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I. INTRODUCTION

Many papers about a variation of generalizations of Fibonacci sequence have appeared in recent years. (See:
[1,3,4,6]). There are fundamentally two ways in which the Fibonacci sequence may be generalized; either by
preserving the recurrence relation but varying the first two terms of the sequence from 0, 1 to arbitrary integers a,
b or by preserving the first two terms of the sequence but altering the recurrence relation. Both the methods can
be united, but a change in the recurrence relation lead to greater difficulty in the properties of the resulting
sequence.

In this paper, we consider the generalized Fibonacci sequences which uses complex numbers, namely: the Left k-

Gaussian Fibonacci sequence {GFnL(“' b)} defined by the recurrence relation
L(a, b) L(a, b) L(a, b)
GE,"""” = kGE,"T" + GE,"5™ forn > 2 1)
with GFr“" = a + i(b — ka) and GF/““" = b + ia, where k,a and b are any positive integers. First few

terms of this sequence are a + i(b — ka),b + ia, (kb + a) + ib, (k?b + ka + b) + i(kb + a), (k3b + k?a +
k+VkZ+a

2kb + ka + a) + i(k?b + b). This sequence can be expressed as a function of the roots a = > and
K2
B = £ f ** of the characteristic equation x2 — kx — 1 = 0 associated with the recurrence relation for this

sequence. Here we note that for these values we have @ > 8, a — 8 = Vk? + 4 and o = —1. The equivalent

extended Binet type formula for this sequence is given by GFnL(a' P = % , Where h = aa + (b — ka) +

i{a—B(b—ka)}andl = Ba+ (b —ka) + ifa — a(b — ka)}. When we choose different values of k, a, b, we
obtain sequences like Gaussian Fibonacci sequence, Gaussian Lucas sequence, Gaussian Pell sequence, Gaussian
Pell-Lucas sequence, For further details about this sequence, (See: [7]).

The Gaussian Fibonacci sequence {GFE,} is defined by the recurrence relation GF, = GF,,_; + GF,,_, ,
for all n = 2 with initial conditions GF, = i and GF, = 1. The first few terms of the Gaussian Fibonacci sequence
are,1,1+1i,2+i,3+2i,5+ 3i,8+ 5i,.... It can be easily verified that the Binet-type formula for GE, is given
by GF, = (“Z__gn) +i (%) where a = 1+2\/g and g =1 _Z‘E.

The Gaussian Lucas sequence {GL,} is defined by the recurrence relation GL,, = GL,_, + GL,_,, for
all n = 2 with initial conditions GL, =2 —i and GL, = 1+ 2i. The first few terms of the Gaussian Lucas
sequence are 2 —i,1+ 2i,3 +i,4 + 3i,7 + 4i,11 + 7i, ... . The Binet-type formula for GL,, can be derived as

GLy = (@ + M +1i (@ + ), where a = 2% and g =12

The Gaussian Pell sequence is defined by the recurrence relation GP, = 2GP,_, + GP,_, ,foralln > 2
with initial conditions GP, = i and GP; = 1. The first few terms of the Gaussian Pell sequence are 1,2 +i,5 +
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n_ sn n-1_ sn—-1
2i,12 + 5i, ... . The Binet-type formula for GP, is given by GP, = (yy_‘S ) +i (y - :: ) wherey = 1 ++/2

and§ =1—+2.

The Gaussian Pell-Lucas sequence is defined by the recurrence relation GQ,, = 2GQ,,_1 + GQ,,_, , for
all n > 2 with initial conditions GQ, = 2 — 2i and GQ, = 2 + 2i. The first few terms of the Gaussian Pell-Lucas
sequence are 2 —2i,2+42i,6+2i,14+6i, ... . The Binet-type formula for GQ, is given by

GQ, ="+ ™M +i(™ 1+ 6" 1), wherey=1++2and 6 =1 —+2.
Il. AREA UNDER THE BINET-CURVE FOR GF"

