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Abstract: The volatility of an asset is a key component to 

pricing options. Stochastic volatility models were 

developed out of a need to modify the Black Scholes 

model for pricing options, which failed to effectively take 

the fact that the volatility of the price of the underlying 

security can change into account. The Black Scholes 

model instead makes the simplifying assumption that the 

volatility of the underlying security was constant. 

Stochastic volatility models correct for this by allowing 

the price volatility of the underlying security to fluctuate 

as a random variable. By allowing the price to vary, the 

stochastic volatility models improved the accuracy of 

calculations and forecasts. This study uses the stochastic 

volatility model: the Heston-CIR model, which is a 

combination of the stochastic volatility model discussed 

in Heston and the stochastic volatility model driven by 

Cox-Ingersoll-Ross (CIR) processes to predict the 

default risk and compare the results with the Merton 

jump diffusion (MJD), the traditional Merton and the 

Moody’s KMV (MKMV) models. Results show that, the 

Heston-CIR model predicts accurately the default risk as 

compared to other models. 

 

Index Terms: Default Risk, Stochastic volatility model, 

Heston-CIR model, MJD Merton model, the Merton 

model, MKMV model. 

 

I. INTRODUCTION 

 

The variance of a stochastic process is randomly 

distributed in stochastic volatility models. The concept 

of stochastic volatility recognizes that asset price 

volatility is not constant but rather fluctuates over 

time. Many fundamental options pricing models, 

notably Black Scholes, use the assumption of constant 

volatility, which leads to pricing inefficiencies and 

mistakes. Stochastic volatility modelling, which 

allows volatility to alter over time, addresses Black 

Scholes' issue. The pattern of mean reversion causes 

the stochastic volatility models to always return to a 

fixed long-run mean if the current level deviates from 

the mean value [7]. 

The volatility of an asset is an important consideration 

when pricing options. Stochastic volatility models 

were developed to improve the Black Scholes (1973) 

model for pricing options, which failed to fully 

account for the likelihood of underlying security price 

volatility. Instead, the Black Scholes model assumes 

that the volatility of the underlying security is 

constant. Stochastic volatility models accommodate 

for this by allowing the price volatility of the 

underlying investment to fluctuate randomly. By 

allowing the price to fluctuate, stochastic volatility 

models improved the precision of computations and 

forecasts [18] 

In this work, we employ a stochastic volatility model; 

the Heston-CIR model, to predict default risk in stock 

markets and compare the findings to the Merton Jump 

Diffusion (MJD), classic Merton, and Moody's KMV 

(MKMV) techniques.  

 

II. LITERATURE REVIEW 

 

Merton (1974) proposed a method for calculating a 

firm's credit risk by considering the asset as a call 

option. They modelled a firm's asset value as a 

lognormal process, with the assumption that if the 

asset value went below a certain default boundary, the 

firm would fail. At maturity, the default choice was 

only offered once. The advantage of this model is that 

it can be used to any publicly traded company, and 

stock market data can be utilized instead of financial 

data. It can also be used to forecast events in the future. 

The use of this approach in ordinary practice, on the 

other hand, revealed some of its faults. The model's 

credit spreads, which are premiums to risk-free 

interest rates, are often lower than the real spreads, and 

Merton's model's assumptions have little resemblance 

to reality. The model's credit spreads, which are 

premiums to risk-free interest rates, are often lower 

than the real spreads, and Merton's model's 

assumptions have little resemblance to reality [12]. 
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Merton (1976) created a jump stochastic process that 

incorporates jumps (non-local changes) in a 

continuous random time. No matter how short the time 

delay between successive observations, the approach 

provided for a positive likelihood of a stock price 

change of extraordinary magnitude. Many empirical 

investigations of stock price series show much too 

many outliers for a basic constant-variance lognormal 

distribution, showing the presence of price leaps [13]. 

Sepp (2006) provided two robust CreditGrades model 

extensions. The first extension assumes that the 

variance of returns on the firm's assets is stochastic, 

and the second that the asset value process of the firm 

follows a double exponential jump-diffusion. They 

developed closed-form methods for pricing equity 

options on a firm and calculating the firm's survival 

probability over a finite time horizon. Their models 

were used to simulate credit default swap (CDS) and 

equity default swap (EDS) spreads. They calibrated 

their models using data from General Motors choices. 

