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Abstract - Object of this paper is to formulate and find 

the solution of the differential equation for the buckling 

of re-inforced anisotropic cylindrical shells of uniform 

thickness re-inforced by closely spaced rings and 

stringers or both without shear load. Solution for shells 

without shear load in case of two-way compression is 

obtained. The corresponding equation for gridwork 

cylindrical shells are deduced as a special case which are 

found to be identical with the previous result. Numerical 

results vide Timoshenko and Woinowsky Kreiger are 

obtained and the buckling diagram of re-inforced 

anisotropic cylindrical shells subject to two-way 

compression is drawn and stable domain is shown in the 

diagram. 
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1.INTRODUCTION 

  

Solution of buckling of cylindrical shells in case of 

isotropic material is known from the literature on shells e.g. 

Flugge[1] (1973). An isotropic shell consists of composite 

materials such as Boron epoxy, re-inforced plastics and 

whiskers. They are used in many advanced structural 

applications and quite often in cylindrical shells. 

Buckling problem of an isotropic cylindrical shells has 

occupied the interest of many researchers such as Tasi[2] , 

Cheng & Kuenzi[3] , Hess T.E[4], Thielemann, Schnell and 

Fisher[5], Tasi, Fellmann and Strang[6], Cheng & Ho[7,8], Lie 

and Cheng[9], De,A[10-14]. 

The object of this paper is to formulate the differential 

equation for re-inforced anisotropic cylindrical shell of 

uniform thickness re-inforced by closely spaced rings or 

stringers or both. The corresponding solution of the 

differential equation so formulated is found out for shells 

without shear-load in the case of two-way compression. 

The re-inforced anisotropic shell is most important one. 

The shell of uniform thickness re-inforced by closely 

spaced rings or stringers or both. We may handle this case 

in two ways, either we superpose the stress resultants of an 

isotropic shell and those of a grid work, or we use (5.109)[ 

vide Flugge[1], page-300] and  (5.110) with the 

understanding that the slab integrals are now to be 

extended over one slab only. This second way is to be 

recommended for concrete shells and similar structures, for 

which it will represent the facts. 

  For the thin shell of air plane fuse lages(5.109) [ vide 

Flugge[1], page-300] have a serious drawback, which 

excludes their use. In a double-walled shell the twisting 

moments are carried by shearing stresses  x  or   x

having opposite directions in the two slabs. The 

contribution of the ribs is practically nil and has been 

neglected in (5.109 g,h ). It is quite different when the shell 

consists of only one very thin wall and a set of sturdy 

stiffeners, particularly when this have tubular cross 

sections. Then the twisting rigidity of the wall is next to 

nothing, and almost all the twisting stiffness of the shell 

comes from the torsional rigidity of the ribs. 
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FIG. (1-a) -  SECTIONS  φ = CONSTANT    THROUGH A SHELL WITH  RINGS 

FIG. (1-b)- SECTIONS  X = CONSTANT  THROUGH A SHELL  WITH STRINGERS 

 

2.BASIC EQUATION 

    

Fig. 1(a) shows the section    = Constant through a reinforced shell i,e shell with rings and stringers and fig. 1 (b) shows 

the sections x= Constant through the reinforced cylindrical shell . 

We use the middle surface of the wall as the middle surface of the entire shell. We arrive at the following elastic law; given 

by the Flugge[1],W. (Page-309)  

•••

−++= w
a

S
u

a

D
wv

a

D
N

2

/)(


       ------------------------------(1-a)  

//

2

/ )( w
a

S
wv

a

D
u

a

D
N xx

x −++=
•


 -----------------------------(1-b) 

/

3

/ )(
••

++= w
a

K
vu

a

D
N

xx

x



               -----------------------------(1-c) 

)( /vu
a

D
N

x

x +=
•



                            ------------------------------(1-d)                          

)(//

22
wv

a

S
w

a

K
w

a

K
M +−+=

•••


    ------------------------------(1-e) 



© May 2023| IJIRT | Volume 9 Issue 12 | ISSN: 2349-6002 

IJIRT 159508     INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 110 

/

2

//

2
u

a

S
w

a

K
w

a

K
M xx

x −+=
••


             -----------------------------(1-f) 

•= /

2
w

a

K
M

x

x



                                  ------------------------------(1-g) 

•= /

2
w

a

K
M

x

x



                                  -----------------------------(1-h) 

where rigidity are defined by, 
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The equation of equilibrium in case of  buckling of cylindrical shell  vide Flugge(1973)(p-448) are given by, 

a
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•/w ) = 0  ----------(3-c) 

where (   )/  and  (
•

)  denotes  a (...)
x


  and   (...)




 respectively. 

