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Abstract— A substantial quantity of fresh fruits and 

vegetables (F&V) experience post-harvest loss, 

representing approximately one-third of the food produced 

worldwide. Because of its perishable nature and being 

affected by several factors, fresh F&V has a limited shelf-

life. Inadequate storage facilities and mismanagement, 

during and after harvest, result in up to 50% post-harvest 

loss for F&V. Among the different accessible research 

developments, Edible Coating (EC) is emerging as a 

unique technology that has been proven to be a safe and 

successful approach in the post-harvest industry. EC 

extends the shelf-life of fresh F&V and minimises post-

harvest loss, negating human health risks. Comprised of 

food-grade additives, EC technology is environmentally 

friendly and effectively regulates moisture, gaseous 

exchange, oxidation, and other biochemical processes in 

harvested F&V. Thus, EC is significantly contributing 

towards food security by ensuring more fresh produce and 

nutrition for the incremental population in a sustainable 

way. This review discusses the overview, perspective, and 

future research trends of EC for reducing post-harvest 

losses of fresh F&V. 

 

Indexed Terms- Fruits and Vegetables; Sustainability; 

Edible Coating; Shelf-life; Post-harvest; Environment 

friendly 

 

I. INTRODUCTION 

 

The global population is increasing rapidly, and 

meeting the dietary requirements of this growing 

population is a noteworthy concern for humanity. As 

an obvious consequence, developing countries have 

already begun to face challenges related to food 

security. By 2050, the world’s population is projected 

to reach 9.7 billion, requiring a 70% increase in the 

production of fresh fruits and vegetables (F&V) to 

ensure that everyone is fed proper nutrition (FAO, 

2018). However, globally, fresh F&V is rendered unfit 

for consumption due to spoilage and experiences an 

estimated post-harvest loss of 20–30% (about 1.3 

billion tonnes) worth about US $1 trillion (FAO, 2011) 

(Fig. 1). Climacteric F&V (e.g., apple, avocado, 

banana, mango, tomato, potato), which continue to 

ripen even after harvesting due to increased ethylene 

production and strong cellular respiration, are more 

vulnerable to post-harvest losses than non-climacteric 

fruits (e.g., grapes, berries, cherries, peppers, root 

vegetables). 

 

Proper post-harvest management and storage 

techniques of fresh F&V are necessary to minimise 

losses and preserve the nutritional values (Zhang et al., 

2021) (Fig. 2). Cold storage is commonly used 

worldwide to delay or control ripening-related 

changes such as ethylene production, softening of 

fruits, colour and acid level changes, respiration rate, 

and weight loss (Fragoso and Paz, 2016). However, 

cold storage alone is insufficient to preserve the 

quality of fresh F&V in the value chain system, 

especially during transportation and marketing. 

Moreover, in developing countries, inadequate cold 

storage facilities and unorganised packhouses 

significantly contribute to postharvest losses of F&V 

(Mohan et al., 2023). While industrialised nations 

experience most of the losses at the retail and 

consumer levels, developing nations face higher post-

harvest losses just after the harvest and processing 

stages (Rajapaksha et al., 2021). At the global 

consumer level, the demand for high-quality fresh 

F&V with a longer shelf life and without chemical 

residue is increasing each day (Ssemugabo et al., 

2022). According to FAO estimates, worldwide F&V 

losses range between 40 and 50%, with 54% occurring 

during cultivation, post-harvest, handling, and storage, 

and 46% occurring during processing, distribution, 

and consumption. Therefore, it is crucial to combine 

appropriate post-harvest management technologies 

with cold storage to ensure the quality, longevity, and 

increased shelf-life of F&V. 
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Figure 1: Wastage and loss (%) of fruits and 

vegetables at different stages of the value chain 

worldwide (Source: FAO report ‘Global food losses 

and food waste-Extent, causes and prevention, 2011) 

Figure 2: Estimated post-harvest losses (%) on 

handling and storage in major regions (Adapted: 

Gustavsson et al., 2011). 

 

EU=Europe (including Russia); NA & OC=North 

America & Oceania; LATAM=Latin America. Fruit 

and Vegetables: citrus, bananas, apples pineapples, 

dates, grapes tomatoes, onions, other fruits, and other 

vegetables. 

 

Roots and Tubers= potatoes, sweet potatoes, cassava, 

yams, other roots 

 

Cereals= wheat, rice (milled), barley maize, rye, oats, 

millets, sorghum, other cereal. 

 

By understanding the gaseous and ambient 

parameters, it is possible to create a partially 

permeable protective layer that extends the shelf life 

of fresh produce of F&V after harvest. This layer or 

film effectively delays the biochemical processes 

associated with ripening and senescence. This 

technology is broadly termed ‘coatings’, which are 

applied directly to the surface of fresh produce to 

establish a protective layer to preserve freshness and 

maintain shelf-life (Tokatl and Demirdoven, 2021; 