Their models offered a good fit to the data and resulted 

in non-zero short term CDS spreads, according to the 

results [1]. 

Jacobs and Li (2008) studied a two-factor affine model 

for corporate bond credit spreads. The first factor was 

understood as the spread's level, and the second as the 

spread's volatility. A basic two-factor affine model 

was used to simulate the riskless interest rate, yielding 

a four-factor model for corporate yields. They were 

able to capture higher moments of credit spreads by 

modelling the volatility of corporate credit spreads as 

stochastic. They estimated their model on corporate 

bond prices for 108 corporations using an enhanced 

Kalman filter method. Their model fit actual corporate 

bond credit spreads well, resulting in a much lower 

root mean square error (RMSE) than a typical 

alternative model in both in-sample and out-of-sample 

tests. The model also caught the essential 

characteristics of real-world credit spreads [10]. 

Masoliver and Perelló (2009) solved the Heston 

random diffusion model's first-passage difficulty. 

They were able to obtain precise analytical formulas 

for the survival and hitting probabilities at a given 

level of return. They investigated numerous 

asymptotic behaviours and obtained approximate 

representations of these probabilities, demonstrating, 

among other things, the nonexistence of a mean-first-

passage time. One important finding was the presence 

of extreme deviations, implying a high chance of 

default when a dimensionless parameter related to the 

strength of volatility fluctuations increased. They 

tested the model on empirical daily data and 

discovered that it could capture a relatively broad 

region of hitting probability [9]. 

Gersbach and Surulescu (2010) devised a method for 

estimating default risk based on stochastic volatility 

models. Instead of Merton's standard technique with 

geometric Brownian movements, they considered a 

mean-reverting stochastic volatility model to represent 

the evolution of a firm's values. For the default 

probability, they devised an analytical equation. Their 

simulation results showed that if a firm's credit quality 

is not excessively poor, the stochastic volatility model 

predicts higher default probabilities than the related 

Merton model. Otherwise, the stochastic volatility 

model predicts lower default probabilities [8]. 

Markovska et al. (2014) used the Cox-Ingersoll-Ross 

model to estimate defaults using an intensity-based 

method. They investigated the potential and 

consequences of the theoretical model's non-linear 

dependency between economic and financial state 

variables and the default density. They then ran a test 

to see how simulation techniques can assist the study 

of such complex relationships when closed-form 

solutions are either unavailable or difficult to get. 

Their technique enabled them to create basic and easy-

to-implement models for assessing default risk [16]. 

Hurn and Lindsay (2015) presented a maximum 

likelihood method for estimating the parameters of the 

classic square-root stochastic volatility model as well 

as a variant of the model that includes equity price 

jumps. They applied the model on S&P 500 Index data 

and vanilla option prices written on the index from 

1990 to 2011. Their method was capable of estimating 

both the physical measure parameters (related with the 

index) and the risk-neutral measure parameters 

(associated with the options), including the volatility 

and jump risk premia. The empirical results showed 

that the model parameters could be successfully 

determined and were compatible with values reported 

in the literature. Both the volatility risk premium and 

the jump risk premium were discovered to be 

statistically significant [2]. 

Chen and He (2017) investigated the pricing of credit 

default swaps (CDSs) using a reference asset driven by 

a geometric Brownian motion with multi-scale 

stochastic volatility (SV), which was a two-factor 

volatility process with one factor controlling the fast 



© May 2023 | IJIRT | Volume 9 Issue 12 | ISSN: 2349-6002 

IJIRT 159842 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 620 

time scale and the other representing the slow time 

scale. A crucial component was the discussion of no 

default probability, which established an equivalence 

link between the CDS and the down-and-out binary 

option while balancing the two SV processes with the 

perturbation method. Finally, they were able to 

develop an approximate but closed-form pricing 

formula for the CDS contract [17]. 

Wang et al. (2017) investigated the pricing issue of 

stochastic volatility in susceptible options by 

decomposing stochastic volatility into long-term and 

short-term volatility. They used a mean-reverting 

process to represent the short-term variation of 

stochastic volatility and assumed long-term volatility 

to be constant. They developed a pricing formula for 

susceptible options in a special situation using the 

proposed model. They compared the suggested 

model's results to those of Black and Scholes (1973), 

Heston (1993), and Klein (1996). The stochastic 

volatility model was discovered to be a flexible 

representation of susceptible option pricing when the 

parameters were properly chosen [7]. 

