
© January 2023| IJIRT | Volume 9 Issue 8 | ISSN: 2349-6002 
 

IJIRT 157977     INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 656 

A Survey of Open Source Software 
 

 

Sameer Alam1, Md Saqlain Salim2, Md Shahabuddin3, Md Zishan4, Rittik Maity5, Ravi Kant Ray6, 

Shanta Phani7 

1,2,3,4,5,6,7Department of Computer Science and Engineering,Bengal Institute of Technology, Kolkata, 

West Bengal 

 

Abstract - The entry and success of Open Source 

Software (OSS), e.g. Linux’s entry into the operating 

systems market, has fundamentally changed industry 

structures in the software business. In this paper, we 

explore the process of open-source software innovation 

and highlight the impact of increased competition and 

different cost structures on innovative activity in the 

industry. In a simple model, we formalize the 

Innovation impact of OSS entry by examining a 

change in market structure from monopoly to duopoly 

under the assumption that software producers 

compete in technology rather than price or quantities. 

The model captures development costs and total cost 

of ownership, whereby the latter captures items such 

as network externalities. The paper identifies a pro-

innovative effect of both intra-OSS and extra-OSS 

competition. 

 

Keywords - economics of open source, innovation, 

open-source software, software competition, strategic 

interaction, software market. 

 

1. INTRODUCTION 

 

The striking difference between Open-Source 

Software (OSS) and Proprietary Software (PS) is the 

freely accessible source code of the former. This 

makes it possible to copy, study, improve and 

customize the source code. Obviously, this has far-

reaching effects on the development process of OSS, 

which is typified by the participation of user-

programmers, high knowledge spillovers, 

contributions by volunteers, and reuse of source 

code.  

The question of what impact this unusual 

development method has on innovation activity in 

the software sector and how it competes with its paid 

counterparts has received surprisingly little attention 

thus far.  

Existing research that is in part related to this 

fundamental question is that of Casadesus-Masanell 

and Ghemawat (2006) and Bitzer (2004), who 

analyzed whether commercial enterprises can be 

expected to compete successfully against emerging 

no-cost OSS competitors or whether they are likely 

to eventually be displaced. In either case, decreasing 

profits of proprietary software producers will lower 

their ability to invest in R&D activity, thus resulting 

in slower technological progress in the software 

industry. However, the impact of OSS on the 

innovation activity in the software sector was not 

modelled explicitly.  

The papers closest to the present one is those of 

Economides and Kat samakas (2006a) and Bitzer 

and Schr¨oder (2006). Economides and Kat samakas 

(2006a) model the interaction between software 

platforms and software application providers in two 

different environments: a pure OSS and a pure 

proprietary ecosystem. Thus, they do not deal with 

the interaction of different types of firms, and hence 

the model is unsuitable to address the issue of a 

change in market structure and its impact on 

innovation activity, the central question of the 

present paper. Economides and Katsamakas (2006a) 

show that the ranking of investment levels in the 

platform is ambiguous, but that the level of 

investment in the application is higher with an OSS-

based platform than with a proprietary software-

based platform. Furthermore, they establish that the 

level of investment depends on the strength of the 

reputation effects, the number of user-programmers, 

and the total cost of ownership (TCO). Bitzer and 

Schroder (2006) review the pro-and anti-innovative 

features of the OSS development process and 

provide some initial insights into software 

competition in a similar framework as in the present 

paper. However, their model ignores important 

issues such as network effects and TCO, and they 

ignore the crucial difference between asymmetric 

and symmetric software duopolies that are dealt with 

in the present paper. 

While our paper mirrors several of the above 

assumptions, it takes a different route and addresses 

a different question. Our focus is on the impact of 

OSS competition on innovation activity, and 

accordingly, we set up a formal model of technology 

competition by extending the framework proposed 

in Bitzer and Schroder (2006). We apply a general 



© January 2023| IJIRT | Volume 9 Issue 8 | ISSN: 2349-6002 
 

IJIRT 157977     INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 657 

objective function based on the dissemination of a 

software product to capture the conflicting motives 

of OSS contributors and profit-oriented software 

firms. The paper acknowledges – and explicitly 

models – the demand for software in such a setting, 

i.e. its dissemination, which, is a matter of neither 

price nor available quantity, but rather of the level 

of technological content offered by the software to 

users, its TCO, and the technological level of a 

competitive software product. Given that the TCO is 

strongly determined by exogenous factors like 

network effects, user skills, etc., technology is the 

strategic variable of software competition. 

We examine the impact of increased competition on 

innovation activity in two ways: first, we analyze 

how a change in market structure – from monopoly 

to duopoly – in the software industry changes the 

innovation activity of both the incumbents and the 

entrants. Our model thus reflects the threat of 

competition to formerly monopolistic markets from 

new OSS products. Second, we analyze how 

different cost structures influence the decision of 

agents whether or not to innovate. Thus, picking up 

the often-assumed cost advantage of developing 

OSS in contrast to proprietary software (e.g. 

Casadesus-Masanell and Ghemawat (2006), 

Economides and Kat samakas (2006b), Bitzer 

(2004)). However, departing from preceding 

studies, we do not assume a no-cost development of 

OSS. Rather, by analyzing major differences 

between the development process of OSS and that 

of proprietary software, we are able to point out both 

cost-saving and cost-raising characteristics of the 

OSS development process. 

From the model, we derive the following results: 

first, the transition from a monopoly to a duopoly 

(increased competition) increases the technological 

levels chosen by the enterprises. Second, these 

findings apply both to pure OSS markets (intra-OSS 

competition) as well as to mixed markets (e.g. entry 

of an OSS firm into the market of a for-profit 

monopolist; extra-OSS competition). Third, 

assuming that the development and innovation costs 

of OSS firms are lower than those of for-profit firms, 

pure OSS duopolies will produce more advanced 

technologies and thus higher rates of innovation. 

