
© June 2023 | IJIRT | Volume 10 Issue 1 | ISSN: 2349-6002

IJIRT 160738 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1101

Improved Elliptical Cryptography in FPGA Processor

Dr.K.Kalpana1, Dr.B.Paulchamy 2, Dr.C.Natarajan3 J.B. Jebish Kumar 4
1Associate Professor/ECE, Hindusthan Institute of Technology, Coimbatore-32

2Professor/ECE, Hindusthan Institute of Technology, Coimbatore-323
3Professor/Mechanical, Hindusthan Institute of Technology, Coimbatore-32
4PG Scholar/M.E-VLSI, Hindusthan Institute of Technology, Coimbatore-32

Abstract: Moore's law, which asserts that the amount of

microprocessor technology (measured in terms of the

number of transistors) doubles about every two years,

explains the fast advancement of this technology in

today's world. Memory that is attached to the technology

has to be able to store a significant quantity of data as it

continues to advance. If the memory is located off-chip

from the CPU, the speed at which data can be accessed

or stored is slower, and the latency is higher. If the

memory is located on the same chip as the CPU, the speed

is increased, making it quicker to retrieve the data and

resulting in reduced latency. On-chip cache memory has

to be constructed in such a manner that it can store a

high quantity of data without increasing the amount of

space it takes up on the chip. Compression and

decompression of cache memory must be used for high-

speed microprocessors in order to access vast amounts of

data without reducing the performance of the

microprocessor, without increasing its size, and without

using more power. This paper proposes and designs a

lossless method for high speed processors, focusing

specifically on cache compression and decompression

techniques in particular. A cache memory compression

and decompression technique has been suggested and

developed within the scope of this study. This method of

compression enables parallel compression of several

words while operating in dictionary mode. By using

parallel compression, it is possible to cut the input word

in half and then insert each half into the dictionary entry

separately. In the beginning, the input word length was

tested with 32 bits, and now that number has been

expanded to 64 bits and tested again. When using

dictionary mode, data may be accessed more quickly

since it quickly finds matches with previously searched

data. The suggested technique has been simplified down

to a register transfer level design, which makes it possible

to estimate performance, power consumption, and area.

There is no decrease in compression ratio as a result of

the performance. Comparisons are made between the

compression ratio and that of other techniques currently

in use. When compared with IBM's Memory Expansion

Technology, the output results of the simulation of the

suggested cache compression technique are examined

(MXT). X- Match is a dictionary-based algorithm that

uses move to front coding strategy, Lempel-Ziv (LZ)

algorithm, and finally the proposed algorithm is

compared with Frequent Pattern Compression (FPC),

which compresses cache lines at the L2 level. MXT is a

memory compression / decompression technique that

improves performance by increasing the usable size of

off-chip main memory. The algorithm that was suggested

and is now being used produces superior results in terms

of performance, area, and power consumption expenses

when compared to other algorithms that are already in

use.

Index Terms – Cryptography, C-Pack Compression,
Data Compression, FPGA, Frequent Pattern

Compression

I. INTRODUCTION

The performance gap that exists between processors

and memory is the consequence of the fast growth of

semiconductor technology and the continued

expansion in the number of micro architectural

advances. Moore's law asserts that the performance

and speed of CPU technology will double about every

two years. L1 and L2 are the two layers of cache

memory that are used by modern processors to cut

down on latency and increase bandwidth [1]. It has

been suggested that compressing cache memory may

enhance system performance. This is due to the fact

that effective capacity can be raised by the

compression of data that is stored in on-chip caches,

which in turn decreases the number of cache misses.

Because on-chip cache memory structures can store

more data in megabyte size, performance grows more

quickly whenever there is a technological

advancement in the CPU. When compared to the speed

of the CPU, the speed of the off-chip memory is much

© June 2023 | IJIRT | Volume 10 Issue 1 | ISSN: 2349-6002

IJIRT 160738 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1102

slower. When a multiprocessor is used in the design of

the system, it needs a greater number of access points

to memory. The off-chip communication speed with

the CPU may be slowed down with the help of cache

compression.

