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Abstract - A cyber physical system (CPS) is an intelligent 

system which uses computer algorithms to monitor and 

control the functions of the system. Smart healthcare, 

smart electric grids, and aircraft autopilot systems are 

some examples of CPSs. Cyber Physical Systems have 

become highly integrated in the modern world. The 

importance of safeguarding these systems grows as this 

connection advances. Attacks against Cyber Physical 

Systems components can result in faulty sensing and 

actuation, catastrophic damage to physical items, and 

safety concerns. Anomaly detection can be used to detect 

and stop such attacks by monitoring system activity and 

classifying it as normal or anomalous. Machine learning 

algorithms have been proposed to build anomaly 

detection systems to hinder attacks on CPSs. However, 

the intricate interdependencies among numerous 

variables and a lack of labelled data in these systems 

render typical supervised machine learning methods 

ineffective. In this report, we propose an unsupervised 

anomaly detection method based on Generative 

Adversarial Networks (GANs), using Long-Short-Term-

Memory Recurrent Neural Networks (LSTM-RNN) as 

the base models (namely, the generator and 

discriminator) in the GAN framework to capture the 

temporal dependencies of variables. Because intrusions 

must be stopped before the server is infected, anomaly 

detection in Cyber Physical Systems has strict latency 

constraints. Current anomaly detection models, despite 

having good detection rates, are excessively slow and 

unsuitable for latency-constrained situations. Hence, we 

plan to propose a model with lower latency, by using fog 

computing. Fog computing helps to bring computation 

power closer to end nodes, which helps to meet anomaly 

detection's low latency standards. 
 

INTRODUCTION 

Cyber Physical Systems are a combination of 

computation, networking, and physical processes. 

CPS contains feedback loops of embedded computers 

monitoring and controlling the physical processes and 

physical processes affecting the computations. Figure 

shows the various parts of a CPS. Sensors, actuators, 

programmable control logic units, and communication 

devices are generally included in these systems. The 

qualities of such a system are decentralized 

management and control, efficiency, high availability, 

scalability and autonomy. Healthcare devices and 

systems, traffic control and safety, automotive 

systems, control systems, energy efficiency, 

environmental monitoring, instrumentation, 

infrastructure control, autopilot and avionics, power 

generation, water management, and communications 

systems all present CPS with unprecedented 

opportunities. Because the bulk of cyber physical 

systems have applications that have safety concerns, 

any disruption caused by failures or intentional cyber-

attacks will result in catastrophic destruction to the 

physical infrastructure under control and the people 

impacted by them. As a result, preventing anomalies 

and attacks from compromising CPS is crucial. 

Cyber physical systems are becoming an integral part 

of distributed systems, control systems, sensor 

automotive systems. As cyber physical systems are 

becoming an integral part of systems and hence it is 

also prone to attacks. So it is necessary to detect any 

possible intrusion or attack on the system before it 

compromises the system. 

We plan to build a GAN model which can detect an 

attempt of intrusion in various cyber physical systems. 

There are instances of abnormal behaviour when a 

malicious attack starts on the system. The plan is to 

detect initial signs of any intrusion in the system and 

detect the attack in an accurate and faster manner by 

the use of fog architecture.  
 

MATERIALS AND METHOD 
 

Data  

The SWaT dataset was chosen to majorly train and test 

our model. Other than SWaT various other datasets 

like SKAB, MSL, DAMADICS and SMAP were used 

to compare our GAN model with other existing 



© May 2023| IJIRT | Volume 9 Issue 12 | ISSN: 2349-6002 

IJIRT 159744 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 302 

models.The dataset NSL-KDD was initially used 

when we were building the decision tree model. 

 

SWAT Dataset 

The data collection process lasted for a total of 11 

days. SWaT was functioning non-stop 24 hours/day, 

during the entire 11-day period. SWaT was run 

without any attacks during the first seven of the 11-

days. Attacks were launched during the remaining four 

days. The dataset describes the physical properties of 

the testbed in operational mode. In total, 946,722 

samples comprising 51 attributes were collected over 

11 days. Data capturing the physical properties can be 

used for profiling cyberattacks. Table 5 describes the 

different sensors and actuators in SWaT that served as 

source of the dataVarious attack scenarios were 

implemented on the testbed. These attacks were of 

various intents and lasted between a few minutes to an 

hour. Depending on the attack scenario, the system 

was either allowed to reach its normal operating state 

before another attack was launched or the attacks were 

launched consecutively. 

 

DAMADICS 

The DAMADICS (Development and Application of 

Methods for Actuator Diagnosis in Industrial Control 

Systems) benchmark consists of real process data from 

the Lublin Sugar Factory as well as a simulator to 

generate artificial faults. Here we use only the real 

dataset with induced faults in the industrial system, 

available publicly. The dataset consists of data for 25 

days of operation, from Oct-29 to Nov-22, 2001 of 3 

benchmark actuators - one each located upstream and 

downstream of evaporator station, and the third 

controlling flow of water to the steam boiler system. 