Fourth, assuming that the payoff for proprietary 

software producers is higher (and that this dominates 

the previous effect), a proprietary software duopoly 

will feature a higher rate of innovation compared to 

an OSS duopoly. Fifth, and perhaps one of the more 

counterintuitive results of the analysis, we are able 

to show that a higher TCO – independent of the 

market structure – triggers firms to set higher 

technology levels, i.e. to innovate. This affects both 

the firm's own rate of innovation as well as its 

competitor’s rate of innovation. The reason for this 

effect is that firms, within the logic of software 

competition, must counter-balance a higher TCO 

with more advanced technological content in order 

to maintain a satisfactory level of product 

dissemination. 

The remainder of the paper proceeds as follows. The 

following section discusses the characteristics of the 

OSS development process affecting costs. Section 3 

presents a simple formal model of software 

competition and derives results on the impact of 

increased competition on innovation. Section 4 

concludes. 

 

2. THE DEVELOPMENT PROCESS OF OPEN 

SOURCE 

 

Thus far, research on the influence of OSS on the 

software industry has taken a traditional competition 

approach. Bitzer (2004) used a Hotelling setup to 

analyze the entry of OSS into formerly monopolistic 

markets, and Casadesus-Masanell and Ghemawat 

(2006) analyzed competition between OSS and 

proprietary software in a dynamic mixed duopoly 

with demand-side learning. Both papers assumed 

that OSS is offered for free, and based their 

arguments in part on the observation that 

development costs appear not to play a role in the 

OSS context. Thus, both set up a competition model 

between a firm with development costs and a 

competitor with zero development costs. Even 

though such assumptions certainly capture central 

aspects of the OSS phenomenon, they disguise the 

fact that OSS development does indeed create costs 

– private costs that are borne by the contributors. 

Although volunteer programmers are not able to 

pass development costs on to the users of the OSS 

these costs still arise and may play a role, for 

example, in deciding whether to program or what 

solutions/product to program. Development costs 

may therefore have a strong influence on the 

innovation activity, not only for proprietary software 

firms but also for OSS developers. We refrain from 

discussing the question of whether an OSS 

contributor has lower private costs in programming 

OSS – which include opportunity costs – than those 

incurred by a programmer employed in a firm. 

Rather we assume that the private costs of an OSS 



© January 2023| IJIRT | Volume 9 Issue 8 | ISSN: 2349-6002 
 

IJIRT 157977     INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 658 

contributor and those of a programmer paid by a 

firm are largely comparable and focus on the cost-

saving and cost-raising characteristics of the OSS 

development process. Abstracting from the details 

of single OSS projects, the OSS innovation process 

is typified by a number of characteristics that are 

valid for the majority of OSS projects. The analysis 

reveals that several of these lead to lower 

development costs and TCO for OSS than for 

proprietary software, while at the same time some 

characteristics obviously lead to higher OSS 

development costs and TCO.  

 

2.1. Cost-Saving characteristics of  OSS 

Development 

With OSS, the accessibility of the source code 

facilitates the emergence of knowledge spillovers 

within the community. Programmers can read, 

understand, and learn from the programming 

innovations of other programmers. Therefore, the 

knowledge diffusion within OSS projects takes 

place unhampered (cf. Raymond 2000b, Kogut and 

Metiu 2001, Osterloh et al. 2002, Haefliger et al. 

2006). Proprietary software by its very nature limits 

this ability to the group of actual project participants, 

who have access to only parts of the final software 

product, depending on their rank and position. 

Obviously, the positive externalities stemming from 

existing knowledge spillovers reduce the 

development costs of OSS.  

Furthermore, displaying programming steps has a 

clear disciplining effect on programmers, as it 

implies an audience. An audience, as in any job, 

motivates a programmer to provide cleaner, more 

efficient, and more elegant code, compared to 

compiled software, which disguises cumbersome or 

faulty programming steps. Thus, the open-source 

code increases the motivation of OSS contributors. 

Furthermore, the high motivation of the contributing 

programmers is boosted further by the very nature 

of voluntarism: programmers usually only work on 

projects that they enjoy (e.g. Bitzer et al. 2004, 

Luthiger 2005). Another factor increasing 

motivation is the value of signalling which results 

from one’s programming work being published with 

the author’s name. Providers of OSS benefit from 

being able to signal their programming skills, either 

through improved prospects on the job market 

(Lepp¨am¨aki and Mustonen 2004a, 2004b, Lerner 

and Tirol 2002, and Raymond 2000b), and/or 

through enhanced reputation within the community 

of programmers (see Raymond 2000a, and Torvalds 

and Diamond 2001). Thus, each programmer is 

interested in maximizing the signal value of his 

work by providing high-quality software, and this 

acts as a motivation to produce higher-quality 

programming work. Undoubtedly this aspect of OSS 

which boosts programmer's motivation also saves 

costs. 

Boundless cooperation is another important 

advantage of the OSS innovation process. Because 

commercial exploitation of the newly developed 

software is not intended, there is no need to keep 

new ideas secret and therefore barriers against 

cooperation do not arise. This results in two factors 

making the OSS innovation process less cost 

intensive. First, as already mentioned above, 

unlimited access to the source code leads to high 

knowledge diffusion. Second, as no commercial 

interests prevent cooperation between programmers, 

beneficial combinations of complementary 

programming skills can be exploited (Haefliger et al. 

2006, Lakhani and von Hippel 2003). 

The cost-saving impact of the forking thread effect 

has not been discussed in the literature thus far. 