McQuade (2018) created a firm-specific real-options, 

term structure model to provide fresh insight on the 

value premium, financial crisis, momentum, and credit 

spread challenges. The model included stochastic 

volatility in the company productivity process as well 

as a negative volatility risk market price. The model 

demonstrated that allowing for endogenous default by 

equity holders was required for the model to account 

for both investment grade and junk debt credit spreads. 

To better account for the projected default frequencies 

and credit spreads of short maturity debt, the model 

was expanded to include infrequent disasters and 

numerous time scales in volatility dynamics. Finally, 

they solved the model using an asymptotic 

expansions-based methodology [15]. 

Ji et al. (2020) modified the Merton model by 

including stochastic volatility and the concept of 

undercapitalization to more realistically assess bank 

credit risk. They chose the Heston model, which has 

non-lognormal features such as strong tails in the asset 

return distribution. To estimate parameters, they used 

Bayesian inference. Then, to better show banks' credit 

risk, they created capital adequacy requirements, and 

they offered an early warning indication, namely the 

ECB. They used the ECB to bail out Lehman Brothers 

and Bank of America. The results indicated the 

relative power of their early warning indication vs the 

put option value of the bank's safety net [5]. 

Jumbe and Gor (2022) devised a method for modelling 

default risk using the jump diffusion process. They 

compared the outcome of their method to that of 

Merton and Moody's famous Kealhofer, McQuown, 

and Vasicek (MKMV) models. The results show that 

jump diffusion models outperform both the standard 

Merton and MKMV models in predicting default risk 

[6]. 

III. STOCHASTIC VOLATILITY MODELS 

 

The following is a general expression for a non-

dividend asset price with stochastic volatility: 

1t t t t t tdA A dt v A dW= +        (1) 

( ) ( ) 2, , , ,t t t t t tdv S v t dt A v t dW = +          (2) 

 

with 

         1 2t tdW dW dt=          (3) 

where tA  denotes the asset price and tv  denotes the 

variance of the asset price. 

 

IV. THE COX-INGERSOLL-ROSS (CIR) MODEL 

 

John C. Cox, Jonathan E. Ingersoll, and Stephen A. 

Ross developed the Cox-Ingersoll-Ross (CIR) model 

in 1985 as an expansion of the Vasicek model (1984). 

The CIR model was originally used to represent the 

evolution of interest rates. It is a one factor model 

(short-rate model) since interest movements are 

described as being driven by only one source of market 

risk. The concept is now extended to characterize 

volatility evolution in stochastic volatility models. 

 

The CIR model states that the instantaneous volatility 

follows the stochastic differential equation known as 

the CIR process, which is given as:  

( )t t t tdv a b v dt v dW= − +                (4) 

where tW is a wiener process (modelling the random 

market risk component), a is the speed of adjustment 

to the mean, b  and   is the variance volatility. The 

drift factor, ( )ta b v− , is identical to that of the 

Vasicek model. It guarantees mean reversion of the 

volatility rate to the long run value b , with the speed 

of adjustment set by a strictly positive parameter, a . 
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For any positive values of a and b , the standard 

deviation factor, tv , eliminates the possibility of 

negative volatility rates. If the condition 
22ab  is 

met, a volatility rate of zero is likewise ruled out. 

When the rate tv  approaches zero, the standard 

deviation tv likewise approaches zero, 

dampening the influence of the random shock on the 

rate. When the rate approaches zero, its evolution is 

driven by the drift factor, which forces the rate towards 

equilibrium. 

V. THE HESTON MODEL 

 

The Heston Model is a form of stochastic volatility 

model used to price European options, named after 

Steve Heston (1993).  The Heston methodology is a 

stochastic volatility options pricing methodology. In 

contrast to the Black-Scholes model, which assumes 

that volatility is constant, the model assumes that 

volatility is arbitrary.  It is a closed-form method for 

option pricing that attempts to address some of the 

drawbacks of the Black-Scholes option pricing model. 