Artificial faults were induced on Oct-30, Nov-9, Nov-

17 and Nov-20. Unlike SWaT the train and test splits 

for normal and test operation were not provided. We 

chose train-test splits such that the test is entirely after 

the train as would be expected in a real scenario, the 

train is continuous, and the train contains no 

anomalies. Accordingly, we used the data from Nov-3 

to Nov-8 (6 days) as the training set and data from 

Nov-9, Nov-17 and Nov-20 (3 days) as the test set. 

From this, the first 10800 points from the training set 

were dropped as the system appeared much more 

unstable than the rest of the training set, potentially 

from the anomaly induced earlier on Oct-30. In 

addition, the initial part of the test set appears quite 

unstable across multiple channels even though no 

anomaly is recorded. Therefore we also drop the first 

45000 points from the test set. 

 

MSL and SMAP 

These are expert-labeled datasets from real anomalies 

encountered during the operation of two spacecraft - 

Soil Moisture Active Passive (SMAP) satellite and the 

Mars Science Laboratory (MSL) rover, Curiosity. 

Unlike the other datasets, each entity in MSL and 

SMAP consists of only 1 sensor, while all the other 

channels are one-hot-encoded commands given to that 

entity. We use all channels as input to the model, but 

the model error of only the sensor channel is used for 

anomaly detection. The total number of variables is 

1375 and 1485 for SMAP and MSL respectively, 

making these much larger than the single-entity 

datasets in terms of number of variables. The data is 

however divided into 55 and 27 entities respectively. 

The authors provide train-test splits so that for the first 

anomaly encountered in the test at time t, the training 

set is from time t-5 days to t-3 days (if available), and 

the test set goes from t-3 days to t+2 days. The data is 

sampled each minute, so the training set is much 

shorter than other datasets. 

 

SKAB 

The Skoltech Anomaly Benchmark testbed consists of 

a water circulation system and its control system, 

along with a data-processing and storage system. 

Examples of the type of anomalies induced include 

partial valve closures, connecting shaft imbalance, 

reduced motor power, cavitation and flow 

disturbances. Train and test splits are provided by the 

authors.  

METHODOLOGY 
 

GAN Architecture 

In order to handle the time series data we implemented 

LSTM-RNNs in the generator and the discriminator. 

LSTM’s help in resolving the vanishing gradient 

problem of typical RNN’S and also helps in 

remembering past data in memory with the help of 

back propagation. The generator model takes in 

account the SWaT data and it tries to replicate the 

distribution whereas the discriminator with proper 

training distinguishes the real data from the forged 

data. Two types of losses are calculated which are 

subsequently used to calculate Discrimination and 
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Reconstruction Anomaly Score (DR-Score).The 

reconstruction loss is the difference between the testing 

samples created by the generator and the actual 

samples present and the discrimination loss is a 

parameter that checks and maximises a parameter 

which takes in account and maximises a function 

whenever the real data is classified as fake data and 

vice versa. 

 

Anomaly Detection using GAN Architecture 

We divide the dataset into training and testing dataset 

into streams where there are T streams and M 

measurements for each stream, the testing dataset 

X(test) comprises T streams and N measurements and 

we assign binary values 0 for normal behaviour and 1 

for anomalous behaviour. We apply a sliding window 

and create small window sizes and divide the 

multivariate time series. We use the standard GAN 

loss function min-max GAN loss for calculating the 

generator and the discriminator loss. 

We maximize the below function in order to classify 

as real and fake data: 

 
log(D(x)) this parameter is used to specify whether the 

generator is rightly classifying the real image. log(1-

D((G(z))) maximising this function label the generator 

generated images and label the fake images. The data 

windows are divided into small sub sequences (Z) and 

the training dataset is (X). So now we feed X and Z to 

the GAN model in order to train the generator and 

discriminator and we maximise and minimise the 

function. 

We run training iterations and combine the trained 

discriminator Drnn and the trained generator Grnn and 

a combined anomaly score is calculated which 

comprises of discrimination and reconstruction score 

(DR Score). The DR score in case anomaly is detected 

is non-zero while when the anomaly is detected is zero. 

 

DR-Score 

DR Score is calculated by taking in consideration both 

the generator and the discriminator. We can detect the 

anomaly in two ways by taking in consideration the 

generator and the discriminator. 

Latency reduction using Fog Architecture 

 

Fig 1: Application Model representing the module 

interaction 

We used the iFogSim Simulator in Eclipse IDE for 

Fog Simulation. It is an extension of CloudSim and an 

open-source Java based toolkit which computes 

latency, energy consumption and the operational costs 

for a fog network. It also facilitates importing 

topologies and helps in the comparison of resource 

management techniques and calculates the cost for 

each configuration. 