Forking and branching are terms used to describe the 

splitting up of OSS projects into rival and competing 

development streams. The right to modify and 

distribute a splintered version of an existing OSS 

project puts every programmer in the position to 

leave the community and set up a new project, 

further developing a derived version in an 

alternative direction. This thread leads to a decision 

process quite different from that in commercial 

development procedures. The decision on future 

development is thus based on democratic principles, 

where the majority of the most important 

contributors usually decide (e.g. Lerner and Tirole 

2002, Vujovic and Ulhøi 2006). This has two 

important effects on the OSS innovation process. 

First, it ensures that technological aspects are central 

to the decision on which direction the further 

development of an OSS project should go. Second, 

it means that new innovations are implemented 

immediately. 

Another cost-saving characteristic of the 

development of OSS is the extensive code reuse 

(e.g., Spinellis and Szyperski 2004, Haefliger et al. 

2006). Enabled by the terms of OSS licenses (Lerner 

and Tirole 2005), everything from a few lines of 

code to entire program structures may be and are 

reused in other OSS projects. This kind of 

‘recycling’ is of course a procedure that cannot be 

used in the development of proprietary software. 



© January 2023| IJIRT | Volume 9 Issue 8 | ISSN: 2349-6002 
 

IJIRT 157977     INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 659 

Obviously, the reuse of code can save significant 

amounts of OSS development costs. Besides the 

characteristics discussed, which help to save 

development costs for OSS as compared to 

proprietary software, some of them also reduce the 

total cost of ownership (TCO) of OSS. The close 

connection between users and developers is an 

important way of reducing the TCO. In fact, users 

and developers are often one and the same person, 

since the need for a particular solution is a central 

motive in starting an OSS project or developing a 

certain extension to an ongoing OSS. This user-

developer element has been considered to constitute 

a major advantage of the OSS development process 

(see Kuan 2001, Franke and von Hippel 2003). But 

even if the programmer and the user are two 

different people, the communication between them 

takes place very directly because the OSS 

contributor’s name is published and he can be 

addressed directly. Thus, the communication is not 

hampered by the anonymity and bureaucracy of 

sales and support departments or other 

intermediaries. These close connections make it 

possible to report bugs and request new features 

much more quickly, activities commercial 

enterprises have to invest significant resources for. 

 

2.2. Cost-Raising characteristics of  OSS 

Development 

Besides the aforementioned cost-saving 

characteristics of OSS resulting from the 

development process and the openness of the source 

code, there are, of course, also severe cost-raising 

characteristics. Due to the freedom within the 

various OSS communities, there is a high risk of 

redundant development. Thus, instead of searching 

for prior art, contributors may prefer to offer a 

‘pretended new’ solution as it generates a higher 

reputation in the community. This often results in 

the ‘reinvention of the wheel’. Next, we come to the 

issue of unhealthy forking. Once forking has 

occurred, it is accompanied by several cost-raising 

effects. First, the appearance of ‘forks’ ultimately 

reduces the number of programmers working on 

each of the forks, thus reducing cost-saving effects 

like cooperation between contributors, spillover 

effects, and boundless cooperation. Second, forking 

may lead to incompatible standards, reducing the 

cost-saving effects via code reuse. Third, a splitting 

of the programmer community might result in a 

programmer shortage, creating extra costs in 

attracting programmers (Lattemann and Stiglitz 

2006, Krishnamurthy and Tripathi 2006, Vujovic 

and Ulhøi 2006). As in the case of cost-saving 

characteristics, there are cost-raising characteristics 

that increase the TCO of OSS. In particular, the 

undirected innovation process leads to higher total 

costs of use of OSS. The development of particular 

software components is not guaranteed by the 

respective OSS communities. For example, certain 

drivers may not exist for Linux, and Linux users 

have no influence – apart from suggesting the idea 

for the driver or paying to have it programmed – on 

the decision of programmers to actually develop it. 

Furthermore, because of the absence of a liable 

coordinating institution, there is no guarantee that 

existing hardware or software will be supported by 

the operating system in later versions, or that newly 

purchased hardware or software will be supported. 

Of course, due to the openness of the source code, it 

is possible to order single-unit production of the 

required software component, but this would cause 

extra costs, and/or the resulting solution would have 

to be shared among the whole community through 

the publication of the source code. In contrast, 

proprietary software enterprises usually pay close 

attention to the backward and forward compatibility 

of their software, as well as to the support of older 

and newly emerging hardware. 

 

3. A MODEL OF SOFTWARE COMPETITION 

 

Competition between a profit-oriented software firm 

and an OSS developer community follows different 

rules than the ‘standard’ competition model. First, 

the incentives of the actors differ. Second, the 

strategic variables are neither price nor quantity, but 

rather, technology. Third, we include the TCO of 

software as an important decision factor for users. 

Fourth, the behaviour of the market participants is 

strongly influenced by an exogenous technological 

factor. The biggest challenge in capturing software 

competition is identifying the objective function of 

the OSS producer. Yet, the majority of research has 

focussed solely on the incentives and motives of 

OSS developers. It is widely acknowledged that, 

while commercial firms maximize profits, OSS 

developers are interested in enhancing their 

reputation and/or signalling value (e.g. Raymond, 

2000a, 2000b; Torvalds and Diamond, 2001; Lerner 

and Tirole, 4 In particular, the emergence of no-cost 

competitors in the software market has altered the 

type of competition. In such market segments, 

neither price nor quantity are important competition 



© January 2023| IJIRT | Volume 9 Issue 8 | ISSN: 2349-6002 
 

IJIRT 157977     INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 660 

axes but the technology became the crucial 

determinant (see Bresnahan and Greenstein (1999). 