It is also a type of volatility smile model, which is a 

graphical representation of numerous options with 

identical expiration dates that demonstrate increased 

volatility as the options become more in-the-money 

(ITM) or out-of-the-money (OTM). 

The Heston Model employs statistical methods to 

calculate and forecast option pricing under the 

assumption that volatility is arbitrary. The premise that 

volatility is arbitrary rather than constant is what 

distinguishes stochastic volatility models. The SABR 

model, the Chen model, and the GARCH model are 

examples of stochastic volatility models. 

 

The basic Heston model assumes that, the asset price 

tA  is determined by a stochastic process given by: 

1t t t t tdA A dt v A dW= + ,                   (5) 

where tv  is the instantaneous variance given by a CIR 

process given by: 

( ) 2t t t tdv v dt v dW  = − + ,          (6) 

and 1 2,t tW W  are independent wiener processes with 

correlation  . 

The model has five parameters, 0v  is the initial 

variance,   is the long-run average variance of the 

price; as t  tends to infinity, the expected value of tv  

tends to  ,  is the correlation of the two wiener 

processes,  is the rate at which tv reverts to   and 

 is the volatility of the volatility which determines 

the variance of tv . If the parameters obey the Feller 

condition
22  , then the process tv  is strictly 

positive. 

VI. THE HESTON-CIR MODEL 

 

The Heston-CIR model is a typical stochastic volatility 

model which takes 

( ) ( ), ,t t tA v t v  = − ,  

and ( ), ,t t tA v t v = , to obtain: 

1t t t t t tdA A dt v A dW= +                (7) 

( ) 2t t t tdv v dt v dW  = − +       (8) 

with 

         1 2t tdW dW dt=                       (9) 

where 1tW  and 2tW  are Wiener processes for asset 

price and asset’s price variance respectively with 

instantaneous correlation  , tA  is the asset price at 

time t , r is the risk free interest rate, tv  is the variance 

of the asset price, is the volatility of the volatility 

(the volatility of the variance),   is the long-term 

average price variance (mean reversion level),   is 

the mean reversion speed (rate of  reversion to  ), the 

instantaneous variance tv is a CIR process (square root 

process) and dt is the indefinitely small positive time 

increment. The parameters of the variance process are 

all strictly positive.  

The risk-neutral probability measure incorporates the 

market price of volatility, denoted as  , to distinguish 

the objective probability measure from the risk-neutral 

one. The volatility risk premium is assumed to be 

proportional to the instantaneous variance, tv , and 

its sign arises from the (sign of) correlation between 

the Brownian processes assumed for the instantaneous 

variance and the (aggregate) consumption. 
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If we let lnt tx A= , the risk-neutral dynamics of 

Heston-CIR model becomes: 

*

1

1

2
t t t tdx r v dt v dW

 
= − + 
 

           (10) 

                           

( )* * *

2t t t tdv v dt v dW  = − +      (11) 

with 

          
* *

1 2t tdW dW dt=                     (12) 

where  

          
*  = +   and  

* 


 
=

+
 

 

The probability of the call option expiring in-the-

money, conditional on the log of the asset price, can 

be interpreted as risk-adjusted or risk-neutral 

probabilities provided by: 

( )

( )( )

, , ; ln

ln | ,

j

t t

F x v T D

P x T D x x v v

=

 = =
      (13)  

The Heston model treats the option price tV  as a 

function of current asset price tA  and its volatility v

(level of volatility), time to expiration T , strike price 

D , risk-free rate r , variance parameters of asset 

price and its volatility of underlying asset  (volatility 

of variance), mean reversion speed  , mean reversion 

level for the variance  , volatility risk premium  

and correlation between two process  . 

( ), , , , ; , , , ,t tV V v A T D r     =    (14) 

Heston demonstrates that the value ( ), ,V A v t of any 

option must meet the following partial differential 

equation using classic arbitrage arguments: 

( )( )

( )

2 2 2
2 2

2 2

1 1

2 2

, ,

0

V V V
vA vA v

A A v v

v tV V
rA rV

A vA v t

V

t

 

 



  
+ + +

   

 − − 
+ − + 
  
 


=



(15) 

Heston obtained the closed form solution of a 

European call option on a non-dividend paying asset 

using the analogy of the Black-Scholes formula as 

follows: 

