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Abstract—Malware is a critical security risk on Internet 

today. Malware is a set of programs designed to damage 

Internet- connected devices such as servers, computer 

resources, networks. Criminals are using Malware to 

send spam and to steal personal, financial, business 

information. Malware detection is the primary tool to 

stop unauthorized access of sensitive information. These 

days Windows OS is the most commonly used Operating 

System worldwide(77% to 88.8%) also it is the most 

targeted OS by malware attackers. In this paper 

detection of malware is done by simple observation of 

Portable Executable(PE) headers. In this paper, I use 

four methodology: 1. collect the data- set from 

https://www.kaggle.com/c/malware-detection /data 2. 

use an ExtraTreesClassifier for feature importance 3. use 

a ”most frequent” strategy for baseline model 4. use 

Random Forest classification algorithm as a benchmark 

model. 

My data-set contains 140849 benign samples and 75503 

malware samples. In the data-set, the feature 

“legitimate” has values “0” and “1”, defines valid and 

malware files respectively. My experiments to detect 

malware by Portable Executable(PE) headers have a 

precision score of 98% and an f1-score of 98%. My 

experiments indicate that it is easy to detect malware 

files by observing Portable Executable(PE) headers. 

 

Index Terms—Malware, Malware detection, Portable 

Executable(PE) headers, Internet-connected devices, 

security 

I.INTRODUCTION 

 

Malicious software is an integral component of many 

security breaches. Malware is growing exponentially 

and has been causing a huge amount of financial 

damages. Some of the malware are Computer viruses, 

Worms, Ransomware, Spyware, Adware, and so on. A 

computer virus is a type of malicious program 

designed in such a way that, it can spread the whole 

internal system or spread from one computer to 

another computer by replicating the malicious codes 

itself when the user executes the infected program. 

After the successful replication of a computer virus, it 

can destroy data or corrupt the whole file system. The 

worm is a type of malware that replicates itself without 

human interaction and damage computer internal 

resource. A ransomware attack is the most serious 

cyber threat that encrypts the data files or locked the 

computer until the victim pays the demanded money 

within some specific time. In 2019 the damaged cost 

due to the Ransomware attack was 120 Billion Dollars 

and it is predicted that in 2021 the damaged cost due to 

the Ransomware attack will be 210 Billion dollars [1]. 

Spywares are type malicious code that secretively 

installed on our computer and after activation of 

spyware, it can monitors user behavior on the Internet 

and also can steal user passwords, keystrokes. Adware 

is unwanted malicious software that displays irrelevant 

advertisements on a computer its objective is to 

monitor user web surfing activities or may create 

remote communication for transferring user activities 

or install other malicious software and make the 

system vulnerable. The top 10 real world malware is 

showing as the following: 

 
Figure 1: Top 10 Malware [2]. 

In this paper, I use a faster method to detect malware 

or benign file by simply observing the properties of 

Portable Executable(PE) headers. For example, 

”DllCharacteristics” feature describes the 

characteristics of a dynamic link library and 

”Characteristics” features have an enumeration value 

that allows associated member’s values to show some 

characteristics of the file. For example, it has some 

constants that define the respective file as an 

executable file or system file, etc. ”BaseOfCode” 

feature characterizes the address of the beginning-of-

http://www.kaggle.com/c/malware-detection/data
http://www.kaggle.com/c/malware-detection/data
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code area relative to the picture base when the picture 

is stacked into memory. 

In summary, this paper has the following 

contributions: 

Use PE-Header-Parser with the help of Extra- 

TreesClassifier to extract the metadata from PE 

headers and collects the 10 most important features 

that uniquely detect malware. 

Conduct several classification algorithms and analysis 

evaluation metrics 

Report that Random Forest classification is the best 

classification algorithm to solve detection of malware 

problem. 

A. Overview of PE File Format 

PE file header is a windows-based file format used by 

windows executable files(.exe files), Dynamic Link 

Library(DLL) file format, object code file format in 32 

bit or 64 bit Windows OS. This format is one type of 

data structure that wraps the relevant information 

required for the loader of Windows OS to address 

executable codes. PE header controlling exactly where 

to store different sections of a program what type 

of DLL files to load in memory .The basic structure of 

PE format as following figure [3]. 