In the Binet-type formula for GFnL(“‘b), we replace the integer index n by some variable t € R. It can be

then observed that the corresponding generalized Right k-Fibonacci number GFtL(a'b) will be convert into a

t_;pt
complex number. (See: [2,5]). Thus, the corresponding Binet-type formula can be considered as pL@b _ ha 1B

t a-p
i H f 1\t -1t elimt
, Where t is any arbitrary real number. As noted earlier, we have e = —1, Then B¢ = (7) == Now

hat-1(=2)"
aT(ﬁ“) . Since h=aa+ b —ka)+i{a—Bb—ka)} and [=Ba+ (b—ka)+ifa—a(b—
ka)} are complex numbers, we let h =r +is and [ = u + iv, where r = aa + (b — ka),s = a — B(b — ka),
u=pa+ (b —-—ka)andv =a — a(b — ka).
(r+is)etln(“)—(u+iv)ei"te_tln(“) _ (r+is)et @ _(u+iv)(cos(mt) +i sin(mt) e ~t (@)
a-f - a-f
1

— H{retzn(oz) + e t@ (y sin(nt) — u cos(nt))}
+ #{Set @ — g=tn(@(y cos(nt) + usin(mt))}.
This function describes a curve in the complex plane parameterized by real variable t. We thus define the “Binet-

curve” for —oo < t < oo, in a parametric form as

FL(a,b) —
t

. GFL(a'b) —
o n =

GEH ™" = (x (1), y(®)); ?)
where
Re(GFtL(a’b)) =x(t) = ﬁ{re”"(“) + et @y sin(nt) — u cos(nt))}
, 1 _ _ : 3)
Im(GFtL(a b)) =y(t) = ﬁ{se”n(“) — e~ t @ (y cos(nt) + usin(nt))}
In the following theorem we calculate the area under the Binet-curve for GFtL(“’b) for any arbitrary real
number t within the fixed interval.
Theorem 2.1: Area of the segment under the Binet-curve for GFtL(“‘b) within the interval [n,n + 1] is given by
1 [4sv n(a)(-1)" @*+uHr 1 ] @)

Appir = e In(@)  aZn+l
Proof: We use the Green’s theorem to calculate the area value of segments A, 1 = % f:“(x dy —y dx). By

+2(rv—su)(-1)" +

rewriting dy = (%) dt and dx = (Z—’:) dt, the formula becomes

Annar =5 J7 " (xy = yx)at. 5)

We use components x(t) and y(t) of Binet type formula for real argument and calculate this value. Now,

Cax 1 rin(@)et™@ — In(a) et ™M@ (v sin(nt) — u cos(mt))

Tar ﬁ{ +e~t@ (yr cos(nt) + um sin(nt)) } and
. dy _ L{sln(a)e”"(“) + In(a) e t "D (y cos(mt) + u sin(nt))}
S at a-p —e t@ (_yrsin(rt) + um cos(nt)) '

2 In(a) {(rv — su) cos(mt) + (ru + vs) sin(mt)}
+m(rv — su) sin(wt) — w(ru + vs) cos(mt)
+e—2tln(a)(v2 + uZ)T[

Thusxy —yx = g2

Substituting this value in (5) we get
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2 In(a) {(rv — su) cos(mt) + (ru + vs) sin(mwt)}
Apnir = ;Zf:‘“ +r(rv — su) sin(nt) — w(ru + vs) cos(wt) dt
2a=p) e 2@ (2 4 2

i n+1 n+1
[2 In(a) (rv — su) [M] + 2 In(a) (ru + vs) [— —Cos(m)]
P —
1 _ _cos(@t)|"™*tt sin(me)]™ 1
T +(rv — su) [ — ] n(ru + vs) [—n ]n
e —2tn(a) n+1
+(w? +ud)m [ ]
-21in(a) n
_ 1 4In(a)(ru+vs)(—1)™ (v?+u?)m 1
Hence, An,n+1 = Z(a—ﬁ)z{ - + 2(7-1_7 — su)(—l)" + e (a2n+1)}.

Remark: If we take limit value of area segment at infinity, we have

1 4In(a)(ru+vs)
2(a—ﬁ)2< + 2(rv su)).

Thus, we observe that the sequence of segment’s area has finite limit.