( ) ( )
1 2

r T t
C D SP e DP

− −
= −             (16) 

where 1P  and 2P  should satisfy the following Partial 

Differential Equation (PDE) (for 1, 2j = ) 

 ( ) ( )

2 2 2

2

2 2

1 1

2 2

0

j j j

j j

j j j

j

F F P
v v v

x x v v

P P
r u v a b v

x v

P

t

 
  

+ + +
   

 
+ + − +

 


=



(17) 

and  

( ) ( )( )Pr ln lnj tP A D=                         (18) 

( )
ln

; ,

0

1

2

1
Re

j

i K

j x v

P

e f
d

i






 

−


= +

 
 
  


                  (19) 

( )

( ) ( )( )

; ,

exp , ,

j

j j t t

f x v

C D v i x



    

=

+ +
      (20) 

 

( )

( )

2

,

1
2ln

1

j

j

j j

d

j

j

C ri

b i d

a
g e

g



  

  



= +

 − + −
 
  −
  

 −   

                   (21) 

 

( )

2

,

1

1

j

j

j

d

j j

d

j

D

b i d e

g e





 

 



=

 − + −
 
 − 

                 (22) 

                         

( ) ( )
2

2 22

j

j j

d

i b u i    

=

− − −
       (23) 

 

j j

j

j j

b i d
g

b i d

 

 

− +
=

− −
                             (24) 
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The parameters in Equation (14) are given as;

1 2

1

2

1 1
,  ,  ,  

2 2

,  

u u a

b

b



  

 

= = =

= + −

= +

                 (25) 

The simulated variance can be inspected to check 

whether it is negative ( 0v  ). If it is negative, it can 

be set to zero ( 0v = ), or invert its sign to be positive 

( 0v−  ). 

The variance process can be described similarly to the 

asset price by establishing a process for natural log 

variances using Ito's lemma, as follows: 

( )* * 2 *

2

ln

1 1 1

2

t

t t

t t

d v

v dt dW
v v

   

=

 
− − + 

 

   (26) 

 

The Heston model can be discretized as follows; 

, 1

ln

1
ln

2

t t

t t t A t

A

A r v t v t

+

+

=

 
+ −  +  
 

             (27) 

( )* * 2

, 1

ln

1 1
ln

2

1

t t

t t

t

v t

t

v

v v t
v

t
v

  

 

+

+

=

 
+ − −  + 

 



            (28) 

Shocks to the volatility, , 1v t + , are correlated with the 

shocks to the stock price process, , 1A t + . This 

correlation is denoted as  , so that 

( ), 1 , 1,A t v tCorr  + +=  and the relationship 

between the shocks can be written as; 

2

, 1 , 1 11v t A t t   + + += + −                        (29) 

where 1t +  are independently with , 1A t +  

 

VII. HESTON-CIR MODEL PARAMETER 

ESTIMATIOM 

 

The Heston-CIR model, 

( ), , , , , , , , ,tV f A T D r v    = is a function 

of the underlying asset value, the period to expiration, 

the strike price, the risk-free rate, and the other six 

model parameters. Bakshi et al. (1997) proposed a loss 

function technique for estimating the six model 

parameters. The loss function approach is a numerical 

estimating method that finds parameter values that 

minimize the difference between market and Heston-

CIR prices [4] 

( )

( )

, , , , ,

, , , ; , , , , ,mkt heston t

error v

V V A T D r v

    

    

=

−
   (30) 

                      

( )
2

1
min , , , , ,

N

n
SSE error v    

=
=   (31) 

The objective function in equation (31) will be 

minimized for the cross-sectional sum of square error 

on each day. The numerical approach is used to 

calculate values of , , , , ,v     . 

 

The Least Square Method 

In the Heston-CIR model, the least squares function 

for parameter estimation entails minimising the sum of 

the squared differences between the observed data and 

the model predictions for each observation. When the 

errors in the observations are believed to be regularly 

distributed, this strategy is often used. 

 

The objective function for the least squares estimation 

of the Heston-CIR model parameters is defined as: 

( ) ( )( )
2

1
,

n

i ii
LS y y x 

=
= −              (32) 

where   is the vector of model parameters, iy  is the 

observed value of the dependent variable at time i , ix  

is the observed value of the independent variable at 

time i , and ( ), iy x  is the predicted value of the 

dependent variable at time i , given the model 

parameters   and the independent variable value ix . 