 

Fig 2: The proposed fog-based topology for Anomaly 

Detection 

The Fog topology has five levels. The topmost level is 

the cloud layer. It is connected to the proxy server 

which helps in load-balancing. The proxy-server is 

further connected to the Anomaly Detectors. Anomaly 

detectors are extended to the programmable logic 

controllers. The number of anomaly detectors and the 

programmable logic controllers in the topology can be 

configured based on the requirement by modifying the 

code. The variables numOfADs and 

numOfPLCsPerDet need to be modified respectively. 

The PLCs are extended to the sensors and the 

actuators. Here, the sensors used are level sensors and 

flow meters and the actuators are Pump and Motorized 

valve. The level sensor or the flow meter senses the 
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input and sends it to the PLC which then sends the 

signal to the Anomaly detector where the anomaly 

score is calculated using the anomaly score calculator 

module and the PLC is updated while the data is 

updated in the Cloud. The cloud layer stores all the 

logs and does not involve itself in computing the 

anomaly score. The PLC sends the signal to the 

actuators namely pump or the motorized valve and the 

required action is performed. 

If a cloud based architecture is used for performing 

Anomaly Detection, the fog devices are not included 

instead the sensors and actuators are directly 

connected to the proxy server. 
 

RESULTS AND DISCUSSION 
 

SWaT Dataset 

 
Fig 3: Average precision comparison 

The figure compares the precision of 7 models by 

taking the average over the entire test which was 

performed using the previously mentioned SWaT 

dataset.  Higher precision means that an algorithm 

returns more relevant results than irrelevant ones. As 

observed from the figure our GAN model has a 

slightly better precision when compared to other 

models.

 
Fig 4: F1 score comparison 

The figure compares the F1 score of 7 models tested 

using the previously mentioned SWaT dataset. F1 

score is the harmonic mean of precision and recall. It 

is commonly used as a measure of accuracy when 

testing the performance of anomaly detection models. 

 
Fig 5:  Area under the ROC curve comparison 

The Figure compares the Area under the ROC curve 

of 7 models tested on the SWaT dataset. As we can 

observe in the figure, the raw baseline model performs 

the worst because it does not perform any 

computation. The Area Under the Curve (AUC) is the 

measure of the ability of a model to differentiate 

between classes and is used as a summary of the ROC 

curve. 

 

Fog Architecture Results 

Table 1: Latency results obtained after simulating 

various configurations in iFogSim 

Configurations 

(AD*PLC) 

Latency in Fog (in 

ms) 

Latency in 

Cloud (in ms) 

1*1 17.897 220.045 

1*2 19.072 220.278 

2*2 19.067 220.525 

4*2 19.069 221.585 

4*4 33.14 224.525 

8*4 33.433 2995.061 

The values obtained shown in the table above are 

plotted and the results are represented in a line graph 

shown in Fig. The configurations represent the number 

of Anomaly Detector and Programmable Logic 

Controller devices in the topology which can be 

modified based on the requirement. The number of 
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sensors can be deduced by multiplying both the values 

i.e.,  

Number of sensors = Number of Anomaly Detectors * 

Number of Programmable Logic Controllers. 

 
Fig 6: Comparison of latencies for various 

configurations 

It can be noted that there is a surge in the latency of 

cloud when the configuration reaches 8*4. This is due 

to the network congestion issues.The load on the cloud 

server increases as all the operations are performed 

solely in the cloud whereas in the Fog architecture, the 

operations are divided almost equally among the 

devices leading to a line graph which is nearly 

constant. 

 

Table 2: Network Usage results obtained after 

simulating various configurations in iFogSim 

Configurations 

(AD*PLC) 

Network usage in 

Fog (in kB) 

Network usage 

in Cloud (in kB) 

1*1 2441 20055 

1*2 4205.1 40422.2 

2*2 7414.9 83550 

4*2 13840.3 178306 

4*4 32262.8 379259.2 

8*4 63616.6 741073.2 

The data in Table represents the network usage for 

various configurations of cloud and fog topologies. It 

can be seen from the Fig. that the network usage in 

cloud is significantly higher than that of fog. This is 

because, when the number of sensors increase, the 

traffic towards the cloud server increases thus 

resulting in higher network usage. In case of the fog 

based configurations, each sensor is assigned to a 

PLC, hence the network usage decreases, resulting in 

a greater and consistent throughput for the other 

requests when compared to cloud based scenarios. 

 
Fig 7: Comparison of network usage for various 

configurations 

 

CONCLUSION 

 

The fog architecture reduces the delays by 

provisioning a sensor to a fog device and reducing 

the load on a central server and helps in regulating a 

reliable real time anomaly detection architecture. 

Fog computing is essential in scenarios where a 

quick response is necessary. Fog architecture 

significantly reduces the latency and the network 

usage when compared to the cloud architecture and 

hence is found to be reliable for real-time data 

processing applications and other scenarios where 

latency is a concern.  
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