
© September 2023| IJIRT | Volume 10 Issue 4 | ISSN: 2349-6002

IJIRT 161433 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 26

Real Time Monitoring of IOT devices using MQTT

protocol and effective dashboard design with database

optimization

Abhishek R Manas

Computer Science Department, RV College of Engineering

Abstract— With the increasing number of IoT devices

being deployed in various applications, monitoring and

managing these devices has become a critical task. This

paper presents a real-time dashboard that leverages the

MQTT protocol, React, Express, and PostgreSQL to

monitor IoT devices. The dashboard provides users with

a graphical user interface that allows for real-time

monitoring of data from various IoT devices. The MQTT

protocol is used to facilitate efficient communication

between the IoT devices and the dashboard. React is

utilised to provide a responsive and interactive user

interface, while Express provides a scalable and flexible

backend for data processing. PostgreSQL is used to store

and manage data collected from the IoT devices, enabling

efficient retrieval and analysis of historical data. The

proposed solution is effective in monitoring and

managing IoT devices in various applications. This real-

time dashboard provides an effective solution for

monitoring and managing IoT devices, enabling better

decision-making, and enhancing operational efficiency in

various applications. Database is optimised to handle real

time data.

Keywords— IoT, MQTT protocol, Realtime, Dashboard,

React, Express, PostgreSQL, Database, Node

1. INTRODUCTION

Real-time monitoring of IoT devices is critical for

gaining valuable insights into device performance and

facilitating better decision-making. To achieve this, a

real-time dashboard leveraging the MQTT protocol,

React, Express, and PostgreSQL has been proposed.

The MQTT protocol is a lightweight communication

protocol, which enables efficient communication

between IoT devices and the dashboard. React, a

popular JavaScript library, is used for building

interactive user interfaces, while Express, a scalable

backend framework, is used for data processing.

PostgreSQL, a robust database management system, is

used for storing and managing the data collected from

IoT devices. The proposed real-time dashboard offers

a graphical user interface for real-time monitoring of

data from different IoT devices, which can be applied

in smart homes, smart cities, and industrial

automation. The use of MQTT, React, Express, and

PostgreSQL enables efficient data transmission,

responsive user interfaces, scalable data processing,

and efficient data storage and retrieval. The paper

presents the design and implementation of the

dashboard and evaluates its performance through

experiments, demonstrating its effectiveness in

managing and monitoring IoT devices in various

applications.

2. LITERATURE SURVEY

This section provides a comprehensive overview of the

recent research conducted on dashboard design and

MQTT protocol, which can help researchers and

practitioners in the IoT domain to better understand the

capabilities and limitations of this protocol. We have

divided the research studies into six primary areas,

which we will describe in detail. These categories

include the benefits of using MQTT, a comparison

between MQTT and other IoT protocols, the effective

dashboard design, the benefits of using React js, the

benefits of using Node and Express js and the benefits

of using PostgreSQL.

2.1 MQTT PROTOCOL BENEFITS

Prada et al. [1] focused on the lightweight nature of the

MQTT protocol when communicating with resource-

constrained devices. They developed a module for an

educational tool called EjsS (Easy Java/Javascript

Simulations) to communicate with an Arduino-based

device and evaluated the ability of MQTT to work with

low-end devices. The module they developed enabled

© September 2023| IJIRT | Volume 10 Issue 4 | ISSN: 2349-6002

IJIRT 161433 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 27

the educational tool to use MQTT protocol to

communicate with the physical device powered by an

Arduino microcontroller. Their experimental results

demonstrate that the MQTT protocol can successfully

facilitate communication between an interactive

educational tool running on a web browser and a

hardware platform with limited resources, without

adding any additional time or complexity to the

educators who use it.

