-6002

IJIRT 157797 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 47

malware dis- covery, In that work, they collected 220

special malware and 250 unique kinds of software. In

this work, they utilize five classifiers like k-Nearest

Neighbors(kNN), Gullible Bayes, J48 choice tree,

Bolster Vector Machine(SVM), Multilayer Perception

Neural Network(MLP). After connected each dataset

to these five calculations they get the generally best

execution by the J48 Choice Trees calculation with the

recall score of 95.9%, a FPR score of 2.4% and

precision score of 97.3%, and precision of 96.8%.

Paper [8] proposed a novel method to predict

malware for the cloud by the concept of Semi-

Supervised Transfer Learning(SSTL). They used the

Microsoft malware classification challenge dataset and

XGBoost classification algorithm and reported 96.9%

of detection accuracy.

III.METHODOLOGY

Dataset And Features

Dataset [9] was obtained from Meraz’18 - Annual

Techno Cultural festival of IIT Bhilai association with

Malware Security partner Max Secure Software.

Dataset has 216352 rows and 58 columns. In the

dataset, the feature “legitimate” has two values “0”

and “1”, represents benign and malware files. Within

the dataset, no. of benign files and malware files are

140849 and 75503 respectively. Table 1 lists the

features and description of features. Figure 3 shows

top 20 important features by using

ExtraTreesClassifier.

Table 1: Dataset feature’s details [10]

Figure 3: Top 20 Important Features

Evaluation Metrics

To detect actual Malware, we have to use some

evaluation metric to know how many actual malware

classes I can detect by my classification model since

my target is to detect all actual malware classes. For

this imbalanced dataset, Precision will be the most

important evaluation metric.

Precision:

The precision metric demonstrates the proportion of

expectations accurately predicted to be positive

over the full number of positive predictions. Precision

formally calculated as follows:

Precision = TP

 TP + FP

Precision is the proportion of malware files that are

correctly identified. Also known as Positive Predictive

Value(PPV). Some other important metrics are F-

Measure, Accuracy, and Recall.

F-Measure:

This metric decides how well the prescient show can

accurately anticipate positive values whereas taking

into thought both FN and FP.

F − Measure =

2TP

2TP + FP + FN
F-Measure translated as a weighted average of the

precision and recall. When F1-Measure score is 1 then

it reaches best value and worst score at 0

Recall:

Recall measures the percentage of the actual positive

class that is correctly classified.

TP

Recall =

TP + FN

Accuracy:

This metric decides how well the predictive model can

make correct predictions.

Accuracy =

TP + TN

TP + FP + TN + FN

Accuracy means the proportion of the total no of

predictions that are correct over all kinds of

predictions. Here FP, FN, TP, and TN speak to False

Positive, False Negatives, True Positives, and True

Negatives separately.

Experimental Setup

In this experiment, I used the Miniconda package,

some libraries like Jupyter Notebooks, Numpy,

Pandas, Scikit-learn and Matplotlib with python 3.8.5.

I ran these experiments on a Dell Inspiron laptop

© January 2023| IJIRT | Volume 9 Issue 8 | ISSN: 2349-6002

IJIRT 157797 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 48

computer with a 2.50 GHz Intel Core i5 processor

and 8GB of RAM with 1454.406 CPU MHz.

The Classifiers

In this work, I choose four classification algorithms as

AdaBoost, Random Forest, Decision Tree. The

parameter n estimators used as default while

classification is performed.

AdaBoost:

An ensemble model that combines diverse weak

classifiers(fairway better than arbitrary speculating

such as small decision trees) on more than once

adjusted adaptations of the training data. It has a few

commonsense preferences like It is exceptionally

quick, simple to actualize, and it can combine with any

machine learning algorithm.

Random Forest:

Random Forest Classifier use sets of decision trees and

selects a subset of the training dataset and then chooses

the most voted prediction as to the final result. Here

input of each decision tree uses the original training

dataset. I will use a Random Forest classifier for model

validation mainly because it reduces the chance to

overfit the model.