Ungureaunu et al., 2023). Coating application also 

benefits in filling up any bruises on the pericarp that 

occur due to mechanical damage or environmental 

stress (Azam and Saad, 2023). Several studies have 

highlighted the effectiveness of coatings in prolonging 

the freshness of highly perishable fresh F&V (Kumar 

et al., 2016, 2017; Thakur et al., 2018; Tokatl and 

Demirdoven, 2021; Yang et al., 2014; Khorram et al., 

2017). Moreover, the coating layer further causes the 

stomata and lenticels to close, which delays the 

occurrence of physiological disorders such as a 

decrease in weight loss (Lufu et al., 2021). Thus, 

coating offers a viable strategy by naturally enhancing 

the appearance of fresh F&V and significantly 

reducing post-harvest losses by extending shelf-life 

and minimising cell membrane dis-organisation, 

transpiration, and respiration rates (Pham et al., 2023; 

Bisen and Pandey, 2008; Mditshwa et al., 2023; 

Valenzuela et al., 2023). Age-old traditional wax 

coatings are the most preferred way to preserve F&V 

and can be either non-edible (paraffin oil) or edible 

(beeswax, carnauba wax, candelilla wax, and 

sugarcane wax). However, recently, ‘edible, non-wax 

coatings’ are more preferred and are gaining 

acceptance, justifying sustainability and safety in food 

and human health (Summo and Angelis, 2022; Wong 

et al., 2021). 

 

‘Edible coating’ (EC) is a layer of edible material (safe 

to be consumed) applied to the surface of F&V to 

create a barrier against moisture, oxygen, and solute 

movement (Davis and Song, 2006; Kester and 

Fennema, 1986; Biquet and Labuza, 1988; Cuq et al., 

1995; Pavlath & Orts, 2009; Owusu-Akyaw Oduro, 

2022). These types of coatings offer mechanical, 

physical, and biological safeguards to fresh produce as 

well as protection from light and ultraviolet rays 

(Socaciu et al., 2018; Umaraw et al., 2020; Diaz 

Montes & Castro-Munoz, 2021; Kumar et al., 2020, 

2022). ECs can be derived from both vegetable and 

animal ingredients. In recent years, EC has been 

considered ‘green technology’ and has gained 

significant attention due to its sustainable, 

environment-friendly advantages over chemical or 

wax coatings (Matloob et al., 2023; Chhikara et al., 

2022). Food-grade ingredients used in EC improve the 

Fig. 1 Fig. 2 
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structural characteristics of the coatings, thereby 

offering a safe-to-consume commodity as well as 

enhancing the quality of the fresh produce (Pavlath 

and Orts, 2009; Alvarez et al., 2011; Diaz-Montes and 

Castro Munoz, 2021). EC degrades more rapidly 

compared to traditional polymeric materials due to 

their renewable compositions as ingredients (Guerrero 

et al., 2010; Kouhi et al., 2020). 

 

Several researchers have reported different types of 

EC in fresh and minimally processed fruits and 

vegetables (Yousuf et al., 2018; Lin et al., 2007; Tahir 

et al., 2019; Jafarzadeh et al., 2021; De Castro, 2020; 

Cakmak et al., 2019). However, a comprehensive 

cumulation of the current perspective and research 

trends on EC is lacking. Therefore, the purpose of this 

review is to provide comprehensive information on 

edible coatings by summarising and analysing their 

current status and developments. The selected 

information was obtained from online publisher 

databases and were screened for accuracy, clarity of 

presentation, and relevance. Each chosen article was 

mentioned with a proven shelf-life assessment by 

edible coating technology. 

  

II. FACTORS AFFECTING SHELF-LIFE OF 

FRUITS AND VEGETABLES 

 

According to a published report by the FAO 2019 in 

the State of Food and Agriculture (SOFA), 14% of the 

food produced globally is wasted during the post-

harvest production stage before reaching retail through 

the food chain. The shelf-life of horticultural products 

may be described as the amount of time between 

harvest and consumption during which the product is 

safe to consume and retains its recommended harvest 

quality (Echeverria et al., 2008). Post-harvest losses of 

F&V occur at all points in the value chain, from 

production in the field to being placed on a plate for 

consumption (Palumbo et al., 2022; Mditshwa et al., 

2023). Fruits and vegetables make a significant 

contribution to food security, nutrition, and poverty 

reduction, as well as to generating economic 

development for society. Fresh F&V are extremely 

perishable due to their active metabolism and robust 

physiological post-harvest activities, which cause 

ripening and maturity, making marketing propositions 

difficult (Pott et al., 2020). The major factors that 

impact the post-harvest shelf-life of F&V are 

explained in more depth as follows (Martinez-Romero 

et al., 2006; Esti et al., 2002). 

 

A. Physiological factors: 

From harvest to storage, the quality and shelf-life of 

fresh F&V are affected by temperature, relative 

humidity, pH, quality, and light intensity. Particularly 

at higher temperatures with sizable vapour pressure 

differences, fresh F&V loses a considerable amount of 

weight. Thus, storage life is reduced by improper 

temperature management. Low temperatures are 

frequently used to extend storage life, although they 

can occasionally result in chilling injuries in tropical 

F&V (Suput et al., 2015). Low relative humidity 

during storage results in fruit weight loss, whereas 

high relative humidity promotes microbial 

development (Singh et al., 2014). 

 

a. Respiration: 

Even after harvesting, plant tissues are still alive and 

continue to breathe; carbohydrates are broken down 

during this metabolic process, and energy is released 

(Fonseca et al., 2002). In general, the rate of 

respiration has an inverse relationship with the storage 

life of horticultural produce and is directly related to 

quality characteristics such as firmness, sugar content, 

fragrance, and taste (Perdones et al., 2012; Fallik and 

Aharoni, 2004). Decreased oxygen availability causes 

total metabolic activity to decline, which results in 

slowing down respiration rates, less ethylene 

production, and less sensitivity to ethylene, which 

slows down ripening in storage conditions (Isenberg, 

1979; Karen et al., 2010). 