For the Heston-CIR model, the dependent variable is 

the asset price, and the independent variable is the 

time. The predicted asset price is obtained by 

simulating the Heston-CIR model with the given 

parameter values. 

Numerical optimization procedures can be used to 

minimize the objective function. The parameter values 

are iteratively adjusted by the algorithm to minimize 

the sum of the squared discrepancies between the 
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observed data and the model predictions. The least 

squares estimate method is based on the assumption 

that the observations' errors are normally distributed 

and that the model predictions are unbiased. 

 

The Maximum likelihood Function 

In the Heston-CIR model, the maximum likelihood 

function for parameter estimation is the joint 

probability density function of the observed data given 

the model parameters. It is calculated as the product of 

the asset price's probability density function and the 

volatility process at each observation. 

 

The probability density function of the Heston-CIR 

model for the stock price process is given by: 

( )

( )( )

( )

( )
( )

0 0

2

0

| , , , , , , ,t

1/ 2

ln /
exp / 2

2

t

t

t

t

t

P A A v r

sqrt pi v

A A
v t

r v t

   

=   

 − 
 −   

  −   

       (33) 

where tA  is the asset price at time t , 0A  is the initial 

asset price, 0v  is the initial variance, r  is the risk-free 

rate, theta is the long-term mean level of variance, 

kappa is the mean reversion speed of variance, sigma 

is the volatility of variance, rho is the correlation 

between the asset price and the variance processes, and 

t  is the time interval. 

 

The probability density function of the Heston-CIR 

model for the variance process is given by: 
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where tv  is the variance at time t , 0v  is the initial 

variance, theta is the long-term mean level of variance, 

kappa is the mean reversion speed of variance, sigma 

is the volatility of variance, and t  is the time interval. 

The joint probability density function of the Heston-

CIR model for the asset price and variance processes 

is the product of the two probability density functions: 
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The likelihood function is the product of the joint 

probability density function evaluated at each 

observation: 
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    (36) 

where iA  and iv  are the observed asset price and 

variance at time i , and n  is the total number of 

observations. 

The maximum likelihood estimates of the parameters 

are the values that maximize the likelihood function. 

This is typically done using numerical optimization 

algorithms. 

 

VIII. PROBABILITY OF DEFAULT BY HESTON-

CIR MODEL 

 

The Heston-CIR model includes a default threshold (

D ) and a default indicator function I  that equals 1 if 

its argument is true and 0 otherwise. The default 

threshold represents the level at which the firm 

defaults, when the asset value goes below the default 

threshold and the default indicator function determines 

if the asset price has fallen below the default threshold. 

 

The  probability of default (PD) at time , t  is given by: 
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         (37) 

where tF  is the information set at time t , v  is the 

instantaneous variance, and ( ).N  is the cumulative 

distribution function of the standard normal 

distribution, and;
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(38) 

is the distances to default, defined as the number of 

standard deviations between the expected asset value 

at maturity T  and the debt threshold D , reflecting 

how far a firm's asset value is from the value of 

obligations that would trigger a default [19]. 

 

IX. DATA ANALYSIS AND   DISCUSSION 

 

The data on asset price and default threshold were 

obtained from Federal Reserve Economic Data,(                                                           

https://fred.stlouisfed.org,https://fredhelp.stlouisfed.o

rg) from 2011/10/01 to 2020/10/01 as shown in Table 

1. The data include total asset prices (A) and total 

debts (TD) treated as default threshold, short term 

debts (STD) and long term debts (LTD). Analysis of 

data was done using python Jupiter IDE. 

Distances to default (DDs) determined by the Heston-

CIR (HCIR) model, Merton Jump Diffusion (MJD) 

model, classic Merton model, and Moody's KMV 

(MKMV) model are shown in Table 2. The table also 

displays the HCIR model's changing volatility.  The 

table depicts the rise in DDs for the HCIR model when 

volatility and maturity time rise. As maturity time 

grows, the DDs for MJD, the classic Merton model, 

and the MKMV models drop. The HCIR model 

produces higher DD values than the MJD and classic 

Merton approaches, but slightly lower values than the 

MKMV approach. This demonstrates that the HCIR 

model may be a better way for estimating default risk. 