Ap = lim |An,n+1| =
n—-oo

l1l. CURVATURE OF THE BINET-CURVE FOR GF("

FtL(a,b)

In this section, we find the value of curvature x(t) of the Binet-curve for G at any arbitrary point

(x(®,y(@®).
L(a,b)

Theorem 3.1: The curvature of the Binet-curve GF, at any arbitrary point is

( —(In(a))?{v cos(mt)+u sin(mt) }+(1+2m) (In(a)) >{(sv+ru) cos(mt) +(su—rv) sin(mt)} \
— 4712 In(a){(rv—su) cos(mt)+(ru+sv) sin(mt)}
k?+4 +(In(a))3{(-2su+rv) cos(mt)+(2sv+ru) sin(mt)}

\+{7t(ln (@)?+n3le~2t in(a) (v2+u?)-in(a)e2t (@2 (2 sin(mt)) (u cos(rrt)—v sin(mt))

k() = (6)

+2(In(@))2{(sv+ru) cos(mt)+(su—rv) sin(rwt)}

((TZ +52)(ln(a))2e2t l"(”‘)+((ln(a))2 +11:)(v2 +u2)e2t ln(a)>3/z
+21 In(a){(rv—su) cos(mt)+(ru+sv) sin(mt)}

Proof: As discussed earlier, we consider

#(t) = GEL@P) = (x(6),y(8)) = (—a i 3 {retm@ 4 =tn(@(ysin(mt) — u cos(nt))},

L tin(a) _ ,-tin(a) :
oy {se e (vcos(mt) +u sm(nt))})

lixi| _ liy-yil

We use the curvature formula k(t) = —5 = ——=.
171 G2+92)°/2

Now it can be shown that
1 (rin(@)et™@ — in(a) et ™@ (y sin(xt) — u cos(nt))
ﬁ{ +e 7t @ (yr cos(mt) + um sin(nt)) }’
r(lna)?et™@ 4 (In a)?et"™@ (ysin(nt) — u cos(mt))

1

X = pay —2In(a) e t"™@ (yr cos(mt) + um sin(nt)) ,
+e~t @ (—pr? sin(mt) + umw?cos(nt))

.1 [sin(a)et™@ + in(a) e @ (v cos(mt) + usin(nt))

Y= ﬁ{ —e 1@ (yr sin(nt) + um cos(mt)) } and

s(lna)?et™@ — (In a)?e~t "M@ (y cos(nt) + u sin(nt))
y= o +2 In(a) et @ (— y g sin(mt) + um cos(mt))
—e "M@ (_yg2 cos(mt) — um? sin(mt))

Then [xy — yX| =

—(In(a))?*{v cos(mt) + usin(mt)} + (1 + 2m)(In(a))?{(sv + ru) cos(mt) + (su — rv) sin(mt)}

+m? In(a) {(rv — su) cos(mt) + (ru + sv) sin(mwt)}
+(In(a))3{(—2su + rv) cos(mt) + (2sv + ru) sin(mt)}

+{r(In(a))? 4+ m3}e 2@ (2 4 y2) — In(a) e 2D 22y sin(nt)) (u cos(mt) — v sin(mt))

Also,
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r2(ln a)?e? @ 4 (In a)2e 2@ (ysin(mt) — u cos(mt))?
+e~ 2t (yrr cos(nt) + um sin(mt))? — 2r(In a)? (v sin(nt) — u cos(mt))
+2r In a (v cos(mt) + um sin(wt)) — In a e 2@ (p sin(nt) — u cos(nt)) (vm cos(nt) + um sin(mt))
and
2 _

y

g% (Ina)?e? @ 4 (In a)2e~2t (@ (y cos(mt) + usin(mt))?
+e 2t (—yr sin(nt) + um cos(mt))? — 2g(In a)?(v cos(nt) + u sin(mt))
—2g In a (—vm sin(wt) + um cos(mt)) — In a e 2@ (v cos(nt) + u sin(nt)) (—vm sin(wt) + um cos(mt))
Then

vl | =

(r?2 4+ s2)(In(a))2e2t @ 4 ((In(a))? + ) (V2 + u?)e2t @
x2+yt= é +2(In(a))*{(sv + ru) cos(mt) + (su — rv) sin(mt)}
+271 In(a) {(rv — su) cos(nt) + (ru + sv) sin(wt)}
Using these values, we finally get the value of k(t) as follows:

( —(In(a))?{v cos(mt)+u sin(mt) }+(1+2m) (In(a)) ?{(sv+ru) cos(mt) +(su—rv) sin(mt)} \
— +m2 In(@){(rv—su) cos(mt)+(ru+sv) sin(mt)}
k244 +(In(a))3{(-2su+rv) cos(mt)+(2sv+ru) sin(mt)}