  

b. Temperature: 

Temperature is the single most important factor in 

post-harvest storage and handling. Any rise in 

temperature above the ‘product-appropriate set point’ 

(the optimum temperature at which the product must 

be kept during transit or storage) will result in a 

lowering of the quality and shelf-life of fresh F&V 

(Thompson, 2002). Temperature significantly affects 

the appearance, shelf-life, texture, and nutritional 

qualities of stored F&V. According to the van’t Hoff 

rule (van’t Hoff, 1896), a biological reaction 

multiplies by 2 to 3 for every 10°C temperature 

increase. The shelf-life of fresh F&V diminishes 

because of increased metabolic activity caused by 

increase in temperature, which translates to increase in 
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respiration rate. Low temperatures have been 

employed to increase the shelf-life of F&V, with the 

added benefit of preserving sensory qualities (Paull, 

1999). Moreover, as enzymatic activity slows down at 

lower temperatures, the shelf-life of F&V is known to 

be extended. The impact of temperature on fresh 

produce is greatest during logistics operations. When 

fresh F&V is stored at low temperatures after heat 

treatment, damage can occasionally occur (Paull and 

Armstrong, 1994). The vitamins and other nutrient 

contents in many F&Vs are also affected by storage 

temperature (Weichmann, 1987; Ezell and Wilcox, 

1959). A change in the sugar, acid, and volatile 

molecule content of fruits influenced by the 

differential long-term storage temperature causes a 

loss of flavour (Reyes and Paull, 1995). 

 

c. Functional: 

According to Kays (1991), when a commodity is 

exposed to cold temperatures, the tissues or cells of 

fresh produce are disrupted, and the product’s quality 

suffers. This is particularly noticeable in several 

tropical and subtropical regions. A crop suffers 

damage when stored below its freezing point 

(Salunkhe et al., 1995). Internal browning, pitting, 

uneven ripening, off-flavour development, and an 

increased likelihood of decay were all caused by the 

chilling injury. The pace of physiological damage 

associated with storage conditions may be accelerated 

by low O2 levels, high CO2 levels, and excessive 

ethylene concentrations (Saltveit, 1996). 

 

B. Biochemical factors: 

Chemical and metabolic changes result in unpleasant 

sensory qualities in fresh F&V. Mechanical damage to 

F&V can activate endogenous pectinases, resulting in 

microbial attack. The most prevalent cause of food 

spoilage is non-enzymatic browning, known as 

Millard’s reaction. This process causes bitter flavours, 

dark colours, and reduced nutritional accessibility of 

particular amino acids (Pott et al., 2020). 

 

a. Ethylene and ripening: 

Ethylene (C2H4) is a natural phytohormone produced 

from methionine and has a harmful impact on the 

growth, development, and storage life of fresh 

produce. It is a simple organic molecule in gaseous 

form that governs the physiological processes of fresh 

F&V after harvest, with the primary function of 

promoting fruit ripening (Abeles, 1992). Ethylene is a 

plant hormone that plays a key role in the ripening 

process of climacteric fruits, and the presence of 

ethylene is required for the expression of ripening-

related genes even in the mature stages of the fruit 

(Hoeberichts et al., 2002; Alexander and Grierson, 

2002). Many F&Vs are vulnerable to ethylene levels 

as low as 0.1 ppm if exposed for the longest possible 

time. In general, the perishability of climacteric fruits 

is more rapid and severe than that of non-climacteric 

fruits (Mishra and Gamage, 2007). Strawberries, for 

example, produce very little ethylene but are 

particularly vulnerable to it (Pierik et al., 2006). When 

a larger surface area is exposed to the environment, 

ethylene production increases, resulting in tissue 

softness and an unfavourable reaction within F&V. 

Physical injuries, disease incidence, water stress, 

increasing temperatures (up to 30°C), and maturity 

stage are all variables that impact ethylene production 

(Saltveit, 1996). When F&V is maintained at low 

temperatures, the rate of ethylene production is 

reduced because of a decrease in O2 levels and an 

increase in CO2 levels around it (Saltveit, 1999). 

 

b. Enzymatic browning: 

The presence of polyphenol oxidase causes enzymatic 

browning in several F&V samples during processing 

and storage (Mayer and Harel, 1979). Enzymatic 

browning results in the loss of functional, nutritional, 

and organoleptic properties, such as softening, 

darkening, and off-flavor alterations (Zawistowski et 

al., 1991). It causes undesirable changes in sensory 

qualities as well as a decrease in market value and is 

thus identified as a major contributor to economic 

losses for fruits such as apples, pears, bananas, and 

grapes, as well as vegetables such as lettuce, potatoes, 

and mushrooms. A vast range of F&V strains have 

also been shown to experience enzymatic browning 

after harvest and in storage due to physiological or 

mechanical stress and microbial infection. 