Table 3 displays the default probabilities (PDs) 

computed by the Heston-CIR (HCIR) model, Merton 

Jump Diffusion (MJD) model, classic Merton model, 

and MKMV model from Table 1.  The table shows 

how the PDs for the HCIR model fall as volatility and 

maturity time increase. As maturation time passes, the 

PDs for MJD, the classic Merton model, and the 

MKMV model grow. When compared to other 

techniques, the HCIR model produces lower PD 

values. This demonstrates that, when compared to 

other techniques, the HCIR model can be a better 

predictor of default risk. 

 

X. CONCLUSION AND SUGGESTION FOR 

FUTURE RESEARCH 

 

We compared stochastic volatility models versus non-

stochastic volatility models in predicting default risk 

in this article. For stochastic volatility models, we 

utilized the HCIR model, and for non-stochastic 

volatility models, we used the MJD, conventional 

Merton, and MKMV models. We used data from the 

Federal Reserve Economic System from 2011/10/01 

to 2020/10/01. We began by calculating and 

comparing the distances to default (DDs) for all four 

approaches. We then utilized the DDs to determine the 

PDs for each approach. The results show that 

stochastic volatility models give preferable results 

when compared to non-stochastic volatility models. 

The DDs produced by the HCIR model were larger 

than those produced by the MJD and Merton models, 

but slightly smaller than those produced by the 

MKMV model. However, as compared to the MJD, 

Merton, and MKMV techniques, the HCIR model 

showed lower default probabilities. This demonstrates 

that the HCIR can be a superior technique for 

predicting default risk, implying that stochastic 

volatility models are a better approach for predicting 

default risk. In the future, we will analyze the effect of 

changing interest rates on predicting default risk using 

stochastic interest models and non-stochastic interest 

models. 
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Table 1. Short and long term debts, total debts and total asset prices 

Time 

(T) 

2011/10/

01 

2012/10/

01 

2013/10/

01 

2014/10/

01 

2015/10/

01 

2016/10/

01 

2017/10/

01 

2018/10/

01 

2019/10/

01 

2020/10/

01 

STD 3810 3829 3813 4177 5900 4336 3705 3585 4775 6003 

LTD 16487 16947 19431 22299 30692 32037 29130 29690 28792 29921 

Asset(

A) 

173063 171211 191450 205093 203037 198507 201953 211339 228884 253764 

Debts 

(D) 

20297 20776 23244 26476 36592 36373 32835 33275 33567 35924 

Source (Federal Reserve Economic Data 

 

Table 2. Distances to default (DDs) for HCIR, MJD and Merton models 

Time (T) 1 2 3 4 5 6 7 8 9 10 

DD(HCIR) 3.4200 4.0777 4.5244 4.8744 5.1673 5.4222 5.6497 5.8565 6.0469 6.2241 

Volatility(HCIR) 0.3162 0.4472 0.5477 0.6325 0.7071 0.7746 0.8366 0.8944 0.9487 1.0 

DD(MJD) 6.7108 4.9692 4.2410 3.8339 3.5754 3.3989 3.2727 3.1793 3.1086 3.0543 

DD(MTN) 6.4108 4.5448 3.7205 3.2304 2.8968 2.6512 2.4608 2.3078 2.1814 2.0747 

DD(MKMV) 8.2647 5.8559 4.7909 4.1574 3.7259 3.4081 3.1616 2.9633 2.7993 2.6610 

 

Table 3. Probability of default (PDs) for HCIR, MJD, and Merton models 

Time (T) 1 2 3 4 5 6 7 8 9 10 

PD (HCIR) 0.0003 2.3e-05 3.0e-06 5.5e-07 1.2e-07 2.9e-08 8.0e-09 2.4e-09 7.4e-10 2.4e-10 

PD (MJD) 9.7e-12 3.4e-07 1.1e-05 6.3e-05 0.0002 0.0003 0.0005 0.0007 0.0009 0.0011 

PD(MTN) 7.2e-11 2.7e-06 9.9e-05 0.0006 0.0019 0.0040 0.0069 0.0105 0.0146 0.0190 

PD(MKMV) 1.1e-16 2.4e-09 8.3e-07 1.6e-05 9.7e-05 0.0003 0.0008 0.0015 0.0026 0.0039 

 