\+{n(ln(a))2 +mile2t In(a) (v2+u?)-in(a)e 2t (@2 (24 sin(rt)) (u cos(mt)—v sin(mt))

Kk(t) =

(r2+s52)(In(a))2e2t (@) 1+ ((In(a))2 +m) (v2 +u?)e2t In(@) ¥z
+2(In(a))2{(sv+ru) cos(mt)+(su—rv) sin(mwt)}
+27 In(@){(rv—su) cos(mt)+(ru+sv) sin(mwt)}
Note: By taking limitas t — +oo, we finally get gim k(t) =0and tlim k(t) = 0. Thus, the curvature is zero at
any point of the curve GF**"

points of GF*".
In the following sections, we choose different values of k,a, b and completely analyze and trace the

Binet-type curve for these sequences.

, When t is very large. This means the curve behaves like a straight line at distant

IV. BINET-CURVE FOR GAUSSIAN FIBONACCI SEQUENCE AND ITS SUBSEQUENCE

In this section, we consider k = 1and a = 0,b = 1in GE-“*" . Then we get the sequence {GFnL(O' 1)} =

{GE,} of Gaussian Fibonacci numbers from (1). Considering k = 1,a = 0,b = 1in(2) and (3), we get “Gaussian
Fibonacci - Binet curve” for —co < t < oo, in a parametric form as GF; = (x(t),y(t)). Then

Re(GF,) = x(t) = ﬁ{e”"(“) — e t®(cos(nt) + a sin(rt))} and
Im(GF,) = y(t) = ﬁ{a'le”n(“) + et @ (g cos(nt) — sin(nt))}.

Now, we analyze the parametric curve (x(t), y(t)) of Gaussian Fibonacci numbers in connection with
its symmetry, origin, intersection of points, and asymptotes etc., and we conclude the following:
(i) The curve is not symmetric about x, y axes, since x, y are not even functions of t.
(if) The curve passes through the origin, since there exists t = 0 at whichx = 0 and y = 0.
(iii) The curve intersects x-axis at the point (1, 0) and intersects y-axis at the point (0,1).
(iv) When we consider

ay _ %{a_l In(a)et M@ _n(a)e~t M@ (q cos(mt)—sin(mt))+e "t U@ (—aqr sin(nt) -7 cos(mt))} _
dx \%{ln(a)e“”(“)ﬂn(a)e—fl”(”‘)(cos(nt)+a sin(rt))—e ~t (@) (—x sin(nt) +am cos(nt))} '

we have a~tin(a) et™® — In(a) e t ™D (g cos(nt) — sin(nt)) + et D (—am sin(nt) —
m cos(mt)) = 0. This gives a~tIn(a) et"™® = {cos(nt) (a In(a) + ) + sin(xt) (In(a) —
am)}e tM@  Then 2t@ = cos(nt) (“l"(a)”) + sin(rt) (l"(“)_“”). Thus, using the software

a~lin(a) a~lin(a)
MATLAB, we have t = 0.22266, where @ = 1.618. Hence, we conclude that x-axis is the tangent to the
curve att = 0.22266.
(v) Using Theorem 3.1, we observe that the curvature for the Gaussian Fibonacci-Binet curve will be
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+{3n(ln(a))2—a_1n2 ln(a)+2a_1(ln(a))3}(cos(nt)+asin(n:t))

{(2@in(a))3-3a " 1n(in(a))2-n2 in(a)}(acos(mt) -sin(mt))
( +H{(n(@)2+m?}(a?+1)me~2t In(@) )

K(t) = 3/,
( {(n(@)2+n2}(a?+1)e "2t @+ (1+a~2)(In(a))2e2t In(@) ) 2
+2 ln(a){ln(a)—a‘l}(cos(nt)+asin(nt))—2 n(a)(m+a~1 ln(a))(acos(rct)—sin(rct))

Note: By taking limitast — +oo, we get tlier k(t) = 0. Thus, at Gaussian Fibonacci number points the curvature

of this curve is 0, when ¢ is close to +oo. This means the curve behaves like a straight line at distant Gaussian
Fibonacci number points.
On the basis of these data, the Gaussian Fibonacci curve can be traced using the software MATLAB as
shown in Figure 1, when t > 0; as well as in Figure 2, when t < 0.
6 T

4t

s

=

P | | L | I I L I 8 L L L L L L L
-1 ] 1 2 3 4 5 6 7 8 -10 -8 -6 -4 -2 0 2 4 6

(Figure 1 Gaussian Fibonacci-Binet curve for t > 0)  (Figure 2 Gaussian Fibonacci-Binet spiral for t < 0)

In contrast to positive t, for negative t we get a spiral crossing real line from both sides. We call such
curve as “Gaussian Fibonacci-Binet Spiral curve” since it intersects real axis at distant Gaussian Fibonacci
numbers.