Wagle [2] explored the potential of using MQTT

protocol in wireless sensor networks that interface

with the internet and implement machine learning

algorithms over the cloud. They implemented an IoT

application that involved ubiquitous sensing, machine-

to-machine communication, cloud computing, and

semantic data extraction. In their study, they evaluated

the advantages, disadvantages, and suitability of

MQTT for IoT applications. The authors' findings

emphasised the importance of MQTT's message

retention and other features for semantic data

extraction and the easy integration of new devices.

MQTT's availability of topics for subscription and

publishing renders data routing procedures largely

redundant, thereby eliminating the need for heavy

mechanisms to direct data to specific buffers at the

program level. Additionally, MQTT's quality of

service (QoS) and Last Will and Testament features

enhance the protocol's reliability, making it suitable

for constraint-bound situations.

R A Atmoko et al. [5] suggested using MQTT as a

communication protocol for IoT devices and utilising

temperature and humidity sensors to collect real-time

data. The data was monitored using a web-based and

mobile interface. The study showed that using the

MQTT protocol improved the quality and reliability of

the collected data. The temperature and humidity

parameters were selected as they are often used to

monitor environmental conditions. Overall, this study

highlights the benefits of using MQTT in data

communication protocols for IoT devices.

2.2 COMPARISON BETWEEN MQTT PROTOCOL

AND OTHER IOT PROTOCOLS

Yokotani and Sasaki [3] conducted a study to compare

the effectiveness of MQTT, which is a protocol based

on ICN architecture, with HTTP, which is a legacy

protocol. They also suggested ways to improve MQTT

for better performance. Their findings revealed that

MQTT outperformed HTTP, and they concluded that

protocols based on ICN architecture are more suitable

for IoT systems.

Luzuriaga et al. [4] conducted an experiment to

evaluate the performance of AMQP and MQTT

protocols over unstable and mobile networks, focusing

on factors such as message loss, latency, jitter, and

saturation boundary values. They found that during

message bursts, AMQP delivered messages in a LIFO

order, while MQTT maintained packet delivery order.

They also observed that AMQP prioritises security,

while MQTT is more energy-efficient. The authors

recommend using AMQP for reliable and scalable

messaging platforms over ideal WLANs and using

MQTT to connect edge nodes in constrained

environments.

2.3 THE EFFECTIVE DASHBOARD DESIGN

Janes, Andrea & Sillitti, Alberto & Succi, Giancarlo

[7] demonstrated how to use a GQM Strategies

measurement model to create a dashboard that

supports users in achieving their business goals. The

study suggests that a dashboard's success depends on

its perceived usefulness and ease of use, as per the

Technology Acceptance Model. The dashboard must

include data relevant to the business goals and requires

input from management and experienced

collaborators. Developing a dashboard is a continuous

process, as organisations continually learn and update

their business goals, assumptions, strategy, and

measurement goals. It is important to continuously

assess and update the dashboard to ensure it continues

to support business goals.

2.4 BENEFITS OF USING REACT JS

Bhupati Venkat Sai [8] suggested react js is an ideal

solution for projects that require component

reusability, user interactions, or animations. It is a

powerful UI library suitable for small, medium, and

large-scale organisations, which is why many

companies use it for their long-term business goals.

Reactjs is non-risky, responsive, and advanced, with

the ability to build large-scale applications with

constantly changing data. It offers a virtual browser

(DOM) that is faster and more user-friendly than the

real one, making it easier to create interactive UIs.

Additionally, Reactjs has JSX support, a component-

based structure, and many other features that make it

an attractive choice for both startups and enterprises.

© September 2023| IJIRT | Volume 10 Issue 4 | ISSN: 2349-6002

IJIRT 161433 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 28

2.5 BENEFITS OF USING NODE AND EXPRESS

JS

X. Huang [9] suggested that Node.js is a server-side

JavaScript interpreter that allows developers to create

web applications with fast response times and easy

scalability. It addresses the limitations of traditional

development languages by using its own built-in

attributes. One of the key features of Node.js is its

event-driven, time loop mechanism, which allows it to

perform functions that traditional JavaScript cannot.