 

III. EDIBLE COATINGS FOR POST-HARVEST 

MANAGEMENT 

   

A. Characteristics: 

Edible coatings are any material that remains with a 

thickness of less than 0.3 mm (Embuscado and Huber, 

2009) on the surface of fresh F&V and is formed from 

a combination of biopolymers and different additives 
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dispersed in aqueous media (Morales-Jiménez et al., 

2020; Castro-Muñoz and González-Valdez, 2019). An 

edible coating generally possesses or potentially 

provides the following features: 

• Safe to consume, non-toxic, non-allergic, fully 

digestible, and easily biodegradable (Guimarães et 

al., 2018). 

• High dissolution factor in solvent (e.g., water, 

alcohol, acetone, or their mixture) during 

manufacturing (Erkmen and Barazi, 2018). 

• Possess good, uniform, and homogenous adhesion 

to the surface of food (Falguera et al., 2011). 

• Post-harvest protection in transport, handling, 

mechanical damage, and storage 

(Liyanapathiranage et al., 2023; Debeaufort et al., 

1998; Rangel-Marrón et al., 2018) 

• Facilitate the exchange of solutes (e.g., salts, 

additives, and pigments), water and organic 

vapours (e.g., aromas and solvents), and gases 

(e.g., oxygen, carbon dioxide, nitrogen, and 

ethylene) between fresh F&V and the atmosphere 

(Falguera et al., 2011). 

• Act as a barrier against mechanical damage of 

F&V (e.g., dents or cuts) (Guimarães et al., 2018). 

• Increase the shelf-life of fresh produce in storage 

and retail (Falguera et al., 2011). 

• May possess bioactive (e.g., antioxidants) (Salvia-

Trujillo et al., 2017) and antimicrobial properties 

(e.g., silver nanoparticles, plant extracts) 

(Kraśniewska et al., 2020). 

• May be integrated with healthy microorganisms 

(e.g., probiotics) that confer health benefits to the 

consumer (Romano et al., 2014). 

• Maintain the internal equilibrium of gases involved 

in aerobic and anaerobic respiration of F&V 

(Erkmen and Barazi, 2018). 

• Adversely affect the characteristics necessary for 

consumer acceptance, such as odour, flavour, taste, 

and appearance (Park, 2003). 

• Simple manufacturing process, economically 

feasible, and easy to operate (Owusu-Akyaw 

Oduro, 2022).  

 

 

 

B. Types and ingredients of Edible Coatings: 

Lipids, polysaccharides, and proteins are the main 

biomolecules used in the development of ECs; 

however, other components such as resins, solvents, 

plasticizers, and additives must also be employed to 

achieve diverse formulations (Pham et al., 2023; Díaz-

Montes, Castro-Munoz, 2021; Salvia-Trujillo et al., 

2017) (Table 1). Plasticizers provide flexibility and 

permeability while solvents provide tensile strength, 

and resins restrict water vapour permeability with 

lustre (glossiness) (Table 2). 

 

a. Biomolecules:  

Polysaccharides used for ECs include cellulose, 

starch, and pectin derivatives; seaweed extracts, 

exudate gums, microbial fermentation gums, and 

chitosan (Krochta and Mulder-Johnson, 1997). 

Polysaccharides are highly compatible with F&V, and 

although reported with various source, composition, 

structure, and characteristics, they generally have 

good gelation, film-forming, mechanical, and barrier 

properties and are abundant, renewable, edible, and 

biodegradable (Zhao et. al., 2021). 

 

Lipid compounds are used for protective coatings 

consisting of acetylated monoglycerides, natural wax, 

and surfactants. The most effective known lipid 

substances are paraffin wax and beeswax. The primary 

function of a lipid-based coating is to block the 

transport of moisture because of its relatively low 

polarity. In contrast, the hydrophobic characteristics of 

lipids form thicker and more brittle coatings (Morillon 

et al., 2002). 

 

Protein-based coatings are formed from solutions or 

dispersions of the protein as the solvent or carrier 

evaporates, which are limited to water, ethanol, or 

ethanol-water mixtures (Kester and Fennema, 1986). 

Thus, protein-based coatings are competent as oxygen 

barriers even under low relative humidity conditions. 

In composite ECs, the ingredients in a formulation 

may be heterogeneous, consisting of a blend of 

polysaccharides, proteins, and/ or lipids (Kurek et al., 

2014). 
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Table 1: Different components of edible coatings with their ingredients.

 

Types Components Ingredients References 

Biomolecules 

Animal proteins 
Whey protein, collagen, gelatin, casein, egg-white 

protein, feather keratin, fish myofibrillar protein, 

Pająk et al., 2013; 

Kim and Ustunol, 

2001; Silva et al., 

2007; Wani et al., 

2012 

Plant proteins 
Soy protein, corn zein, wheat gluten, rice bran protein, 

pea protein, peanut protein, cottonseed protein  

Linear, neutral 

polysaccharides 

Agar, curdlan, cereal b-glucan, hydroxypropyl 

methylcellulose, pullulan, methylcellulose, konjac 

glucomannan, inulin, microcrystalline cellulose 

Elsabee, 2014; 

Kocira et al., 2021; 

Gao et al., 2019; 

Hassan et al., 2018; 

Draget et al., 2005; 

Shao et al., 2020; 