 
Figure 2:PE file Format structure. 

PE record header format is made up of MS-DOS 

Header, PE Header, Discretionary Header, Segment 

Table. MS-Dos header involves the primary 64B of the 

record. All .exe files starts with the magic number 

0x54AD known as DOS header. PE header contains 

the metadata of file some of them are Machine, 

Number of Sections, TimeDateStamp, 

PointerToSymbolTable, Number of Symbol Table, 

Characteristics, Size of Optional Header. The optional 

header contains the details of the loader. Optional 

headers have three parts as Standard COFF Fields, 

Windows Specific Fields, Data Directories. In this 

header contains metadata like dllCharacteristics, 

SizeOfImage, Checksum, SizeOfCode, BaseOfCode 

etc. Section Table stores images of an executable file. 

Section table contains metadata like Virtual Address, 

SizeOfRawData, PointerToRawData. 

PE file section header typically contains Code, Data, 

and Imports sections. The code section contains the 

executable code for a particular application. The data 

section typically stores initialized variables for an 

application. The imports section gives information 

about the actual functionality of a program or 

application. A combination of import sections is 

known as linking. There are 3 types of linking: 

Dynamic linking: Where libraries are copied into the 

executable image when the program is executed(at 

the run time). 

Static linking: Where all library routines that are used 

in the program are copied into the executable image. 

Runtime linking libraries are only copied into the 

executable image when they are needed. 

 

II.RELATED WORK 

 

Detection of malware is an ongoing challenge as 

day by day malware types are becoming powerful and 

continuously increasing. Previous works to detect 

malware [4] [5] are also similar in motivation and 

area of applications but my work is different in the 

analysis of validation techniques, evaluation metric 

between Dummy-Classifier and Benchmark model. 

[4] presented malware location utilizing PE header, in 

that work they utilize random forest classifier and 

accomplish 99.51% on accuracy score, they 

accomplish 99.24% accuracy by decision tree, by 

basic neural systems with a single covered up layer 

accomplish 99.21% on accuracy. [5] presented a 

modern system for hardware-assisted malware 

discovery based on persistent checking and classifying 

virtual memory get to designs utilizing machine 

learning strategies. They utilize 3 classifiers like 

logistic regression, SVM, and random forest 

algorithm. The system encompasses a discovery rate 

of 99.0% with less than 5% false positives. [6] 

introduced Hardware- Based Malware Detection, in 

this work On dataset 70%-30% splitting for training 

and testing is used. This technique gives a maximum 

of 90% accurately detect malware on different ML 

classifiers(BaysNet, J48, SGD, Jrip, MultiLperc, 

OneR, REPTree, SMO). [7] presented behavior-based 



© January 2023| IJIRT | Volume 9 Issue 8 | ISSN: 2349-6002 

 

IJIRT 157797          INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 47 

malware dis- covery, In that work, they collected 220 

special malware and 250 unique kinds of software. In 

this work, they utilize five classifiers like k-Nearest 

Neighbors(kNN), Gullible Bayes, J48 choice tree, 

Bolster Vector Machine(SVM), Multilayer Perception 

Neural Network(MLP). After connected each dataset 

to these five calculations they get the generally best 

execution by the J48 Choice Trees calculation with the 

recall score of 95.9%, a FPR score of 2.4% and 

precision score of 97.3%, and precision of 96.8%. 

Paper [8] proposed a novel method to predict 

malware for the cloud by the concept of Semi- 

Supervised Transfer Learning(SSTL). They used the 

Microsoft malware classification challenge dataset and 

XGBoost classification algorithm and reported 96.9% 

of detection accuracy. 

 

III.METHODOLOGY 

 

Dataset And Features 

Dataset [9] was obtained from Meraz’18 - Annual 

Techno Cultural festival of IIT Bhilai association with 

Malware Security partner Max Secure Software. 

Dataset has 216352 rows and 58 columns. In the 

dataset, the feature “legitimate” has two values “0” 

and “1”, represents benign and malware files. Within 

the dataset, no. of benign files and malware files are 

140849 and 75503 respectively. Table 1 lists the 

features and description of features. Figure 3 shows 

top 20 important features by using 

ExtraTreesClassifier. 