Next, we mention the area under the Gaussian Fibonacci-Binet curve.

Theorem 4. 1: Area of the segment under the Gaussian Fibonacci-Binet curve within the interval [n,n + 1] is

Apni1 = 1—10[—2(61 +a (-1 + (@*+)r 1 ]

2ln(a) a2ntl

Remark: If we take limit value of area segment at infinity, we have 4,, = lim |An,n+1| = %(0{ +a™).
n—-oo
V. BINET-CURVE FOR GAUSSIAN LUCAS SEQUENCE AND ITS SUBSEQUENCE

In this section, we consider k=1 and a=2,b=1 in GFnL(“' ) Then we get the sequence
{GFnL(Z' 1)} = {GL,} of Gaussian Lucas sequence from the equation (1). Considering k = 1,a = 2,b = 1in (2)
and (3), we get “Gaussian Lucas-Binet curve” for —oo < t < oo, in a parametric formas GL, = (x(t),y(t)); then
Re(GL,) = x(t) = et™(@ 4 ~tM®@(cos(nt) + asin(nt)),
Im(GL,) = y(t) = a~tet ™M@ 4 et (@ (sin(wt) — a cos(mt)).
Now, we analyze the parametric curve (x(t), y(t)) of Gaussian Lucas numbers.

(i)  The curve is not symmetric about x, y axes, since x, y are not even functions of ¢.
(if) The curve does not pass through the origin, since there exists any real value of t at whichx = 0andy = 0.

dy _ a~tin(@et ™D —in(@)e~t "M@ (sin(rt)~a cos(nt)) +e =t D (x cos(nt) +am sin(nt)) _ 0 we
dx ~ In(@)et M@ —in(a)e—t @ (cos(mt)+a sin(nt))+e~t M@ (—g sin(nt) +am cos(wt))

(iii) When we consider

have
a tin(a) et @ — In(a) e t ™D (sin(mt) — a cos(nt)) + e LMD (1 cos(nt) + am sin(wt)) = 0. This
gives a~lin(a)et™® = {sin(nt) (In(a) — an) — cos(wt) (a In(a) + m)}e t™@  Then e?tn(@ =
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sin(mt) (l"(a)_“") — cos(mt) (“ ln(“)+"). Thus, using software MATLAB, we have t = —0.225854, where

a~lin(a) a~lin(a)
a = 1.618. Hence, we conclude that x-axis is the tangent to the curve at the value t = —0.225854.
(iv) Using Theorem (3.1), we observe that the curvature for the Gaussian Lucas-Binet curve will be
{z(n(a))3-3a " n(n(a))?-n? in(a)}(sin(wt)—acos(nt))
<+{3n’(ln(a))2+a'1n:2 ln(a)—Za'l(ln(a))?’}(cos(nt)+asin(nt))>
+{(ln(a))2+11:2}(0c2+1)11:e'25ln(“)

k(t) = 37
( {(n(@)2+n2}(a2+1)e~2t D 4 (14+a~2) (In(a))2e2t In(a@) ) 2
+2 In(a){a~1-in(a)}(cos(nt)+asin(nt))-2 in(a)(r+a~1 in(a))(sin(mt)—acos(mt))

Note: By taking limitas t — +oo, we get tlier k(t) = 0. Thus, at Gaussian Lucas humber points the curvature of

this curve is 0, when t is close to +oo. This means the curve behaves like a straight line at distant Gaussian Lucas
number points.

On the basis of these data, the Gaussian Lucas curve can be traced using the software MATLAB as shown
in Figure 3, when t > 0; as well as in Figure 4, when t < 0.