 

The shell being subject to three simple loads - 

(i) a uniform normal pressure on its wall,  ppr −= ( Fig.2)  

(ii) an axial compression applied at the edges, the force per unit of circumference being  P 

(iii) a shear load applied at the same edges so as to produce a torque in the cylinder. The shearing force 

 (shear flow )  is T. 

FIG. (2-a) - CYLINDRICAL  SHELL:  CO-ORDINATES AND BASIC  LOADS. 

FIG. (2-b) - ELEMENTS  OF  A  PLYWOOD SHELL. 

 

Substituting (1) in (3), the differential equation for the re-inforced anisotropic cylindrical shell after proper simplification 

reduces to, 

u// + A1

••

u + A2
•/v + A3

/w - k 1 ( A4
///w - A5

••/w ) - 1q (
••

u - 
/w ) - 2q u// - 2 3q •/u = 0 ………..(4-a) 
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The equations (4) describes the differential equations for the buckling of re-inforced anisotropic cylindrical shells with 

rings and stringers. In these equations the parameters defined by (6) are small quantities. For 1k , it is obvious since we are 

concerned with the shells where t<<a. The three load parameters 1q , 2q , 3q  are approximately the elastic strains caused 

by the corresponding basic loads, and since all our theory is based on the assumption that such strains are small compared 

with unity, we shall neglect  1q , 2q , 3q  compared with 1 whenever the opportunity comes. 

 

3.SOLUTION OF THE PROBLEM 

 

When there are no shear load ( ie, T = 0 and hence 3q = 0 ) the differential equations (4) admit a solution of the form, 

                u = A cos(m) . cos
a

x
 

                 v = B sin(m). sin
a

x
 ……………………………….(7) 

                 w = C cos(m) . sin
a

x
 

           where   = 
l

an .
 ( n being an integer)   …………………(8) 

Solution (7) describes a buckling mode with n half waves along the length of the cylinder and with 2m half waves around 

its circumference. Although this is far from being the most general solution, it is one which fulfils reasonable boundary 
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conditions. We assume the edges of the cylinder to be at x =0 and x = l, and we see at a glance that there v = w = 0. From 

the elastic law (1) we see that xN = 0 , xM = 0. 

Thus we see that the solution (7) represents the buckling of a shell whose edges are supported in the tangential and radial 

direction but are neither restricted in the axial direction nor clamped.  

When we introduce the solution (7) in the differential equation (4) with  3q = 0, the trigonometrical function drop out 

entirely and we are left with the following three equations, 

A[2 + A1
2m - 1q 2m - 2q 2 ] +B [- A2m] + C [- A3 + k 1 (- A43 + A5

2m ) - 1q ] = 0 ………..(9-a) 

 

A[-A6m] + B[
2m + A72 + k 1 A8

2m - A11( 1q 2m + 2q 2)] + C[ m + k 1 {A8( m + 
3m ) + A92m +        

                                                                                                     A10
3m }- A11 1q m] = 0 …………..(9-b)     

A[-A12 - k 1 A133- A11 1q ] + B[m + k 1 A8
3m - A11m 1q ] + C[ 1 + k 1 (2A8

2m + A10
4m + A142 2m +       

                                                                                     A114) - A11( 1q 2m + 2q 2)] = 0 ……………(9-c) 

The equations (9) are three linear equations with the buckling amplitudes A, B, C as unknowns and with the brackets as 

coefficients. Since these equations are homogeneous they admit, in general, only the solution A = B = C = 0 , indicating 

that the shell is not in neutral equilibrium. 

A non-vanishing solution A, B, C is possible only if, 

   11a         12a         13a                  

                                               ==    0                    …………………….(10)           

   21a        22a         23a  

 

  31a         32a         33a  

where  11a , 12a , 13a ……….. etc. are the coefficients of A, B, C in the equations (9-a), (9-b), (9-c) respectively. 

Thus vanishing of the det. (10) is the buckling condition of the shell whenever the buckling condition is fulfilled, any two 

of the three equations (9) determine the ratios A/C and  B/C  and thus the buckling mode according to equation (7). As in 

the case of neutral equilibrium, the magnitude of the possible deformation remains arbitrary. 

The buckling condition contains four unknowns: the dimensionless loads  1q , 2q  and the modal parameters m and  . Of 

m we know that it must be an integer (0,1,2,3,4……..) and of  , that it must be an integer multiple n of  
l

a.
. 