Dai et al., 2020 

Linear, anionic 

polysaccharides 

Sodium alginate, propylene glycol alginate, gellan 

gum, pectin, carboxy-methylcellulose, carrageenan 

Linear, cationic 

polysaccharides 
Chitosan 

Linear, substituted, 

neutral 

polysaccharides 

Fenugreek, guar gum, locust bean gum, tara gum 

Linear, substituted, 

anionic 

polysaccharides 

Xanthan gum 

Branched 

polysaccharides 
Gum arabic, karaya, larch arabinogalactan, gum ghatti 

Lipids 
Acetoglycerides, beeswax, paraffin, carnauba wax, 

candelilla wax, rice bran wax 

Hassan et al., 2018; 

Baldwin et al., 

1997 

Resins 
Shellac, terpene, asafoetida, benjoin, chicle, guarana, 

myrrhe, sandaraque, opoponax, styrax 

Hall, 2012; Beyza 

et al., 2018  

Plasticizers 

Polyols 
Glycerol, polypropylene glycol, polyethylene glycol, 

propylene glycol, sorbitol, corn syrup 

Al-Hassan, and 

Norziah 2012; 

Navarro-Tarazaga 

et al., 2008; Smits 

et al., 2003 

Others Sucrose and water 

Additives 

Flavors Oil based flavors, citrus, mints, volatile oils 

Nasution et al., 

2015; Valencia-

Chamorro et al., 

2011; Ganiari et 

al., 2017; Moura et 

al., 2018; 

Quezada-Gallo 

2009; Hassan et al., 

2018; Palou et al., 

2015; Sajid, and 

Syeda, 2017 

Colors Pigments 

Antimicrobials 

Organic acids (acetic, benzoic, lactic, propionic, 

sorbic); polypeptides (lysozyme, peroxidase, 

lactoferrin); fatty acid esters (glyceryl-mono-laurate); 

nitrites and sulfites, chitosan, bacteriocins (nisin, 

pediocin), parabens, sodium chloride 

Antioxidants 
Ascorbic acid, 4-hexylresorcinol, amino acids 

(cysteine and glutathione), citric acid. 

Nutrients Vitamin e, calcium, zinc, aluminum 

Emulsifiers 

Fatty sucrose esters, fatty acids, fatty alcohols, 

lecithins, mono- and diglycerides, mono- and 

diglyceride esters  

Lipid emulsions Fatty acids, edible waxes 
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Probiotic organisms Bifidobacterium (bifidobacteriumlactis bb-12) 

Plant essential oils 
Cinnamon, oregano, lemongrass, savory, sweet inula, 

vanilin, citronella, thyme, clove 

b. Plasticizers: 

These are small-molecular-weight hydrophilic agents 

that are added to EC to improve their properties by 

embedding themselves in the polymeric network and 

competing for chain-to-chain hydrogen bonding along 

the polymeric chains. Plasticizers promote flexibility 

and minimise blistering, flaking, and cracking on the 

F&V surface. Plasticizers are added to enhance 

polymer melt flow during extrusion (Dahiva et al., 

2009) and have good flexibility, enabling them to 

adapt to morphological changes in the fruit cuticle 

during storage (Riva et al., 2020). 

 

c. Emulsifiers and surfactants: 

Emulsifiers are surface-active compounds with both 

polar and non-polar characteristics capable of 

modifying interfacial energy at the interface of 

immiscible systems, such as a water-lipid interface or 

water-air surface, and surfactants that are added to 

improve coating adhesion. For better distribution, 

surfactants are frequently employed to emulsify waxes 

and reduce surface tension. 

 

d. Antimicrobials: 

Antimicrobial substances were applied to enhance the 

decay control of EC. Food producers are looking for 

new, more natural options that can sufficiently 

guarantee the safety of their products in the retail chain 

to satisfy consumer demands. When addressing new 

advancements in this field of food preservation, it is 

important to keep in mind that the use of natural 

antimicrobials in actual practice is governed by 

legislative regulations, which might vary greatly 

around the world (Smid and Gorris, 1999). 

 

e. Antioxidants: 

Antioxidants can be natural or synthetic. Antioxidants 

are added to EC formulations to prevent oxidative 

rancidity, degradation, and discoloration during 

postharvest storage. Further addition of antioxidants to 

the formulation of films and coatings can improve the 

preservative function, inhibit browning, and reduce 

the undesirable effects of nutrient oxidation (Bonilla 

et al., 2013). 

 

f. Bioactive compounds: 

Nano-compounds (e.g., metal oxides such as ZnO or 

TiO2) are functional chemicals and are increasingly 

recognised as important components for preserving 

the shelf-life of fresh produce. Among the most used 

bioactive compounds are antioxidants, antimicrobials, 

probiotics, and flavours, in addition to nutraceutical 

substances (Ayala-Zavala et al., 2011; Muranyi, 

2013). 

  

 

Table 2. Components of the edible coating and their influence on quality parameters of fruits and vegetables.

 

Category Main ingredient Additional ingredient Crops Benefits References 

Polysaccha

rides 

Chitosan 

Acetic Acid Broccoli 
Microbiological growth 

reduced. 

Storage life extended. 

Sensory qualities maintained. 

Fruit firmness maintained. 

Prevented off flavor 

Hernández-

López et al., 

2020; Hira et 

al., 2021, 

Arnon-Rips 

et al., 2021, 

Poverenov et 

al., 2018, 

Fan et al., 

2019, Qiu et 

al., 2023; 

Glycerol, Canola Oil Bell pepper 

Acetic Acid, Alginic 

Acid, Ammonia 

Japanese 

pear 

Vanillin, Trans-

Cinnamaldehyde, 

Mandarin Extract 

Fresh-cut 

melon 

Sodium Alginate 

Konjac 

Glucomannan, 

Starch, Lotus Leaf 

Extract 

Goji berries 

Reduced weight loss and 

decay. 