12 2002, Bitzer et al., 2004; Bitzer and Schr¨oder, 

2005; Hertel et al. 2003, Lakhani and Wolf 2005, 

Hars and Ou 2002). Hence, even though a profit 

motive can be ruled out for OSS developers, they 

nevertheless maximize these other payoffs. 

Fortunately, although the incentives of the two types 

of software producers are different, both incentives 

are clearly correlated with the dissemination of their 

respective software products. While commercial 

firms are interested in increasing their profits by 

benefitting from decreasing average costs with 

increasing dissemination of their software, OSS 

developers benefit from the dissemination of their 

OSS in terms of enhanced reputation and signalling 

value (Lerner and Tirole, 2002). And most 

importantly, the presence of network effects in 

software explains why both types of software 

producers will value dissemination. Thus, 

commercial firms and OSS developers can still be 

assumed to maximize their respective payoffs, 

which depend in turn on the dissemination of their 

software. To capture both types of software 

producers, we use a general objective function that 

can represent both proprietary software producers 

and OSS developers. Another important aspect in 

modelling software competition is that the strategic 

variable in a software market is neither price nor 

quantity. Software is an intangible good that can be 

duplicated at virtually no cost, and in addition, at 

least one agent (the OSS developer) distributes his 

product at zero price.5 Since there can be no talk of 

either quantity or price competition, our paper starts 

out by formulating an (admittedly unconventional) 

model in which software providers do not compete 

in price or quantities, but instead in the technological 

content of their products. A high level of technology 

ensures 5 In fact, also the price of most proprietary 

software is often inessential from a consumer’s point 

of view. The majority of software is sold as pre-

installed, thus its ability, reliability, compatibility, 

etc. – in short, its technological content – drives the 

consumer’s decision, while the price is a matter 

between the soft- and hardware producer. 13 

widespread dissemination of the software, which is 

good for the producer, but also raises the costs of 

development and maintenance (bug fixing, etc.). We 

apply a broad concept of technology including all 

properties that influence the user’s decision to 

employ a certain software package. Depending on 

the type of software, the technology, therefore, 

includes characteristics like supported hardware, 

ease of use/installation, interconnectivity 

capabilities, range of features, state-of-the-art 

functions, performance, quality, reliability, and so 

on. Thus, the technology of software includes the 

entire bundle of its technological characteristics 

(Bessen, 2006), see Bitzer and Schr¨oder (2006) for 

an earlier version of a duopoly model with the above 

properties. Finally, a model of software competition 

must take into consideration TCO, which includes 

not only the cost of purchase but also all aspects of 

the use and maintenance of the software, e.g. costs 

of training users and IT support staff, costs 

associated with failure or outage of the software 

(planned and unplanned downtime), administration 

costs, development costs, costs of overcoming 

network externalities, and switching costs (CSC 

2004). In particular, the latter two are important 

characteristics of the software market (Schmidt and 

Schnitzer 2003). These considerations lead us 

directly to the central difference between our model 

and a ‘standard’ competition setting. The ‘value’ of 

a piece of software to a user depends strongly on 

how up-to-date its general functionality is or, to put 

it differently, its ‘real’ technological level. The real 

technological level depends on how far each 

technological characteristic of the software is behind 

the state of the art: the ‘technological frontier’ of that 

particular 6 It is always possible to overcome 

network externalities by corresponding investments, 

e.g., paying someone to program a missing piece of 

application software. Of course, the required 

investment costs might be exorbitantly high. 

However, network externalities can be interpreted as 

a component of the TCO. 14 aspect of the software. 

Thus, the technological level of any piece of 

software is defined in relation to the global 

technological level, which consists of all the most 

advanced developments in each aspect of that 

software at that specific point in time.7 On the other 

hand, the global technological level itself is 

constantly changing. It is set by developments in the 

globally available technology that influence the 

demand for or development of software. The global 

technological level is driven by developments in 

hardware technology, new applications, new 

features, consumer demands, and so on. The ‘real’ 

technological level of any piece of software quickly 

deteriorates as externally determined technological 

possibilities (processor capacity, application 

demands, etc.) and consumer demands grow. 

Therefore the technology embedded in a developed 



© January 2023| IJIRT | Volume 9 Issue 8 | ISSN: 2349-6002 
 

IJIRT 157977     INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 661 

piece of software must be adjusted in accordance 

with external (global) technological progress, i.e. 

innovation. 

 

4. WAYS OPEN SOURCE GIVES YOU A 

COMPETITIVE EDGE 

 

Building a tech stack is a major decision for every 

organization. While picking the right tools will set 

your team up for success, picking the wrong 

solutions or platforms can have devastating effects 

on productivity and profitability. To succeed in 

today's fast-paced world, organizations must make 

smart investments in digital solutions that enable 

them to move faster and increase operational agility. 

This is precisely why more and more organizations 

of all sizes and across all industries are embracing 

open source solutions. According to a recent 

McKinsey report, open-source adoption is the 

biggest differentiator for top-performing 

organizations. 

Here are four reasons why adopting open source 

technology can help organizations drive competitive 

advantage and experience better business outcomes. 

 

4.1. Extensibility and flexibility 

Suffice it to say the world of technology moves 

quickly. For example, Kubernetes didn't exist before 

2014, but today, it's impressively ubiquitous. 

According to the CNCF's 2020 Cloud-Native 

Survey, 91% of teams are using Kubernetes in some 

form. 