Advantages:

It reduces the chance of overfitting since we use many

estimators(parameter n estimators), and that helps to

im- prove overall better performance.

It can handle binary features, categorical features, and

numerical features.

The random forest algorithm use to find the most

important features from the training dataset.

Gradient Boosting:

Gradient boosting classifier could be a bunch of

learning algorithms that combine numerous weak

learning models and make a successful prescient

model. The foremost advantage of this classifier that it

is successfully classifies complex datasets.

Decision tree:

A tree-like structure takes a decision using relevant

features by constructing a series of if-else statements

repeatedly until the tree separates data. The space

complexity of this algorithm is very small and it can

easily handle multi-class classification without any

algorithm changes. The main disadvantage increases

the change to overfitting.

IV.RESULTS AND ANALYSIS

Features Description

ID Unique identification number of data samples

md5 Defines Individual machine ID.

SizeOfOptionalHeader Defines the size of optional header used for

executable files.

Characteristics It have a enumeration value allow as-
sociated members values show some

characteristics of the file. For example it have

some constants that defines the respective file
is executable file or system file etc.

MajorLinkerVersion Characterizes

number

linker major version

MinorLinkerVersion Characterizes
number

linker minor version

SizeOfCode Characterizes estimate of the code

(content) segment, or the whole of all code
segments

SizeOfInitializedData Characterizes the estimate of the initialized

information area, or the entirety of all such

segments in the event that there are different
information areas.

SizeOfUninitializedDat

a

Characterizes the estimate of the uninitialized

information segment (BSS), or the entirety of
all such areas in the event that there are

numerous BSS areas.

AddressOfEntryPoint Characterizes the address of the passage point

relative to the picture base when the PE record
is stacked into memory.

BaseOfCode Characterizes the address of the beginning of

code segment relative to the picture base when

the picture is stacked into memory.

ImageBase Gets the favored address of the primary byte

of the picture when it is stacked into memory.

FileAlignment Gets the arrangement figure (in bytes) that’s

utilized to adjust the crude data of areas within
the picture record.

MajorOperatingSystem

Version

Characterizes the major form number of the

specified working framework.

MinoroperatingSystem
Version

Characterizes the minor adaptation number of
the desired working frame- work.

MajorImageversion Characterizes the major adaptation number of

the header.

MinorImageVersion Characterizes the minor form number of the

header.

MajorSubsystemVersio
n

Gets the major form number of the subsystem.

MinorSubsystemVersio

n

Gets the minor version number of the

subsystem

SizeOfImage Gets the estimate (in bytes) of the image,
counting all headers, as the image is stacked

in memory.

SizeOfHeaders Gets the combined measure of an MS DOS

stub, PE header, and area headers adjusted up
to a numerous of File Alignment.

CheckSum Gets or sets the value of the data for the

checksum calculation.

Subsystem Describes the subsystem requirement for the
image.

DllCharacteristics Describes the characteristics of a dynamic link

library.

SizeOfStackCommit Gets the estimate of the stack to commit.

© January 2023| IJIRT | Volume 9 Issue 8 | ISSN: 2349-6002

IJIRT 157797 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 49

SizeOfHeapCommit Gets the estimate of the nearby heap space to

commit.

LoaderFlags Characterizes optional header format

NumberOfRvaAndSizes Gets the number of data-directory passages

within the leftover portion of the PEHeader.
Each depicts a area and measure.

Table 1 shows the results of different algorithms with

different evaluation metrics, confusion matrices. In

this experiment RandomForestClassifier is gives best

precision score, f1-score compare to

DecisionTreeClassifier, GradientBoostingClassifier,

AdaBoostClassifier. The benchmark model [4]

achieve 99.51% on average for accuracy but they did

not discuss the evaluation metric precision or f1-

scores. I used the

Table 2: Results of different classification algorithms

Classifier TN FP FN TP Precision f1-score

RandomForestClassif

ier

27974 189 247 14861 0.9874 0.9855

DecisionTreeClassifi
er

27811 352 367 14741 0.9766 0.9761

GradientBoostingCla

ssifier

27751 412 637 14471 0.9723 0.9650

AdaBoostClassifier 27504 659 783 14325 0.9560 0.9520

most frequent strategy for the baseline model and

achieved a score of 65.08%.