Sensory qualities maintained. 
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Pectin 
Maltodextrin, 

Sodium Chloride 
Starfruit 

Extended shelf-life. 

Maintains physicochemical 

characteristics. 

Moalemiyan 

et al., 2012; 

Veiga-

Santos et al., 

2005 

Xanthan gum 

Edible Rose, Basil 

Seed Gum 
Apple 

Effective bacterial growth 

inhibition. 

Increased shelf-life. 

Citric Acid, Glycerol, 

Polyvinyl 

Pyrrolidone 

Catechol, Sodium 

Phosphate, Folic 

Chocolate, Gallic 

Acid 

Fresh lotus 

root 

Protein 

Zein 

Glycerol, Essential 

Oils 
Melon Effective disease control. 

Tran et al., 

2021, 

Miranda et 

al., 2022, 

Boyac et al., 

2019; 

Mendes-

Oliveira et 

al., 2022; 

Moalemiyan 

et al., 2012; 

Ghadermazi 

et al., 2019; 

Aitboulahse

n et al., 2018 

  

Resveratrol 
Apple 

slices 

Reduced moisture loss. 

Increased color retention. 

Pectin 

Pullulan With Vitis 

Vinifera Grape Seed 

Extract 

Peanuts 
Lowered lipid oxidation. 

Antibacterial effect. 

Soy protein isolate 

Hydroxypropyl 

Methylcellulose, 

Olive Oil 

Pear 
Maintained moisture and 

firmness. 

Gelatin 

Frog skin Oil, 

Glycerol 
Persimmon Controlled weight loss. 

Maintained firmness and 

color. 
Mentha Pulegium 

Essential Oil 
Strawberry 

Lipid 

Glycerol Ginger Extract Walnuts 

Reduce rancidity. 

Inhibition of fungal growth. 

Improved nutritional quality. 

Extended shelf-life. 
Shaukat et 

al., 2023; 

Zhang et al., 

2022; 

Das et al., 

2022; 

Chen, et al., 

2019; Peng 

and Gnsman, 

2008 

  

Carnauba wax 

Conventional 

Carnauba Wax 

Emulsion 

Fresh 

tomatoes 

Extended shelf-life. 

Increased shine. 

Reduction of weight loss 

Nanoparticles, 

Xanthan Gum 
Guava Reduced weight loss. 

Maintained firmness and 

color 
Glycerol 

Monolaurate 
Jujube 

Montmorillonite 

Nano-Clay 
Orange 

Improved physicochemical 

properties and antioxidant 

activity 

Fatty acid Glycerol Cucumber  Reduced weight loss. 

Composite 

Loquat leaf extract, 

Alginat (lipid/ 

polysaccharidic) 

Citric Acid, Sucrose 

Ester, Absorbic Acid 

Nanfeng 

tangerines 

Delay respiration rate and 

nutritional degradation. 

Reduced post-harvest 

spoilage. 

Zhang et al., 

2022; Shin et 

al., 2022 



© March 2024 | IJIRT | Volume 10 Issue 10 | ISSN: 2349-6002 

IJIRT 162420 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1050 

Higher non-enzymatic 

antioxidant. 

Carboxymethyl 

cellulose, Cardamom 

essential oil 

(Polysaccharides/ 

lipids) 

Glycerol Tomato Increased shelf-life  

IV. APPLICATION MEANS OF EDIBLE 

COATINGS 

 

There are several ways to apply EC to the surfaces of 

F&V and understanding both the coating ingredients 

and cuticular characteristics is essential to selecting 

the best application method for prolonged 

maintenance of produce quality. Thus, after the 

application of EC, quality criteria for F&V (e.g., 

colour change, firmness loss, ethanol fermentation, 

decay ratio, and weight loss) must be assessed and 

monitored throughout the storage period for optimum 

post-harvest management (Sharma et al., 2019; Lin 

and Zhao, 2007; Andrade et al., 2012; Mendy et al., 

2019; Saberi et al., 2017). 

 

A. Dipping: 

This is the most fundamental commercial technique 

that is still in use and is employed with various viscous 

coating solutions. The primary objective of this 

technique is to fully saturate the surface of the fresh 

F&V by immersing it in the coating solution 

(Tavassoli-Kafrani et al., 2016). Subsequently, the 

excess coating is removed by draining the solution and 

dried to ensure a well-formed coating (Andrade et al., 

2012). Previous studies have demonstrated that several 

factors, such as immersion time, withdrawal speed, 

number of dip-coating cycles, coating solution 

parameters (e.g., density, viscosity, surface tension), 

substrate surface characteristics, and drying 

conditions, influence the density and morphology of 

the formed coatings (Tang and Yan, 2017). However, 

the dipping approach often results in a thick coating, 

which can significantly reduce fruit respiration, 

damage to food surfaces, and impaired functionality. 

In addition, a substantial amount of coating solution is 

required per unit mass of product to achieve optimal 

dipping conditions (Lin and Zhao, 2007). 