We may write the buckling condition separately for every pair (m, ) fulfilling these requirements and consider it as a 

relation between 1q  and 2q  which describes this combinations of the load for which the shell is in neutral equilibrium as 

a curve in the  1q - 2q  plane, we obtain a diagram like fig.3 which can be interpreted as follows, 
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 Fig. 3 :   Stable and unstable regions in the 1q - 2q  plane 

The origin 1q = 2q = 0 represents the unloaded shell. When a load is gradually applied, the corresponding diagram point 

moves along a certain path, as shown by the dotted line. As long as it does not meet any of the curves, the shell is in stable 

equilibrium, but as soon as one of the curves is reached, equilibrium becomes neutral with the buckling mode defined by 

the parameters  m,  of this curve. The stable domain in the 1q - 2q  plane is therefore, bounded by the envelope of all the 

curves, which is shown in fig.3 by a heavy line. 

The coefficients of (9) are linear functions of  k, 1q , 2q . The expanded determinant (10) is therefore a polynomial of third 

degree in these parameters. Since they are very small quantities, it is sufficient to keep only the linear terms and we can 

write the buckling conditions as,  

 2413121   k qCqCCC +=+  ………………………..(11) 

 

The equation (11) describes a straight line in the 1q - 2q plane and the limit of the stable domain as shown in fig.3, 

is a polygon consisting of sections of straight lines for different pairs (m, ). 

The coefficients 1C , 2C , 3C , 4C  of the equation (11) may easily be found out by directly expanding the det. (10) 

and putting it equal to zero. Since 1C , turns out to be proportional to
4 , we may drop the terms with 

4  in all 

other coefficients and we obtain, 

   1C  = )1( 127 AA − 4                                      …………………….………………………….(12-a) 
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where      A 15 =  A 7 (A 3 A 13 + A 4 A 12 )  
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                      A16 = 2 A 7 A 8 +  A 9 + A 2 A 13 +  A 2 A 9 A 12 - A 3 A 13 + A 4 A 6 - A 4 A 12  

                      A16 =  A 10 + 2 A 1 A 7 A 8 + A 1  A 9 - 2 A 2 A 6 A 8 +  A 2 A 8 A 12 + A 2  A 10 A 12 + A 3 A 6 A 8  

                      A 18 = A 1 A 10  

                      A 19 = A 2 A 6 A 10  

                      A 20 = A 2 A 6 A 14  

                      A 21 = A 2 A 6 A 11    ……………………………………………………………… …..(13) 

                      A 22 = A 8 A 12 (A 2 - A 3 )  

                      A 23 = A 5 ( A 12 - A 6 ) 

                      A 24 = A 5 A 7 A 12  

                      A 25  = A 2  A 11 A 12  

                      A 26  = A 7 - A 11 - A 2 A 11 + A 3 A 6 A 11 + A 3 A 11 - A 3 A 11 A 12 - A 6 + A 12  

                      A 27  = A 1 A 11  

From the formulae (11) & (12) the stability curve may easily be constructed when  l  and  k 1  are given. 

 

Particular  Case : 

Putting  D = 0, K = 0 in the equations (1), (4), (9), (12) reduces to the corresponding equations for Gridwork 

Cylindrical  shells which are found to be identical with  De, A[13](1987) . 

 

4. NUMERICAL   CALCULATIONS: 

 

From the formulae (11) & (12) the stability curve may easily be drawn when l  and  k 1  are given. 

Taking t 1 = 3 cm., t 2 = 2 cm., t = t 1 + 2 t 2 = 7 cm. &  k 1 = 10
5−

= k and considering the shell to be made up of same matter 

as that of  Gaboon (Okoumme)-3 ply so that, 

            E = 1.28 X 10
6

  psi,    G = 0.085 X 10
6

  psi 

              = 0.378,    b 1 = b 2 = 1 cm. 

            C x = C  = 0.5 cm., 

            A x = A  = 1 sq. cm, 

            I x = I  = 10 units, 

            J x = J  = 1 unit, 

(see Timoshenko and Woinowsky  Kreiger[10](1959) ) The buckling diagram of re-inforced anisotropic cylindrical shell 

subject to two-way compression is sketched( fig.   ) and the following conclusion may be drawn. 

Although the load and the basic stress system have axial symmetry, the buckling mode does not( m  0) but develop nodal 

generators, their number varies as 1q  increases. 

The diagram shows that as m increases 1q  gradually decreases and 2q  increases. 

The stable domain in the  1q - 2q  plane is bounded by the envelope of all the curves which is shown in the figure by a 

heavy line.  
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