II. RELATED WORKS

Latency is introduced by both compression and

decompression; however, the latency introduced by

compression will not be on the crucial route, whereas

the latency introduced by decompression will be.

[2]Compression algorithms that provide a high level

of compressibility are going to have a cost in terms of

both space and latency. Both compressing and

uncompressing data may be quite helpful when

working with main memory and the last level cache.

Different sizes of compressed blocks may lead to

fragmentation, which is also known as a break in linear

mapping. The data that is entered may be compressed

in a variety of ways, depending on the inserted data.

It's easy for replacement policy to get complicated. If

the memory footprint of the programme is quite tiny,

compression will be of little value. If the footprint is

too big, the additional capacity that is offered through

compression will not be adequate.

The primary benefit of any compression approach is

that it minimizes the demand for the amount of data

storage space. It presents a strategy for lowering the

costs associated with the transport of large amounts of

data across extended connection distances by

increasing the efficiency with which the available

bandwidth is used [3]. As a result of the decrease in

data rate, data compression significantly improves the

quality of presentations made via communication

channels with restricted bandwidth. This is because of

the reduction in data rate. Because of the many

different compression methods that are available, the

use of the internet has shifted more toward being

dependant on images and graphics rather than being

centred on data and text. The development of high-

performance compression [4] has paved the way for

new methods of developing applications such as

digital libraries, digital archives, video

teleconferencing, telemedicine, and digital

entertainment, amongst others.

There are other benefits that come with data

compression as well. For instance, it has a significant

influence on the access to the database. Encrypting and

sending data is a great way to increase the level of data

security [5]. By making both the compression and

decompression procedures completely visible to

potential imposters, an additional layer of protection

may be added to the system. It is possible for the pace

of input and output operations in a computer device to

rise as a result of shortening the form of data

representation used. By keeping backup copies of

huge database files in a compressed format, data

compression cuts down the costs associated with the

majority of applications. Because of its benefits, data

compression will make it possible to develop more

multimedia and video apps at a lower cost.

Figure 1.Data Compression Model

The basic block diagram of Data Compression Model

is shown in Figure 1. The steps of basic data The three

components that make up a compression model are

data redundancy reduction, entropy reduction [7], and

entropy encoding. The term "data redundancy" refers

to the situation that arises when database management

systems have a field that is duplicated in two or more

tables. [8] A recognised cause of inconsistency is

redundancy of data, which occurs whenever there is a

duplicate of the input data. When establishing a

relational database that will include several entities, it

is important to prevent situations that might result in

data deviation, such as data redundancy [9]. Database

normalisation prevents redundancy and makes the best

possible utilisation of storage. An entropy encoding is

a method of data compression that does not result in

the loss of any information and is not reliant on the

properties of the media being used.

A. Contraindications of Utilizing Data Compression

• There are very few downsides associated with

© June 2023 | IJIRT | Volume 10 Issue 1 | ISSN: 2349-6002

IJIRT 160738 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1103

data compression, however this does depend on

the application. One of the negatives of data

compression is the overhead that is incurred as a

result of encoding and decoding, for instance.

• The dependability of the system suffers as a result

of data compression. For example, a single bit

mistake in compressed coding might lead the

decoder to misread all succeeding bits which

creates inaccurate data.

• The transmission of highly protected compressed

data, such as that used in the medical field, over a

noisy communication medium, such as a wireless

channel, is fraught with danger because the burst

errors that are introduced by the noisy channel

have the potential to destroy the data that is being

transmitted [10].

• Since the output of compressed data is different

from the data that was originally provided, one of

the most significant issues with data compression

is that it disrupts the characteristics of the data.

• The additional complexity brought about by data

compression may, in many hardware

implementations, lead to an increase in the cost of

the system, which in turn can lead to a reduction

in the system's efficiency, particularly in the areas

of applications that call for extremely low power.