More Great Content 

● Free online course: RHEL technical overview 

● Learn Advanced Linux Commands 

● Download Cheat Sheets 

● Find an Open Source Alternative 

● Read Top Linux Content 

● Check out open-source resources 

One of the main reasons organizations are investing 

in open source is because it enables them to operate 

with agility and rapidly integrate new technologies 

into their stack. That's compared to the more 

traditional approach, where teams would take 

quarters or even years to vet, implement, and adopt 

software, making it impossible for them to pivot 

with any sense of urgency. 

Since open source solutions offer complete access to 

source code, teams can easily connect the software 

to the other tools they use every day. 

Simply put, open source enables development teams 

to build the perfect tool for what is at hand instead 

of being forced to change how they work to fit into 

how inflexible proprietary tools are designed. 

 

4.2. Security and high-trust collaboration 

In the age of high-profile data breaches, 

organisations need highly secure tools that enable 

them to keep sensitive data secure. 

When vulnerabilities exist in proprietary solutions, 

they're often undiscovered until it's too late. 

Unfortunately for the teams using these platforms, 

the lack of visibility into source code means they're 

essentially outsourcing security to the specific 

vendor and hoping for the best. 

Another main driver of open source adoption is that 

open source tools enable organisations to take 

control of their own security. For example, open-

source projects—particularly those with large 

communities—tend to receive more responsible 

vulnerability disclosures because everyone using the 

product can thoroughly inspect the source code. 

Since the source code is freely available, such 

disclosures often come with detailed proposed 

solutions for fixing bugs. This enables dev teams to 

remedy issues faster, continuously strengthening the 

software. 

In the age of remote work, it's more important than 

ever for distributed teams to collaborate while 

knowing that sensitive data stays protected. Since 

open source solutions allow organizations to audit 

security while maintaining complete control over 

their data, they can facilitate the high-trust 

collaboration needed to thrive in remote 

environments. 

 

4.3. Freedom from vendor lock-in 

According to a recent study, 68% of CIOs are 

concerned about vendor lock-in. They should be. 

When you're locked into a piece of technology, 

you're forced to live with someone else's 

conclusions instead of making your own. 

Proprietary solutions often make it challenging to 

take data with you when an organization switch 

vendors. On the other hand, open-source tools offer 

the freedom and flexibility needed to avoid vendor 

lock-in and take data wherever an organisation 

wants to go. 

 

4.4. Top talent and community 

As more and more companies embrace remote work, 

the war for talent is becoming even more 

competitive. 



© January 2023| IJIRT | Volume 9 Issue 8 | ISSN: 2349-6002 
 

IJIRT 157977     INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 662 

In the world of software development, landing top 

talent starts with giving engineers access to modern 

tools that enable them to reach their full potential at 

work. Since developers increasingly prefer open 

source solutions to proprietary counterparts, 

organisations should strongly consider open source 

alternatives to their commercial solutions to attract 

the best developers on the market. 

In addition to making it easier to hire and retain top 

talent, open-source platforms also enable companies 

to tap into a community of contributors for advice 

on how to walk through problems and get the most 

out of the platform. Plus, members of the 

community also contribute to open source projects 

directly. 

 

5. HOW TO COMPETE AGAINST OPEN 

SOURCE COMPETITION 

 

5.1. Time vs Money 

At one point during college I had $6 in my checking 

account. This lasted for about three months. 

I remember riding across campus, about a 15 minute 

ride (each way) to save $.50 on a slice of pizza. This 

is inconceivable in my life today. Back then, time 

was abundant and money was scarce. 

Then I graduated and got a job. At a salaried job 

making $80k plus benefits, your time is worth 

around $55/hour. Suddenly that ride across campus 

to save $.50 doesn’t seem like the smart money 

decision it once was. 

And thus it is with the majority of open-source 

software: Open source software is free if your time 

is worth nothing. 

I’m bracing my inbox for emails from disgruntled 

Gimp users explaining how charging for software is 

bad, commercial software is evil, and my mother 

dresses me funny. But I don’t buy it. 

I’ve used mainstream image editors like Photoshop, 

Paint.NET and Gimp; some of my best friends are 

mainstream image editors. And when I saw Gimp I 

almost went blind. Children were weeping; the fruit 

was bruising. 

Are there exceptions in the open-source world? 

Absolutely. 

When an open-source project gets enough talented 

people working on it, it can become a downright 

masterpiece. 

Firefox rocks. WordPress is awesome. Paint.NET 

rules. And Linux is pretty cool, though the lack of 

drivers and ease of use as a mainstream desktop OS 

after all this time is still a disappointment. 

And yes, I know about Ubuntu. I also know that 

every friend to whom I’ve recommended it has run 

into major compatibility issues or a complete lack of 

drivers. Ubuntu is free, after 6 hours of research and 

command line tricks trying to get your laptop to 

connect to your network. 

Have you ever tried Gimp? Or the admin control 

panel in Zen-Cart? Or tried to install a Perl or PHP 

module that didn’t come out of the box? I’ve been a 

web developer for 10 years and I cringe when I see 

that I need a module that’s not included, there goes 

two hours of my day searching, configuring and 

installing dependencies. 

As a developer, I’ve probably had contact with 300 

open source projects, components, and applications. 

I estimate that 80% of them required substantially 

more time to install, use, or maintain than their 

commercial counterparts. But depending on the 

price and feature set of their commercial 

counterparts, sometimes it’s worth using the open-

source app and sometimes it’s not. $299/user for 

Vault vs. $0/user for Subversion? It depends on how 

badly you need live support and guaranteed bug 

fixes. 

 

5.2. The Differentiators 

The areas that kill the most time when consuming 

open source software are: 

● Installation process 

● Documentation 

● Support 

● Usability 

I’m sure we can all point out a handful of open 

source projects that have decent documentation and 

decent usability. The vast majority do not. Even 

fewer can be installed in five minutes or less, even 

by an experienced software developer. 