12

2r 5

of 1 10f

s 2 s s & w 1 1w 5w s 0 5 w0 15w
(Figure 3 Gaussian Lucas-Binet curve for t > 0) (Figure 4 Gaussian Lucas-Binet spiral for t < 0)

In contrast to positive t, for negative t we get a spiral crossing real line from both sides. We call such
curve as “Gaussian Lucas-Binet Spiral curve” since it intersects real axis at Gaussian Lucas humbers.

Next, we mention the area under the Gaussian Lucas-Binet curve.
Theorem 5.1.: Area of the segment under the Gaussian Lucas-Binet curve within the interval [n,n + 1] is

1 2+1 1
Apper = [2a(-1ym + 20T 1],

2ln(a) a2ntl

Remark: If we take limit value of area segment at infinity, we have A,, = lim |An,n+1| = a.
n—-oo

VI. BINET-CURVE FOR GAUSSIAN PELL SEQUENCE AND ITS SUBSEQUENCE

If we consider k =2 and a = 0,b = 1 in GEX*", then we get the sequence {GFnL(O' 1)} = {GP,} of

Gaussian Pell sequence from the equation (1). Considering k = 2,a = 0,b = 1 in (2) and (3), we get “Gaussian
Pell - Binet curve” for —oo < t < oo, in a parametric form as GP, = (x(t), y(t)). Then
1
y—246
Im(GP,) = y(t) = y%s{y'le“"o’) + et (y cos(nt) — sin(mt) ) }.
When we analyze the parametric curve (x(t), y(t)) of Gaussian Pell numbers, we conclude the
following:
(i) The curve is not symmetric about x, y axes, since x, y are not even functions of t.
(if) The curve passes through the origin, since there exists t = 0 at whichx = 0 and y = 0.
(iii) The curve intersects x-axis at the points (0,1) and intersects y-axis at the points (1,0).
(iv) When we consider

Re(GP,) = x(t) =

{etln(y) — e—“"(Y)(cos(ﬂt) + ysin(nt))}
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ay _ ﬁi{y_1 In@y)et MW —in(y)e~t W) (y cos(mt)-sin(wt))+e~t W) (— cos(mt) —ym sin(mt))} _
dx %{ln(y)et MW +in(y)e~t ) (cos(mt)+y sin(mt))—e ~t W) (—q sin(mt) +ym cos(nt))} !

we have y~tIn(y) et "0 — In(y) et "W (y cos(mt) — sin(nt)) + et W) (—x cos(mt) — ym sin(mt)) =
0. This gives y lin(y)et™® = {cos(nt) (y In(y) + m) + sin(wt) (ym — In(y))}e t"¥) . Then

2tin(y) — yn(y)+m . yr—in(y) . _
e cos(mt) (y_l ln(y)) + sin(mt) (y_l ln(y)). Thus, using the software MATLAB, we have t

—0.202524, where y = 2.4142. Hence, we conclude that x-axis is the tangent to the curve at the value t =
—0.202524.

(v) Using Theorem (3.1), we observe that the curvature for the Gaussian Pell-Binet curve will be
{2 (In())3 -3y n(in(y))?-n? ln(y)}(ycos(nt)—sin(rct))

. )

+{B3r(In()2-y~1n? In(y)+2y "1 (In(¥))3}(cos(mt) +ysin(nt))
+H{n)2+m2)(y2+1)me 2t )
( {(In(M)2+12} (2 +1D)e =2t W) + (1+y~2) (In(y))2e2t (W) )3/2.
+2 In(y){in(y)—y =1} (cos(mt)+ysin(nt)) -2 In(y) (w+y = In(y)) (ycos (nt)—sin(nt))
Note: By taking limit as ¢ — o, we get tligrn k(t) = 0. Thus, at Gaussian Pell number points the curvature of

k(t) =

this curve is 0, when t is close to +oo. This means the curve behaves like a straight line at distant Gaussian Pell
number points.
On the basis of these data, the Gaussian Pell curve can be traced using the software MATLAB as shown

in Figure 5, when t > 0; as well as in Figure 6, when t < 0.
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(Figure 5 Gaussian Pell-Binet curve for t > 0) (Figure 6 Gaussian Pell-Binet spiral for t < 0)

In contrast to positive t, for negative t we get a spiral crossing real line from both sides. We call such
curve as “Gaussian Pell-Binet Spiral curve” since it intersects real axis at Gaussian Pell numbers.