VLSI implementation.

B. Alterations to the data after compression

The data are automatically altered by the compression

process. These shifts might sometimes result in an

increase in unnecessary energy expenditure. The

following are some of the reasons why this is the case:

• In any specific scenario, whether a 0 or 1 is

communicated or stored has a significant impact. For

instance, in the on-chip interconnects that have just

transferred a bit with the value 0, transferring another

bit with the value 0 over the same pin that has just

transferred a bit with the value 0 requires almost no

additional energy [11], whereas transferring a bit with

the value 1 would require more energy. The energy

efficiency of data transfer is significantly impacted

when there is a greater number of switches on the

connecting cable. These switches are referred to as bit

toggles.

The vast majority of today's programming languages

and compilers store data in a predictable manner, and

as a result, data is often aligned at a granularity of four

or eight bytes. This is also consistent with the manner

in which the data is subsequently sent over

communication channels (e.g., 16-byte alignment for

many modern on- chip system network). This implies

that numerous comparable bits continue to be passed

across the same pins, which minimises the amount of

energy required for the data transmission process.

Unfortunately, data compression typically violates this

assumption about the alignment of the data [12], which

results in a large increase in the total number of bit

toggles and, thus, an increase in the amount of energy

required for on-chip data transfers.

III. PROPOSED METHODLOGY

C-Pack, which stands for "Cache Packer," is a

technique for lossless compression [13] that was

developed particularly for high-performance

hardware-based on-chip cache compression. When

used for the purpose of compressing data that is often

located in low-level on-chip caches of

microprocessors, such as L2 caches, it produces a

decent compression ratio. The previous work that was

done on pattern-based partial dictionary match

compression was a significant inspiration for its

design. On the other hand, this earlier study focused

only on software-based main memory compression

and did not take hardware implementation into

consideration.

© June 2023 | IJIRT | Volume 10 Issue 1 | ISSN: 2349-6002

IJIRT 160738 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1104

Figure 2. C-Pack Compression

Figure 2 shows the algorithm for C-Pack

Compression. C-Pack is able to compress data through

the use of two different methods: first, it uses compact

encodings that are statically determined for data words

that appear frequently, and second, it encodes using a

dictionary that is dynamically updated so that it can

adapt to other words that appear frequently. The

dictionary enables users to do partial word matching

in addition to complete word matching. As an

example, we will utilize an input of two words for each

cycle. The method, on the other hand, is readily

adaptable to situations in which there are either one or

more than two words every cycle. During the course

of one cycle, a comparison is made between each word

and the patterns "zzzz" and "zzzx." In the event that a

match is found, the compression output is created by

combining the code corresponding to the match with

the bytes that were not found to be a match, as shown

in Figure 2. In such case, the compressor examines the

word in relation to each entry in the dictionary, looking

for the one that has the greatest number of matched

bytes. After that, the outcome of the compression is

derived by combining the code, the index of the

dictionary item, and any mismatched bytes that may

exist. Words that are not recognized by the pattern

matching system are added to the dictionary.

Parentheses surround the code and the dictionary

index, if there is one, in each output that is produced

[14]. Despite the fact that a 4-word dictionary was

used for demonstration purposes, the dictionary size in

this implementation is set to 64B. Take into

consideration that the dictionary receives an update

upon the addition of each new term.

Each cycle requires the input of two words. During the

first iteration, each word is first evaluated based on

how closely it resembles certain patterns, such as

"zzzz" and "zzzx." In the event that there is a match

© June 2023 | IJIRT | Volume 10 Issue 1 | ISSN: 2349-6002

IJIRT 160738 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1105

between patterns, the output is generated by merging

the code that is important to the match with the bytes

that are not matched. A comparison of the data with

each and every dictionary entry is possible if this is not

the case. The output of the compression is then formed

by combining the code, the index of the dictionary

item, and any bytes that are mismatched. The data that

does not correspond to the patterns is transferred into

the dictionary that is shown in Figure 2.