This includes file systems, modules, packages,

operating system APIs, and network communications.

Additionally, Node.js utilises a non-blocking I/O

model, which allows it to handle multiple requests

simultaneously, resulting in faster response times.

JavaScript has historically been restricted to the

browser environment, but Node.js is a successful

attempt to extend its functionality to server-side

applications. It has become the preferred choice for

web developers due to its unique features and ease of

use.

2.6 BENEFITS OF USING POSTGRESQL

Stonebraker, Michael and Lawrence A. Rowe [10]

demonstrated that postgreSQL is a database

management system that offers several advantages

over traditional systems. It provides better support for

complex objects, allowing users to store and

manipulate data more efficiently. PostgreSQL also

offers user extendibility for data types, operators, and

access methods, which can be customised to meet

specific business needs. Additionally, PostgreSQL

provides facilities for active databases, including

alerters and triggers, enabling real-time data

processing and analysis. It also offers inferencing

capabilities such as forward- and backward-chaining.

PostgreSQL simplifies DBMS code for crash recovery

and produces a design that can take advantage of

various hardware configurations. Lastly, PostgreSQL

aims to make as few changes as possible to the

relational model, ensuring ease of transition and a

familiar platform for managing data.

3. PROPOSED METHODOLOGY

This methodology provides a step-by-step guide for

building a real-time dashboard for monitoring

hardware and IoT devices using React, Express,

PostgreSQL, and the MQTT protocol. In this

methodology, we will discuss each step in detail to

provide a comprehensive guide for building a real-time

dashboard for monitoring hardware and IoT devices.

By following this methodology, users can create an

efficient and scalable solution that enables real-time

monitoring and visualisation of data from various IoT

devices.

Fig.1 Block Diagram of the proposed architecture containing

the systematic way to design a dashboard using MQTT

protocol.

3.1 Designing the system architecture

The first step is to design the system architecture,

which involves identifying the hardware and software

components required for the system.

Hardware requirements for the system include at least

4 GB of RAM and 10 GB of available space on the

hard disk. An Internet connection is also necessary for

© September 2023| IJIRT | Volume 10 Issue 4 | ISSN: 2349-6002

IJIRT 161433 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 29

the system to function properly. Additionally, an Intel

i3 or higher processor is recommended for optimal

performance.

Software requirements for the system include

compatibility with multiple operating systems such as

Windows, Linux, and MacOS. The system also

requires NodeJs, which is a virtual environment for

running Javascript code, as well as the Node Package

Manager.

The system also requires React version 16.0.1 or

higher to be installed. For data transmission, the

MQTT protocol has been selected. Additionally,

PostgreSQL has been chosen as the database for the

system.

Fig.2 Represents the level-0 data flow diagram which is the

visual representation of the information flow through a

process or system.

Fig.3 Represents the level-1 data flow diagram which gives

more details regarding the sub-process involved in the

system.

3.2 Setting up the required hardware and software.

Once the system architecture is designed, the next step

is to set up the required hardware and software. This

involves configuring the IoT devices, installing and

configuring the MQTT broker, setting up the database,

and deploying the server infrastructure. This step also

includes configuring the security protocols to ensure

data privacy and prevent unauthorised access to the

system.

Fig.4 Represents the MQTT protocol architecture which

includes publisher, broker and subscriber.

3.3 Design the user interface

The third step is designing the user interface. This

involves creating a visual representation of the data to

be displayed on the dashboard. This step requires

identifying the key performance indicators to be

monitored, creating a layout for the dashboard, and

designing the visual elements such as graphs, charts,

and tables.

3.4 Implementing MQTT subscriber and data

processing

The fourth step is implementing the MQTT subscriber

and data processing. This involves developing a

subscriber to receive data from the IoT devices,

processing the data, and storing it in the database. This

step also includes developing a mechanism for

detecting and handling errors or data anomalies.