B. Vacuum impregnation: 

This method is an enhancement of the dipping 

technique, in which fresh produce is submerged in a 

hermetically sealed vacuum instead of a conventional 

dipping tank. Consequently, while the fruit material 

remains immersed in the coating solution and is 

subjected to atmospheric pressure, it is exposed to 

atmospheric restoration (Owusu-Akyaw Oduro, 

2022). 

 

C. Layering or Spreading: 

This process generates multilayer films that can 

enhance the efficiency of coatings where it relies on 

the sequential deposition of polyelectrolytes with 

opposite charges to effectively control the 

characteristics and functionality (Martín-Belloso et al., 

2009). The spreading method was found to be 

effective with high-viscosity coating solutions. The 

key factors that determine how the coating solution 

spreads across the fruit surface are typically the 

wetting level and spreading rate. The efficacy of 

coating deposition through spreading is influenced by 

various factors, including the quality of the substrate, 

particularly the drying conditions, liquid properties, 

and surface geometry (Kumar and Prabhu, 2007). 

Brushing is typically performed by skilled operators 

and specialists; thus, the human element significantly 

impacts the quality and uniformity of the coating. 

 

D. Spraying: 

Spraying is a method commonly used to distribute 

small droplets onto the surface of the F&V. This 

technique involves the use of nozzles and is most 

effective for applying thin coating solutions that can 

be sprayed at high pressure. There are three main types 

of spraying techniques: air spray atomization, pressure 

atomization, and air-aided airless atomization 

(Andrade et al., 2012). The drying time and 
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temperature play significant roles in the formation of 

polymeric coatings when using the spraying 

technique. This method allows for the application of 

multiple layers, including interlayer solutions, and 

ensures a consistent coating with uniform thickness 

(Martín-Belloso et al., 2009). Electrospraying, on the 

other hand, utilises a high electric field to produce 

charged droplets for coating applications. 

 

E. Foaming: 

Conventional methods employed in coating 

applications include foaming and dripping. In the 

dripping technique, the coating is applied to the fruit 

surface using brushes. Conversely, foam application 

involves the addition of a foaming agent to the coating, 

followed by the introduction of compressed air into the 

applicator tank (Díaz-Montes and Castro-Muñoz, 

2021). To ensure uniform distribution, the foam is 

subsequently broken down through a rigorous 

tumbling motion. 

 

F. Cross-linking: 

In this method, polymer chains are combined using 

both covalent and noncovalent bonds. To enhance the 

stability and compactness of the coating, a cross-

linking agent was introduced. Cross-linked coatings 

offer several significant advantages, including 

improved mechanical properties, chemical and 

thermal stability, and enhanced molecular migration 

(Skurtys et al., 2010). This technique has proven 

particularly successful for biopolymer materials 

composed of proteins or polysaccharides (Dai et al., 

2020). 

 

V. ADVANTAGES OF EDIBLE COATINGS 

IN POST-HARVEST MANAGEMENT 

 

The use of EC as an alternate to packaging provides an 

additional method to reduce the loss of firmness and 

moisture, delay oxidative browning, prevent the 

growth of microorganisms, and control the respiration 

rate (Warriner et al., 2009) (Fig. 3). During storage, 

the relative humidity and temperature of the storage 

space were maintained under control. Fruits and 

vegetables are often coated with various edible 

components, forming a semipermeable membrane on 

the surface that suppresses respiration, controls 

moisture loss, and performs other activities (Li and 

Barth, 1998). Fresh F&Vs benefit from EC to satisfy 

the requirements of consistent quality, market safety, 

nutritional content, and low manufacturing costs. It 

minimises the loss of natural volatile flavour 

compounds and colour components from fresh 

commodities by limiting the exchange of volatile 

compounds into the surrounding environment via gas 

barriers. Edible coatings serve as transporters for 

additional functional components such as 

nutraceuticals, flavours, and antibacterial and 

antioxidant compounds to reduce microbial loads, 

delay oxidation and discoloration, and improve quality 

(Rooney, 2005). 

 

A. Moisture barrier: 

EC prevents moisture loss, aroma loss, or water uptake 

by the food material as well as oxygen penetration, 

resulting in good storage conditions for these food 

products. EC improves the texture and appearance of 

the product and extends its shelf life by creating semi-

permeable barriers. Emamifar and Bavaisi (2020) used 

a bio-nanocomposite covering of sodium alginate and 

nano-ZnO on strawberries. On mangoes, titanium and 

silver nanocomposite packing produced the same 

results (Chi, 2019). 

 

B. Oxygen scavengers: 

The presence of oxygen can have a significant 

negative impact on fresh F&V. Some ECs have been 

discovered to have oxygen scavengers and humidity 

control features that significantly lower the gases that 

contribute to F&V spoilage. According to Resende et 

al. (2018), a chitosan/cellulose nanofibril coating 

reduces oxygen transport, lowers respiration, and 

slows strawberry oxidation through an ascorbic acid 

reaction. 

 

C. Ethylene scavenger: 

Controlling ethylene throughout storage is critical for 

increasing the shelf life of fresh fruit. Kaewklin et al. 

(2018) discovered that the ethylene control action of 

chitosan-TiO2 nanocomposites on tomatoes revealed 

reduced levels of ethylene. 