Figure 4: Validation Curve

Figure 5: Learning Curve

V.CONCLUSIONS AND FUTURE WORK

ExtraTreesClassifier is used for the most important

features.

Different classification algorithms like AdaBoost,

Random- Forest, DecisionTree, GradientBoosting

are used to classify all the malware files and I present

comparisons of different classification algorithms

with evaluation metrics, confusion matrices. The

leading performance was accomplished by Random

Forest Classifier with a precision score 98% and f1-

score 98%. However, this model has not achieved a

100% precision score, these restrictions are cleared out

for future work, but this work can predict a high

precision score of 98% malware files . I accept that

there are a few other features that can be utilized as the

key highlights to identify malware, such as extricating

the Flags within the Characteristics areas of file header

and discretionary header. The validation curve showed

that my model is not overfitting and the learning

curve perfectly shows that more data will help to get

better performance. Experiments show this work is

reasonably effective to detect malware files.

REFERENCE

[1] M. Humayun, N. Jhanjhi, A. Alsayat, and V.

Ponnusamy, “Internet of things and ransomware:

evolution, mitigation and prevention,” Egyptian

Informatics Journal, 2020.

[2] S. K. Sahay, A. Sharma, and H. Rathore,

“Evolution of malware and its detection

techniques,” in Information and Communication

Technology for Sustainable Development, pp.

139–150, Springer, 2020.

[3] C. Chebbi, Mastering Machine Learning for

Penetration Testing: De- velop an extensive skill

set to break self-learning systems using Python.

Packt Publishing, 2018.

[4] F. Abri, S. Siami-Namini, M. A. Khanghah, F. M.

Soltani, and A. S. Namin, “Can machine/deep

learning classifiers detect zero-day malware with

high accuracy?,” in 2019 IEEE international

conference on big data (Big Data), pp. 3252–

3259, IEEE, 2019.

[5] Z. Xu, S. Ray, P. Subramanyan, and S. Malik,

“Malware detection using machine learning based

analysis of virtual memory access patterns,” in

Design, Automation & Test in Europe Conference

& Exhibition (DATE), 2017, pp. 169–174, IEEE,

2017.

[6] H. Sayadi, N. Patel, S. M. PD, A. Sasan, S.

Rafatirad, and H. Homayoun, “Ensemble learning

for effective run-time hardware-based malware

© January 2023| IJIRT | Volume 9 Issue 8 | ISSN: 2349-6002

IJIRT 157797 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 50

detection: A comprehensive analysis and

classification,” in 2018 55th ACM/ESDA/IEEE

Design Automation Conference (DAC), pp. 1–6,

IEEE, 2018.

[7] I. Firdausi, A. Erwin, A. S. Nugroho, et al.,

“Analysis of machine learning techniques used in

behavior-based malware detection,” in 2010

second international conference on advances in

computing, control, and telecommunication

technologies, pp. 201–203, IEEE, 2010.

[8] X. Gao, C. Hu, C. Shan, B. Liu, Z. Niu, and H.

Xie, “Malware classification for the cloud via

semi-supervised transfer learning,” Journal of

Information Security and Applications, vol. 55, p.

102661, 2020.

[9] “Malware detection, meraz’18 - annual techno

cultural festival of iit bhilai in association with

meraz’18 malware security partner max se- cure

software, https://www.kaggle.com/c/malware-

detection/data, online accessed may, 2021.”

[10] “System.reflection.portableexecutable: Microsoft

peheader properties, https://docs.microsoft.

com/en-us/dotnet/api/system.reflection.

Portableexecutable.peheader?view=net-5.0,

online accessed June 2021.”

http://www.kaggle.com/c/malware-detection/data
http://www.kaggle.com/c/malware-detection/data
http://www.kaggle.com/c/malware-detection/data