 

5.3. How to Compete Against Open Source 

As a commercial software vendor you have to focus 

on your key advantages over open-source software: 

1. Save Your Users Time. Ensure a painless 

installation process, top-notch documentation, 

top-notch support, and a minimal learning curve 

for getting started using your application. 

2. Market Hard. You have a marketing budget; 

odds are high that your open-source competitor 

does not. If you can position your product well 

and build a reputation for good documentation, 

support and usability, you will sell software. 

3. Focus on Features for Your Demographic. Your 

open-source competitor is going to win when it 



© January 2023| IJIRT | Volume 9 Issue 8 | ISSN: 2349-6002 
 

IJIRT 157977     INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 663 

comes to college students, hobbyists, and other 

groups where time is worth a lot less than 

licensing cost. You will have an edge with 

business users since time is highly monetized 

for entrepreneurs and enterprises. Build features 

for people who are likely to buy your product. 

 

6. DISCUSSION 

 

6.1. The Worst-Case Scenario for PS and OSS-SS 

Vendors 

The worst-case scenario for both the PS and OSS-

SS vendors is when OSS is as usable as PS and OSS. 

In such a scenario there is no incentive for the PS 

and the OSS-SS vendors to enter the software 

market. The OSS-SS vendors stay away because 

they face zero demand (even though they are highly 

usable) when they compete against freely available 

and highly usable OSS. On the other hand, both PS 

and OSS-SS will have a positive demand. However, 

the equilibrium price for PS is not enough to cover 

the marginal cost of selling the software, resulting in 

negative profits for the PS vendor (See Appendix B). 

Therefore, both PS and OSS-SS vendors have little 

incentive to improve the usability of freely available 

OSS. However, such a scenario begs an important 

question, i.e. what is the likelihood of this scenario 

(i.e. the usability of OSS application improves to the 

extent that it is comparable to that of PS 

applications) ever happening? For this to happen, 

the developers involved with the OSS project will 

have to give as much importance to the usability of 

the application as to its utility or functionality, and 

will have to develop user-friendly 0.1 0.2 0.3 0.4 0.5 

0.6 0.7 Unusability 0.02 0.04 0.06 0.08 OSS SS 

Profits ( 0) * π S θ = Figure 3b: Equilibrium Profits 

in Software Markets with Low Network Benefits 

[Assume:V =1.5;c = 0.2] (β ) * β S 20 interfaces and 

features for the OSS application. Though 

theoretically possible, a realistic assessment of OSS 

projects shows that this is not likely to happen soon. 

OSS application developers have traditionally 

favored function over form, which is evident in the 

lack of user-friendly features (e.g. user interfaces) in 

these applications and there is no evidence that this 

is changing (Nichols and Twidale 2003). One reason 

is that in most open source projects, the developers 

of OSS applications are also its core users (Mockus 

et al. 2000, 2002). For these developer-users, the 

OSS application is already “ user-friendly” because 

they are highly skilled software professionals (Koch 

2003), and they already know the software inside out 

(the source code is available to them) to modify it as 

they choose fit. In addition, most OSS developers 

work under a licence that prevents them from selling 

the code, so they develop features that are important 

to them and not necessarily to the market. Finally, 

there is hardly any mechanism to capture the 

feedback of average users who are not involved with 

the OSS application development process but are 

most in need of user-friendly features. Therefore, we 

can safely assume that the likelihood of the worst-

case scenario ever happening is low. 

 

6.2. How can commercial proprietary software 

producers compete against open source software? 

This is one of the key questions that we started the 

paper with. In this paper, we divide the software 

markets into two broad categories- those that are 

characterised by strong network effects and those 

that are characterised by weak network effects. A 

vendor of PS software needs to identify the software 

market that it is competing in and act accordingly. If 

it is competing in software markets with strong 

network benefits, then it will remain an important 

player in the software market as long as OSS 

remains highly unusable and 21 OSS-SS remains 

unusable relative to the PS (see Figures 1, 2, and 3a). 

This makes the software markets such as e.g. the 

desktop office productivity software market, and 

desktop operating systems, attractive for PS 

vendors. Furthermore, a PS vendor can improve its 

competitive position by ensuring relatively high 

usability in its own products. In addition, they need 

to ensure very low usability in freely available OSS. 

They can do so by participating in OSS projects and 

encouraging the developers of OSS to focus their 

development efforts only on the functionality and 

reliability of open-source software. If the OSS 

becomes as usable as OSS-SS, then the OSS-SS 

vendor is forced to improve its own usability (see 

Figure 3a) or exit the market (see Appendix C). If 

the OSS-SS vendor decides to improve its usability 

further, then all software ends up with the same 

usability resulting in negative profits for PS, and no 

demand for OSS-SS (See Appendix B). If the PS 

vendor is competing in software markets 

characterized by weak network effects, then it 

should work towards improving the usability of OSS 

so that it is as usable as OSSS. In such a market 

OSS-SS has two options - (a) to improve its usability 

in relation to OSS, and (b) to exit the market (see 

Appendix C). If OSS-SS decides to improve its 

usability, it is constrained by the relationship 



© January 2023| IJIRT | Volume 9 Issue 8 | ISSN: 2349-6002 
 

IJIRT 157977     INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 664 

between its usability and profitability (see Figure 

3b), which ensures that OSS-SS is never as usable 

as PS (since OSS-SS profits are maximised at 0 1 * 

< β = β S < ). If possible, the PS vendor should help 

OSS developers to improve their usability to the 

level of OSS-SS (i.e. ) * β S . This would force the 

OSS-SS vendor to exit the software market (see 

Appendix C). However, if the usability of OSS-SS 

is very low, then the PS vendor is better off by 

ensuring that OSS has the lowest usability among 

the three (see Figure 4) so that OSS-SS remains in 

the software market. This is an interesting result 

since it identifies the condition under which the 

presence of an OSS-SS vendor actually helps the 

competitive position of the PS vendor. 