Table 1: Dataset feature’s details [10] 

 
Figure 3: Top 20 Important Features 

Evaluation Metrics 

To detect actual Malware, we have to use some 

evaluation metric to know how many actual malware 

classes I can detect by my classification model since 

my target is to detect all actual malware classes. For 

this imbalanced dataset, Precision will be the most 

important evaluation metric. 

Precision: 

The precision metric demonstrates the proportion of 

expectations accurately predicted to be positive 

over the full number of positive predictions. Precision 

formally calculated as follows: 

Precision =        TP  

         TP + FP 

Precision is the proportion of malware files that are 

correctly identified. Also known as Positive Predictive 

Value(PPV). Some other important metrics are F-

Measure, Accuracy, and Recall. 

F-Measure: 

This metric decides how well the prescient show can 

accurately anticipate positive values whereas taking 

into thought both FN and FP. 

F − Measure = 

2TP 

 

2TP + FP + FN 
F-Measure translated as a weighted average of the 

precision and recall. When F1-Measure score is 1 then 

it reaches best value and worst score at 0 

Recall: 

Recall measures the percentage of the actual positive 

class that is correctly classified. 

TP 

Recall = 

TP + FN 

Accuracy: 

This metric decides how well the predictive model can 

make correct predictions. 

Accuracy = 

TP + TN 

 

TP + FP + TN + FN 

Accuracy means the proportion of the total no of 

predictions that are correct over all kinds of 

predictions. Here FP, FN, TP, and TN speak to False 

Positive, False Negatives, True Positives, and True 

Negatives separately. 

 

Experimental Setup 

In this experiment, I used the Miniconda package, 

some libraries like Jupyter Notebooks, Numpy, 

Pandas, Scikit-learn and Matplotlib with python 3.8.5. 

I ran these experiments on a Dell Inspiron laptop 
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computer with a 2.50 GHz Intel Core i5 processor 

and 8GB of RAM with 1454.406 CPU MHz. 

 

The Classifiers 

In this work, I choose four classification algorithms as 

AdaBoost, Random Forest, Decision Tree. The 

parameter n estimators used as default while 

classification is performed. 

 

AdaBoost: 

An ensemble model that combines diverse weak 

classifiers( fairway better than arbitrary speculating 

such as small decision trees) on more than once 

adjusted adaptations of the training data. It has a few 

commonsense preferences like It is exceptionally 

quick, simple to actualize, and it can combine with any 

machine learning algorithm. 

 

Random Forest: 

Random Forest Classifier use sets of decision trees and 

selects a subset of the training dataset and then chooses 

the most voted prediction as to the final result. Here 

input of each decision tree uses the original training 

dataset. I will use a Random Forest classifier for model 

validation mainly because it reduces the chance to 

overfit the model. 

 

Advantages: 

It reduces the chance of overfitting since we use many 

estimators(parameter n estimators), and that helps to 

im- prove overall better performance. 

It can handle binary features, categorical features, and 

numerical features. 

The random forest algorithm use to find the most 

important features from the training dataset. 

 

Gradient Boosting: 

Gradient boosting classifier could be a bunch of 

learning algorithms that combine numerous weak 

learning models and make a successful prescient 

model. The foremost advantage of this classifier that it 

is successfully classifies complex datasets. 

 

Decision tree: 

A tree-like structure takes a decision using relevant 

features by constructing a series of if-else statements 

repeatedly until the tree separates data. The space 

complexity of this algorithm is very small and it can 

easily handle multi-class classification without any 

algorithm changes. The main disadvantage increases 

the change to overfitting. 
 

IV.RESULTS AND ANALYSIS 

 

Features Description 

ID Unique identification number of data samples 

md5 Defines Individual machine ID. 

SizeOfOptionalHeader Defines the size of optional header used for 

executable files. 

Characteristics It have a enumeration value allow as- 
sociated members values show some 

characteristics of the file. For example it have 

some constants that defines the respective file 
is executable file or system file etc. 