We mention the area under the Gaussian Pell-Binet curve.
Theorem 6.1: Area of the segment under the Gaussian Pell-Binet curve within the interval [n,n + 1] is

1 (Y?+1)r 1
Apnsr = Iy [—2)/(—1)" + i) ) y2n+1]'

Remark: If we take limit value of area segment at infinity, we have 4., = lim |An,n+1| = %y
n—-oo

VII. BINET-CURVE FOR GAUSSIAN PELL-LUCAS SEQUENCE AND ITS SUBSEQUENCE

If we consider k =2anda=2,b=2in GFnL(a'b), then we get the sequence {GFnL(Z' 2)} ={GQ,} of
Gaussian Pell-Lucas sequence from (1). Considering k = 2,a = 2,b = 2 in (2) and (3), we get “Gaussian Pell-
Lucas - Binet curve” for —co < t < oo, in a parametric form as GQ, = (x(t),y(t)). Then

Re(GQ.) = x(t) = et + =t (cos(mt) + ysin(nt))
Im(GQ,) = y(t) = y~ et 4 o=t (sin(mt) — y cos(nt)).

Now, we analyze the parametric curve (x(t), y(t)) of Gaussian Pell-Lucas numbers.

(i)  The curve is not symmetric about x, y axes, since x, y are not even functions of ¢.
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(if) The curve does not pass through the origin, since there exists any real value of t at whichx = 0andy = 0.

. ay _ Y Liny)et MM yin@)e~t MW (y cos(rt) —sin(mt)) +e ~t W) (1 cos(nt) +ym sin(mt)) _
(III) When we consider dx  In@)etmWM—in(y)e-t W) (cos(mt)+y sin(mt))—e~t W) (—x sin(mt) +ym cos(nt)) 0,
then we have y lin(y) e +in(y) et "W (y cos(nt) — sin(mt)) + etV (7 cos(nt) +
ymsin(mt)) =0.  This  gives  y lin(y) et = {cos(nt) (—y In(y) — m) + sin(nt) (In(y) —

ym)le t®  Then e2t®) = sin(mt) (‘;’:Zg;)—cos(nt) (’;fﬁ(lyn);)r) Thus, using the software

MATLAB, we have t = —0.371997, where y = 2.4142. Hence, we conclude that x-axis is the tangent to
the curve at the value t = —0.371997.

(iv) Using (4.3.3), we observe that the curvature for the Gaussian Pell-Lucas-Binet curve will be

( {2(n()3 -3y n(in(y))2-n? In(y)}(sin(nt)—ycos(nt)) >

+H{=3n(n()2+y~n? In(y) -2y~ 1(In(¥))3}(cos(mt) +ysin(nt))
+H{n)2 412} (y2+1)me 2t InX)
( ()2 +m2} ¥ 2 +1)e—2t W) £ (14y~2) (In(y))2e 2t () )3/2.
+2In(){y~1-in(y)}(cos(nt) +ysin(mt))+2 In(y) (m—y 1 In(y))(ycos (nt)—sin(mt))
Note: By taking limit as t - oo, we get tliT Kk(t) = 0. Thus, at Gaussian Pell-Lucas number points the

k(t) =

curvature of this curve is 0, when t is close to +co. This means the curve behaves like a straight line at distant
Gaussian Pell-Lucas humber points.
On the basis of these data, the Gaussian Pell-Lucas curve can be traced using the software MATLAB as

shown in Figure 7, when t > 0; as well as in Figure 8, when t < 0.
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(Figure 7 Gaussian Pell-Lucas-Binet curve for t > 0) (Figure 8 Gaussian Pell-Binet spiral for t < 0)

In contrast to positive t, for negative t we get a spiral crossing real line from both sides. We call such
curve as “Gaussian Pell-Lucas-Binet Spiral curve” since it intersects real axis at Gaussian Pell-Lucas numbers.

We mention the area under the Gaussian Pell-Lucas-Binet curve.
Theorem 7.1: Area of the segment under the Gaussian Pell-Binet curve within the interval [n,n + 1] is 4, 11 =
1 _a\n (*+ym 1
ARG VR e e
Remark: If we take limit value of area segment at infinity, we have A, = lim |An,n+1| =v.
n—-oo
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