A. The Proposed Block diagram for Cache

Decompression Algorithm

During the decompression process, it first retrieves the

compressed words and then extracts the codes in order

to do the pattern analysis. In the event that the code

identifies a pattern match, the first word is recovered

by concatenating 0s and bytes that have not been

matched. If this is not the case, the result of the

decompression is created by mixing [15] bytes from

the input word with bytes from the dictionary entries

illustrated in Figure 3.3.

During the decompression process, the decompressor

will first read compressed words and then extract the

codes necessary for evaluating the patterns of each

word. These codes will then be checked against the

codes that are described in Table 3.1. In the event that

the algorithm identifies a matching pattern, the first

word is reconstructed by merging any zeroes and

mismatched bytes, if there are any. If this is not the

case, the output of the decompression is obtained by

combining bytes from the input word with bytes from

dictionary entries if the code indicates that there is a

match in the dictionary.

The C-Pack method was developed with hardware

implementation in mind from the very beginning. It

does this by simultaneously comparing a word that is

inputted with a number of probable patterns and

dictionary entries. This enables quick execution while

maintaining a decent compression ratio in a hardware

implementation; however, it may not be appropriate

for a software implementation. In general, software

must perform actions in the order that they were given.

When there are a huge number of patterns or

dictionary entries, for instance, performing a matching

operation against many patterns might become

prohibitively costly for software implementations.

The naturally parallel architecture of C-Pack makes it

possible for an effective hardware implementation, in

which pattern matching, dictionary matching, and the

processing of multiple words may all take place at the

same time. In addition, numerous design parameters

are selected, such as the dictionary replacement policy

and the coding scheme, in order to reduce the

complexity of the hardware. This is done despite the

fact that the effective compression ratio of the entire

system is slightly decreased as a result of our choices.

In the implementation of C-Pack that has been

suggested, two words will be processed in parallel for

each cycle.

It may be difficult to achieve this goal while yet

retaining the ability to make an accurate dictionary

match for the second term. In the process of

compression, two words that are very similar to one

another but have not been seen by the compression

algorithm in a while are taken into consideration. This

is done on the assumption that the dictionary utilises

the first-in-first-out (FIFO) replacement strategy.

When processing the second word, the proper

dictionary content is determined by determining

whether or not the first word matched a static pattern.

If this is the case, the first term will be omitted from

the dictionary. In any other case, it will be included in

the dictionary, and the fact that it is there may be

utilised to encode the second word. As a result, the

second word ought to be contrasted with the first word

and all of the dictionary entries in parallel with the

exception of the first entry. When compared to the

more efficient strategy of not checking with the initial

word, this results in an improvement in the

compression ratio. Therefore, it is possible to

compress two words in parallel without causing a

reduction in their compression ratio. Figure.3 shows

the algorithm for C-Pack decompression.

© June 2023 | IJIRT | Volume 10 Issue 1 | ISSN: 2349-6002

IJIRT 160738 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1106

Figure 3. C-Pack decompression

Figure 4 . Compression with different inputs

Figure.4 shows how the algorithm works for

different input data to produce output. The advantage

of this algorithm is an input word is compared with

multiple patterns and with dictionary entries. This can

be permitted for rapid execution with good

compression ratio in hardware implementation. To

reduce hardware complexity, various design

parameters such as dictionary replacement policy and

coding scheme can be chosen. In the proposed

implementation, two words are processed in parallel

per cycle.

IV. RESULTS AND ANALYSIS

During decompression the original input word is

recovered. If the extracted code indicates a pattern

match, then the original word is recovered by

combining 0‟s and is shown in Figure 5.