MajorLinkerVersion Characterizes 

number 

linker major version 

MinorLinkerVersion Characterizes 
number 

linker minor version 

SizeOfCode Characterizes estimate of the code 

(content) segment, or the whole of all code 
segments 

SizeOfInitializedData Characterizes the estimate of the initialized 

information area, or the entirety of all such 

segments in the event that there are different 
information areas. 

SizeOfUninitializedDat

a 

Characterizes the estimate of the uninitialized 

information segment (BSS), or the entirety of 
all such areas in the event that there are 

numerous BSS areas. 

AddressOfEntryPoint Characterizes the address of the passage point 

relative to the picture base when the PE record 
is stacked into memory. 

BaseOfCode Characterizes the address of the beginning of 

code segment relative to the picture base when 

the picture is stacked into memory. 

ImageBase Gets the favored address of the primary byte 

of the picture when it is stacked into memory. 

FileAlignment Gets the arrangement figure (in bytes) that’s 

utilized to adjust the crude data of areas within 
the picture record. 

MajorOperatingSystem

Version 

Characterizes the major form number of the 

specified working framework. 

MinoroperatingSystem
Version 

Characterizes the minor adaptation number of 
the desired working frame- work. 

MajorImageversion Characterizes the major adaptation number of 

the header. 

MinorImageVersion Characterizes the minor form number of the 

header. 

MajorSubsystemVersio
n 

Gets the major form number of the subsystem. 

MinorSubsystemVersio

n 

Gets the minor version number of the 

subsystem 

SizeOfImage Gets the estimate (in bytes) of the image, 
counting all headers, as the image is stacked 

in memory. 

SizeOfHeaders Gets the combined measure of an MS DOS 

stub, PE header, and area headers adjusted up 
to a numerous of File Alignment. 

CheckSum Gets or sets the value of the data for the 

checksum calculation. 

Subsystem Describes the subsystem requirement for the 
image. 

DllCharacteristics Describes the characteristics of a dynamic link 

library. 

SizeOfStackCommit Gets the estimate of the stack to commit. 
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SizeOfHeapCommit Gets the estimate of the nearby heap space to 

commit. 

LoaderFlags Characterizes optional header format 

NumberOfRvaAndSizes Gets the number of data-directory passages 

within the leftover portion of the PEHeader. 
Each depicts a area and measure. 

Table 1 shows the results of different algorithms with 

different evaluation metrics, confusion matrices. In 

this experiment RandomForestClassifier is gives best 

precision score, f1-score compare to 

DecisionTreeClassifier, GradientBoostingClassifier, 

AdaBoostClassifier. The benchmark model [4] 

achieve 99.51% on average for accuracy but they did 

not discuss the evaluation metric precision or f1-

scores. I used the 

Table 2: Results of different classification algorithms 

Classifier TN FP FN TP Precision f1-score 

RandomForestClassif

ier 

27974 189 247 14861 0.9874 0.9855 

DecisionTreeClassifi
er 

27811 352 367 14741 0.9766 0.9761 

GradientBoostingCla

ssifier 

27751 412 637 14471 0.9723 0.9650 

AdaBoostClassifier 27504 659 783 14325 0.9560 0.9520 

most frequent strategy for the baseline model and 

achieved a score of 65.08%. 

 
Figure 4: Validation Curve 

 
Figure 5: Learning Curve 

V.CONCLUSIONS AND FUTURE WORK 

 

ExtraTreesClassifier is used for the most important 

features. 

Different classification algorithms like AdaBoost, 

Random- Forest, DecisionTree, GradientBoosting 

are used to classify all the malware files and I present 

comparisons of different classification algorithms 

with evaluation metrics, confusion matrices. The 

leading performance was accomplished by Random 

Forest Classifier with a precision score 98% and f1-

score 98%. However, this model has not achieved a 

100% precision score, these restrictions are cleared out 

for future work, but this work can predict a high 

precision score of 98% malware files . I accept that 

there are a few other features that can be utilized as the 

key highlights to identify malware, such as extricating 

the Flags within the Characteristics areas of file header 

and discretionary header. The validation curve showed 

that my model is not overfitting and the learning 

curve perfectly shows that more data will help to get 

better performance. Experiments show this work is 

reasonably effective to detect malware files. 
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