 
Fig 1: PS Profit in software markets with low NW 

benefits [1] 

 

6.3. How can OSS-SS vendors compete against well 

established proprietary software?  

OSS-SS vendors who sell usable OSS plus support 

services face a very competitive environment. On 

one hand, they have to compete with highly usable 

PS options, and on the other hand, they have to 

compete with freely available OSS. To compete 

successfully, the OSS-SS vendor needs to 

benchmark its usability against the competing PS. If 

it is competing in the software market characterized 

by weak network effects, then it is better off by 

ensuring that OSS-SS is highly usable compared to 

the OSS, but not as usable as the competing PS (see 

Figures 1, and 3b). On the other hand, if it is 

competing in software markets characterized by 

high network effects then it needs to offer a product 

that is at least as usable as the competing PS. By 

doing so it can force the PS vendor out of the 

software market (see Figure 1 and Figure 3a). OSS-

SS vendors also need to keep in mind that users 

differentiate between OSS and OSS-SS mainly on 

the basis of usability. If OSS starts to become more 

usable, then OSS-SS vendors lose this strategic 

advantage. Therefore, OSS-SS need to ensure that 

the “ free” open-source software is not very useful 

when compared to the usability of PS or OSS-SS. 

This can be achieved by actively participating in 

relevant open source projects and having enough 

influence among the developers to focus most of 

their development efforts on improving software 

functionality and reliability. In addition, they should 

provide a highly usable version of OSS only if the 

users also buy the support services. For instance, 

some OSS-SS vendors continue to provide highly 

usable versions of relevant OSS for “free” (e.g. Suse 

9 by Novell is a highly usable Linux flavour for 

desktops and it is available for free download). This 

strategy will have an adverse impact on their market 

shares and profitability in relevant software markets. 

 

7. CONCLUSION 

 

The paper analyses the influence of entry and 

competition by open source software (OSS) on 

innovation and technological progress in software 

markets. The best-known example of such an event 

is the entry of Linux into the market for server 

operating systems. Some observers fear that the 

technological progress in software technology will 

slow or even stop altogether as a consequence of the 

entry of a low-cost OSS competitor into former 

highly concentrated (monopolistic) markets. 

Departing from former research on OSS, we 

explicitly model the influence of competition on the 

decision to innovate. We examine the impact of 

increased competition on innovation activity in two 

ways: first, we analyze how a change in market 

structure – from monopoly to duopoly – in the 

software industry changes the innovation activity of 

both the incumbents and the entrants. Secondly, we 

analyze how different cost structures influence the 

decision of the agents to innovate or not. Thus, we 

reexamine the often 23 assumed cost advantages of 

OSS over proprietary software. However, departing 

from preceding studies, we do not assume a no-cost 

development of OSS. Reviewing the differences in 

the development process of OSS and proprietary 

software, we find both cost-saving and cost-raising 

characteristics of the OSS development process. We 

set up a simple model of software competition where 

producers compete in technology rather than price 

or quantity. Within the model, the development 

decision of the firms regarding how to set the 

technology level of their software (innovate) is 

examined. We find that the move from monopoly to 

duopoly always increases the technology level and 



© January 2023| IJIRT | Volume 9 Issue 8 | ISSN: 2349-6002 
 

IJIRT 157977     INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 665 

thus the level of innovation chosen by the 

enterprises. Thus, OSS entry has a positive impact 

on firms’ willingness to innovate and heightens the 

overall technological level in the industry. 

Furthermore, under the assumption that the 

development and innovation costs of OSS firms are 

lower than those of commercial firms, the model 

implies that in terms of technology levels and rate of 

innovation, a pure OSS duopoly dominates 

monopolies (either proprietary or OSS), pure 

commercial duopolies, and mixed duopolies (e.g. 

one OSS firm and one for-profit firm). Put 

differently, competition is still good, also when the 

product – in this case, software – is knowledge-

intensive. Our model also raises several new 

questions that have to be left to future research. First, 

the question of whether the structure and 

organization of the OSS development process lead 

to higher and/or better output has to be answered 

empirically. Second, our model underlines the 

importance of the TCO for the purchase decision, 

but, the jury is still out on whether or not the TCO 

of OSS is higher or lower than that of proprietary 

software. Finally, almost completely neglected here 

is the question of if and to what extent knowledge 

spillovers occur during the OSS development 

process. 

REFERENCE 

 

[1] Ravi Sen, A Strategic Analysis of Competition 

Between Open Source and Proprietary Software 

https://econwpa.ub.uni-muenchen.de/ econ-

wp/io/removed/0510004.pdf 

[2] Philipp J.H. Schröder, Open Source Software, 

Competition and Innovation. 

[3] Rob Walling, https://robwalling.com/2009/ 

08/11/how-to-compete-against-open-source-

competition/ 

[4] Jason Blais, https://opensource.com/article 

/21/4/open-source-competitive-advantage 

[5] Bessen, James (2006): Open Source Software: 

Free Provision of Complex Public Goods, in J. 

Bitzer and P.J.H. Schr¨oder (eds.): The 

Economics of Open Source Software 

Development, Elsevier, pp. 57-82.  

[6] Bitzer, J¨urgen (2004): Commercial versus 

open-source software: The role of product 

heterogeneity in competition, Economic 

Systems, Vol. 28, No. 4, 2004, pp. 369-381.  