© June 2023 | IJIRT | Volume 10 Issue 1 | ISSN: 2349-6002

IJIRT 160738 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1107

Figure 5. Decompression result for (1100) AB

If the code indicates that there is no match with the

pattern but there is match with the dictionary entries

then the original word is recovered by concatenating

the zeroes and unmatched bytes, if any is shown in

Figure 6.

Figure 6. Decompression result for (111000)AA

Timing analysis for the compressed output

data is shown in Figure 7. The timing parameters are

represented here. After the design implementation,

design summary is verified and is shown in Figure 8.

© June 2023 | IJIRT | Volume 10 Issue 1 | ISSN: 2349-6002

IJIRT 160738 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1108

Figure 7. Timing analysis

Figure 8. Device Utilization Summary

A. Comparison Of Compression Ratio

The proposed algorithm is compared with few

algorithms namely X-Match, MXT and Frequent

Pattern Compression (FPC). Other compression

algorithms are excluded because they lack hardware

design so they are notsuitable for cache compression.

Compression ratio of different algorithms are checked

and compared for the performance. The dictionary size

and block size are checked and set to 64 B in test cases.

LZSS Lempel-Ziv compression algorithm is being

used instead of MXT to approximate compression

ratio.

The raw compression ratio and system wide

compression ratio in pair matching scheme are being

summarized in Table 1. The raw compression ratio and

system wide compression ratio are listed in each row.
The Table 1 shows the results comparison of different

cache compression algorithms. This result comparison

is shown for the benchmark mpeg 2. The other

benchmark files considered were mesa, art and wolf.

Though the table shows the compression ratio value

for one file type only, the average value had been

calculated. In this analysis of average value

calculation, the proposed algorithm and design had

produced raw compression ratio of 58.30% and

effective system wide compression ratio of 61.40%.

© June 2023 | IJIRT | Volume 10 Issue 1 | ISSN: 2349-6002

IJIRT 160738 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1109

Table 1. Comparison of Compression ratio

Memory Compression technique Raw compression ratio (%) System wide compression ratio (%)

MXT 70.88 75.55

FPC 63.39 64.28

X-MATCH 49.50 57.97

Proposed algorithm 52.10 58.47

V. CONCLUSION

As a result of this research, a cache memory

compression technique that is both effective and

suitable for high-performance microprocessors has

been presented. Pattern matching and partial

dictionary coding serve as the foundation for the

creation of the suggested method. Compression of

several parallel words is allowed and will not reduce

the chance of a dictionary match being found. The new

method achieves an effective compression ratio of

59% over the whole of the system. When compared to

those of alternative compression methods that may be

used for this application, the results that were

produced are comparable to being significantly

superior. The data that has 64 bits or more may be

compressed and decompressed with the help of the

method that has been simulated and synthesised. The

data are compressed into the cache in an effective

manner while ensuring that the performance is not

affected in any way. The compression ratio produced

by this approach is satisfactory. Because less space is

being used, memory latency will be reduced, which

will result in an improvement in the speed of the

system's memory performance. This approach may

also be used for applications requiring lossless high

performance data compression, either with or without

the need for any changes. The compression and

decompression techniques for cache memory were

evaluated and contrasted with those of other

compression algorithms, such as X-Match, Frequent

Pattern Compression, and IBM's memory expansion

technology. A comparison was made between the raw

compression ratio and the effective system wide

compression ratio. Using an interpolation method, the

data compression technique was attempted for the

picture data input. There is generation of both the

technical and RTL schematic block diagrams. There is

a listing of the timing analysis, as well as the area

overhead and delay values. Only data compression via

the use of the interpolation approach was identified in

this investigation.

REFERENCES

[1] Acquaviva A & Ricc B, 2003, “Energy

Characterization of Embedded Real-Time

Operating Systems‟. In Proceedings of the

Workshop on Compliers and Operating Systems

for Low Power, pp.53-73.

[2] Alameldeen & Wood, D A, 2004, “Frequent

pattern compression: A significance-based

compression scheme for 12 caches”, Dept.