3.5 Implementing the user Interface

The fifth step is implementing the user interface. This

involves integrating the data processing logic with the

user interface to display the data on the dashboard.

This step requires developing a front-end application

using React to display the data on the dashboard and

updating the dashboard in real-time as new data is

received. The backend of the system is developed

using Express, a popular Node.js web application

framework. The backend includes the application

logic, API development, and data processing.

© September 2023| IJIRT | Volume 10 Issue 4 | ISSN: 2349-6002

IJIRT 161433 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 30

3.6 Testing and evaluating the system

The sixth step is testing and evaluating the system.

This involves testing the system functionality,

performance, and security to ensure that it meets the

desired requirements. This step requires developing

test cases, conducting tests, and analysing the results

to identify areas for improvement. Testing is done

using Selenium.

3.6 Deployment

The final step is deploying the system to the

production environment. This involves setting up the

infrastructure necessary to deploy the system, ensuring

that the system is scalable, and configuring the security

protocols to ensure that the system is secure. Once the

system is deployed, it can be used to monitor data from

various IoT devices in real-time.

4. RESULTS AND DISCUSSION

This section provides the results obtained after the

implementation of the dashboard.

4.1 Optimised database design to store real-time data

The database has been designed in such a way that it

stores the real-time data and after every one hour the

data will be flushed out and the average value is stored

into another table. The below calculations are done for

1 day.

Table 1: Comparison of memory consumption

between normal and optimised database approach

Number of sensors Normal method

(in kilobytes)

Optimised method

(in kilobytes)

1 915840 1272

15 13737600 19080

30 27475200 38160

4.2 Dashboard Interface

The dashboard interface is the primary means of

communication between the user and the system. It

allows users to view real-time data visualisation, view

analytical information from the system.

Fig.5 Represents the dashboard interface which includes

real-time data visualisation and graphical analytics.

4.3 Analytics Interface

The analytics interface allows users to get analytics of

the parameters in the specified duration. Users can also

download the report in the form of CSV.

Fig.6 Represents the analytics interface which includes

parameter analytics for the given duration.

4.4 Admin panel and Tenant section

It allows the admins to monitor the tenants, monitor

the devices and to add new tenants to the platform.

Fig.7 Represents the admin panel where admins can get the

tenant analytics and general analytics.

© September 2023| IJIRT | Volume 10 Issue 4 | ISSN: 2349-6002

IJIRT 161433 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 31

Fig.8 Represents the tenant section where admins can

monitor the tenants and can add new tenants

4.5 Devices section

It allows admins and tenants to add and assign devices

to the users. Also the details of the devices can be

stored in the form of a CSV file.

Fig.9 Represents the devices section where admins can

monitor the devices and can add new devices.

5. CONCLUSION

In this paper, an attempt has been made to implement

a dashboard which can monitor real-time data from the

IOT devices efficiently and in an optimised way. The

real-time dashboard provides valuable insights into the

performance of IoT devices and enables quick and

informed decision-making based on real-time data

analysis. The system is customizable, secure, and user-

friendly, with a powerful dashboard that enables real-

time visualisation and historical data analysis. The use

of MQTT, a lightweight messaging protocol for IoT

devices, provides efficient and reliable data

transmission, while PostgreSQL, an open-source

relational database management system, provides

structured and efficient storage of IoT data. The use of

React, a popular JavaScript library for building user

interfaces, and Express, a popular Node.js web

application framework, provides a powerful and

flexible frontend and backend for the system. This

dashboard can be improved iteratively as per the

requirements, more visualisation tools can be added

and efficiency can be increased.

6. REFERENCES

[1] M. A. Prada, P. Reguera, S. Alonso, A. Morán, J.

J. Fuertes, and M. Domínguez, ‘‘Communication with

resource-constrained devices through MQTT for

control education,’’ IFAC-PapersOnLi

[2] S. Wagle, ‘‘Semantic data extraction over MQTT

for IoTcentric wireless sensor networks,’’ in Proc. Int.