[7] Bitzer, J¨urgen, Wolfram Schrettl and Philipp 

J.H. Schr¨oder (2004): Intrinsic Motivation in 

Open-Source Software Development, 

Discussion Paper, No. 2004/19, Department of 

Economics, Free University Berlin. 

[8] Bitzer, J¨urgen and Philipp J.H. Schr¨oder 

(2005): Bug-Fixing and CodeWriting: The 

Private Provision of Open-Source Software, 

Information Economics and Policy, Vol. 17, 

No. 3, 2005, pp. 389-406. 

[9] Bitzer, J¨urgen and Philipp J.H. Schr¨oder 

(2006): The Impact of Entry and Competition 

by Open-Source Software on Innovation 

Activity. In: The Economics of Open-Source 

Software Development, J. Bitzer and P.J.H. 

Schr¨oder (eds.), Elsevier Science Publishers, 

pp. 219-246.  

[10] Bresnahan, Timothy F. and Shane Greestein 

(1999): Technological Competition and the 

Structure of the Computer Industry, Journal of 

Industrial Economics, Vol. 47, No. 1, pp. 1-40.  

[11] Casadesus-Masanell, Ramon and Pankaj 

Ghemawat (2006): Dynamic Mixed Duopoly: 

A Model Motivated by Linux vs. Windows, 

Management Science, Vol. 52, No. 7, pp. 1072-

1084. 

[12] Computer Sciences Corporation (CSC) (2004): 

Open Source: Open for Business, 

[http://www.csc.com/features/2004/uploads/L

EF OPENSOURCE.pdf] , date 25. July 2006. 

25  

[13] Dahlander, L. and M. G. Magnusson (2005): 

Relationships between open-source software 

companies and communities: Observations 

from Nordic firms, Research Policy, Vol. 34, 

No. 4, pp. 481493. 

[14] Dahlander, Linus and Mats G. Magnusson 

(2006): Business models and community 

relationships of open source software firms, in 

J. Bitzer and P.J.H. Schr¨oder (eds.): The 

Economics of Open Source Software 

Development, Elsevier, pp. 111-130. 

[15] Economides, Nicholas and Evangelos 

Katsamakas (2006a): Linux vs. Windows: A 

comparison of application and platform 

innovation incentives for open source and 

proprietary software platforms, in J. Bitzer and 

P.J.H. Schr¨oder (eds.): The Economics of 

Open Source Software Development, Elsevier, 

pp. 207-218. 

[16] Economides, Nicholas and Evangelos 

Katsamakas (2006b): Two-sided competition of 

proprietary vs. open source technology 

platforms and the implications for the software 

https://econwpa.ub.uni-muenchen.de/%20econ-wp/io/removed/0510004.pdf
https://econwpa.ub.uni-muenchen.de/%20econ-wp/io/removed/0510004.pdf
https://robwalling.com/2009/%2008/11/how-to-compete-against-open-source-competition/
https://robwalling.com/2009/%2008/11/how-to-compete-against-open-source-competition/
https://robwalling.com/2009/%2008/11/how-to-compete-against-open-source-competition/
https://opensource.com/article%20/21/4/open-source-competitive-advantage
https://opensource.com/article%20/21/4/open-source-competitive-advantage


© January 2023| IJIRT | Volume 9 Issue 8 | ISSN: 2349-6002 
 

IJIRT 157977     INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 666 

industry, Management Science, Vol. 52, No. 7, 

pp. 1057-1071. 

[17] Franke, N. and S. Shah (2003): How 

communities support innovative activities: an 

exploration of assistance and sharing among 

end-users, Research Policy, Vol. 32 (1), pp. 

157-178. 

[18] Franke, N. and E. von Hippel (2003): Satisfying 

heterogeneous user needs via innovation 

toolkits: The case of Apache security software, 

Research Policy, Vol. 32 (7), pp. 1199-1215.  

[19] Haefliger, Stefan, Georg von Krogh, and 

Sebastian Spaeth (2006): Knowledge Reuse in 

Open Source Software, Working paper ETH 

Zurich. Hars 

[20] A. and S. Ou (2002): Working for Free? 

Motivations for Participating in Open-Source 

Projects, International Journal of Electronic 

Com26 merce, Vol. 6 (3), pp. 25-39. 

[21] Hertel, Guido, Sven Nieder and Stefanie 

Herrmann (2003): Motivation of Software 

Developers in Open Source Projects: An 

Internet-based Survey of Contributors to the 

Linux Kernel, Research Policy, Vol. 32(7), 

Special Issue: Open Source Software 

Development, pp. 1159-1177.  

[22] Johnson, J. P. (2001): Open Source Software: 

Private Provision of a Public Good, Journal of 

Economics and Management Strategy, Vol. 11 

(4), pp. 637-662. 

[23] Kogut, Bruce and Anca Metiu (2001): Open-

Source Software Development and Distributed 

Innovation, in: Oxford Review of Economic 

Policy, Vol. 17, No. 2, pp. 248-264. 

[24] Krishnamurthy, Sandeep (2002): Cave or 

Community? An Empirical Examination of 100 

Mature Open Source Projects, in: First Monday, 

Vol. 7, No. 6, [www.firstmonday. org]. 

Krishnamurthy, Sandeep and Arvind K.Tripathi 

(2006): Bounty Programs in Free/Libre/Open 

Source Software (FLOSS), in J. Bitzer and 

P.J.H. Schr¨oder (eds.):  

[25] The Economics of Open Source Software 

Development, Elsevier, pp. 165-184. Kuan, J., 

(2001): Open Source Software as Consumer 

Integration into Production, Working Paper, 

[http://ssrn.com/abstract=259648], date 29 July 

2004. 