Comp.Scie., Univ. Wisconsin-Madison, Tech.

[3] Alameldeen AR & Wood DA 2005, “Multifacet‟s

general execution-driven multiprocessor

rsimulator (gems) toolset”, In Computer

Architecture News, pp.92-99.

[4] Alameldeen, R & Wood, DA 2004, “Adaptive

cache compression for high-performance

processors”, in Proc.Int.Symp. Computer

Architecture, pp.212-223.

[5] Alghazo J, Akaaboune A & BotrosSf-lru, 2004,

“Cache Replacement Algorithm‟, In Proceedings

of the Records – International Workshop on

Memory Technology, Design and Testing, pp. 19-

24.

[6] Al-Zoubi H, Milenkovic A & Milenkovic M

2004, “Performance evaluation of cache

© June 2023 | IJIRT | Volume 10 Issue 1 | ISSN: 2349-6002

IJIRT 160738 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1110

replacement policies for the SPECCPU 2000

benchmark suite”, In Proceedings of the 42nd

Annual Southeast Reg. Conference, ACM-SE 42,

pp.267-272.

[7] Ardsher Ahmed, Pat Conway, Bill Hughes & Fred

Weber 2002, “shared memory MP systems”, In

Proceeding of the 14th HotChips Symposium,

pp.1-30.

[8] Bardine A, Foglia P, Gabrielli G &Prete CA 2007,

“Analysis of staticand dynamic energy

consumption in nuca caches: Initial results”, In

Proceedings of the Workshop on Memory

Performance: Dealing with Applications, Systems

and Architecture,pp.105-112.

[9] Benchmarks.Speccpu2006.In<http://www.spec.o

rg/cpu2006,2006>.

[10] BeniniL & Micheli G De 2000, “System-level

power optimization: techniques and tools”, ACM

Transactionon Design Automation Electronic

System,Vol.5,Issue 2, pp.115–192.

[11] Benini L 2003, “Energy-Aware Design of

Embedded Memories : ASurvey of Technologies,

Architectures, and Optimization

Techniques”,Vol.2,Issue 1,pp.5–32.

[12] Bienia C, Kumar S, Singh JP & Li K 2008,“The

parsec benchmark suite: Characterization and

architectural implications”, In Proceedings of the

International Conference on Parallel

Architectures and Compilation Techniques,

pp.72-81.

[13] Borkar S & Chien A A 2011, “The Future of

Microprocessors Communications of the ACM”,

Vol. 54, No.5, pp.67-77.

[14] Bradford M, Beckmann & David A.Wood 2004.,

“Managing Wire Delay in Large Chip-

Multiprocessor Caches”, In Proceeding of the 37th

international Symposium on Microarchitecture

(MICRO-37)‟, Portland, Oregon, pp.319-330.

[15] Burrows M & Wheeler D J 1994, “Ablock-sorting

lossless data compression algorithm”

[16] Chang P P, Mahlke S A, Chen W Y, Warter N J

& Hwu W 1991, “IMPACT: An Architectural

Framework for Multiple-Instruction-Issue

Processors”, Proc. Of International Symposiumon

Computer Architecture.

[17] Chen T & Baer J 1995, “Effective hardware-based

data prefetching for high-performance processors.

IEEE Transaction on Computing‟, Vol.44, issue

5, pp.609–623.

[18] Chetana N, Keltcher Kevin J. McGrath Ardsher

Ahmed Pat Conway2003, “The AMD opteron

processor for Multiprocessor Server”, IEEE

Micro, vol.23, issue 2, pp.66-76.

[19] Chishti Z, Powell M D & Vijaykumar T N,2003,

“Distance associativity for high performance

energy-efficient non-uniform cache

architectures” In Proceeding of the 36th

International Symposiumon Microarchitecture‟,

pp.55-56.

http://www.spec.org/cpu2006
http://www.spec.org/cpu2006
http://www.spec.org/cpu2006
http://www.spec.org/cpu2006