Conf. Internet Things Appl. (IOTA), Jan. 2016, pp.

227–232, doi: 10.1109/iota.2016.7562727.

[3] T. Yokotani and Y. Sasaki, ‘‘Comparison with

HTTP and MQTT on required network resources for

IoT,’’ in Proc. Int. Conf. Control, Electron., Renew.

Energy Commun. (ICCEREC), Sep. 2016, pp. 1–6,

doi: 10. 1109/iccerec.2016.7814989.

[4] J. E. Luzuriaga, M. Perez, P. Boronat, J. C. Cano,

C. Calafate, and P. Manzoni, ‘‘A comparative

evaluation of AMQP and MQTT protocols over

unstable and mobile networks,’’ in Proc. 12th Annu.

IEEE Consum. Commun. Netw. Conf. (CCNC), Jan.

2015, pp. 931–936, doi: 10.1109/ ccnc.2015.7158101

[5] R A Atmoko et al 2017 J. Phys.: Conf. Ser. 853

012003, DOI 10.1088/1742-6596/853/1/012003

[6] Atmoko R A 2013 Sistem Monitoring dan

Pengendalian Suhu dan Kelembaban Ruang pada

Rumah Walet Berbasis Android, Web, dan SMS

Semantik 3 (1) pp. 283-290 ISSN 979-26- 02666

[7] Janes, Andrea & Sillitti, Alberto & Succi,

Giancarlo. (2013). Effective dashboard design. Cutter

IT Journal. 26. 17-24.

[8] Bhupati Venkat Sai Indla | Yogeshchandra Puranik

"Review on React JS" Published in International

Journal of Trend in Scientific Research and

Development (ijtsrd), ISSN: 2456-6470, Volume-5 |

Issue-4, June 2021, pp.1137-1139, URL:

www.ijtsrd.com/papers/ijtsrd42490.pdf

[9] X. Huang, "Research and Application of Node.js

Core Technology," 2020 International Conference on

Intelligent Computing and Human-Computer

Interaction (ICHCI), Sanya, China, 2020, pp. 1-4, doi:

10.1109/ICHCI51889.2020.00008.

[10] Stonebraker, Michael and Lawrence A. Rowe.

“The design of POSTGRES.” ACM SIGMOD

Conference (1986), DOI:10.1145/16894.16888

Corpus ID: 6740973

http://www.ijtsrd.com/papers/ijtsrd42490.pdf
https://doi.org/10.1145/16894.16888

© September 2023| IJIRT | Volume 10 Issue 4 | ISSN: 2349-6002

IJIRT 161433 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 32

[11] V. Karagiannis, P. Chatzimisios, F. Vazquez-

Gallego and J. Alonso-Zarate, "A survey on

application layer protocols for the Internet of Things",

Trans. IoT Cloud Comput., vol. 3, no. 1, pp. 11-17,

2015.

[12] J. Gubbi, R. Buyya, S. Marusic and M.

Palaniswami, "Internet of Things (IoT): A vision

architectural elements and future directions", Future

Gener. Comput. Syst., vol. 29, no. 7, pp. 1645-1660,

2013.

[13] N. Naik, "Choice of effective messaging protocols

for IoT systems: MQTT CoAP AMQP and HTTP",

Proc. IEEE Int. Syst. Eng. Symp. (ISSE), pp. 1-7, Oct.

2017.

[14] S. Bandyopadhyay and A. Bhattacharyya,

"Lightweight Internet protocols for Web enablement

of sensors using constrained gateway devices", Proc.

Int. Conf. Comput. Netw. Commun. (ICNC), pp. 334-

340, Jan. 2013.

[15] Y. Xu, V. Mahendran and S. Radhakrishnan,

"Towards SDN-based fog computing: MQTT broker

virtualization for effective and reliable delivery", Proc.

8th Int. Conf. Commun. Syst. Netw. (COMSNETS),

pp. 1-6, Jan. 2016.