 

D. Antimicrobial properties 

One of the primary causes of F&V contamination is 

the lack of suitable packaging. An antimicrobial active 

packaging system containing antimicrobial 

compounds can be used to reduce fresh food 

deterioration and control microbial development. 
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Strawberry coated with 1.5% sodium alginate and 

nano ZnO demonstrated the lowest development of 

microorganisms, according to several studies. 

Antimicrobials in EC extend the shelf-life and safety 

of fruits and vegetables by inhibiting bacterial growth 

and causing harm (Jafarzadeh, 2021). Organic acids 

such as citric acid and lactic acid, microbial 

bacteriocins such as lactic acid bacteria, and 

polypeptides such as lysozymes are examples of 

antimicrobial compounds (Salas-Méndez, 2019). 

 

E. Antibrowning and antioxidant properties: 

Enzymatic browning is associated with the 

discoloration of phenolic compounds catalysed by 

polyphenol oxidase (PPO), which transforms 

polyphenolic substrates into dark pigments in the 

presence of oxygen. Edible coatings, particularly those 

containing antibrowning agents, can limit PPO activity 

while acting as strong oxygen barriers. Ascorbic acid, 

thiol-containing chemicals (cysteine and glutathione), 

carboxylic acids (citric and oxalic acid), phenolic 

acids, and resorcinol are the most used antibrowning 

agents. These o-quinones were reduced by PPO 

enzymes back to their phenolic substrates (El-Hosry, 

2009). 

 

F. Inhibition of physical damage 

Because pectolytic enzymes cause firmness loss in 

fruit tissues, any attempt to block their activity will 

result in firmness retention. Textural weakening of 

fruits and vegetables during storage may be reduced 

by using edible coverings containing active 

compounds known as texture enhancers. These 

chemicals inhibit polygalacturonase activity while 

maintaining membrane structural integrity. Calcium 

salts are often employed as firmness retainers to 

control softening phenomena in fresh-cut fruits 

(Owusu-Akyaw Oduro, 2022). 

 

G. Nutraceutical supplements: 

Minerals, vitamins, and bioactive compounds are 

potential nutraceutical compounds that can be 

incorporated into the formulation of active coatings to 

enhance the nutritional value of some fruits and 

vegetables where these micronutrients are present in 

low quantities (Basaglia et al., 2021). 

 

 
Figure-3: Various uses of edible coatings (Source: 

FutureBridge) Analysis) 

 

VI. LEGISLATION AND REGULATIONS OF 

EDIBLE COATINGS 

 

The ingredients used in EC make direct contact with 

the F&V and consumer, thus they are supposed to gain 

safety approval before being used for commercial 

purposes. In addition, the use of approved natural plant 

extracts and essential oils may result in some allergic 

reactions with a few toxic effects depending on the 

dosage. Therefore, proper measures must be 

implemented to periodically check the toxicity and 

allergic nature of edible coating formulation. For 

examples The edible components must be Generally 

Recognized as Safe (GRAS) by the federal agency, the 

American Food and Drug Administration (FDA) 

(Paidari et al., 2021) in USA. The materials used in EC 

formulations must be food-grade and non-toxic, and 

the production has to follow Goods Manufacturing 

Practice (GMP). Generally, components of EC are 

categorised as food additives, food ingredients or 

substances, and food packaging materials as per the 

US FDA regulations and European directives in 2006 

and 1998, respectively (Dhall, 2013). According to 

European directives, the ingredient must comply with 

the guidelines of the European Food Safety Authority 

(EFSA). However, the list of acceptable additives in 

each country varies to domestic regulations. For 

example, in the European regulation directive, shellac, 

pectin, lecithin, polysorbate arabic gums, karaya 

gums, and beeswax are regarded as food ingredients 

(Vargas et al., 2008) whereas US FDA allows the use 

of castor oil, cocoa butter, polydextrose, and sucrose 

fatty acids as food additives. For a clear understanding 

of the nature of chemicals present in the food industry, 

the FDA and EFSA grouped chemicals under three 

different categories namely food coating materials 
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(FCM), Food contact articles (FCA), and food contact 

substances (FCS) (Priya et al., 2023). The 

incorporation of nanoparticles, antimicrobial, 

antibrowning, antioxidant, and antifungal-like agents 

into the coating formulation is termed FCM whereas 

FCA are the finished result of packaging such as 

coatings or films, and FCS are the materials used to 

make them (Umaraw et al., 2020). Wax coating of 

fresh F&V using carnauba or bee wax is permitted in 

India by the Prevention of Food Adulteration Act 

(PFA), which regulates proper labeling and 

declaration of the material used for edible coating 

(Dhall, 2013). The application of synthetic and 

chemically modified resins for the EC of F&V is 

monitored based on the standards provided by the US 

FDA and European legislation. 

 

VII. FUTURE TRENDS AND CHALLENGES 

 

Emerging trends in polysaccharide-based EC (with 

chitosan, alginate, cellulose, starch, etc.) have shown 

promising beneficial effects on F&V because of their 

highly functional bioactive, nanostructured, and 

multilayered composite materials in various 

combinations (Akhtar, 2018). Several EC 

formulations have been developed recently, not only 

to preserve F&V quality but also to lower post-harvest 

decay caused by phytopathogens (Alvarez et al., 

2017). By adding organic acids to the mixture, the 

coating worked well to delay browning, stop mold and 

yeast growth, and keep fresh-cut fruits for an 

additional 35 days. These formulations offer a bio-

rational and sustainable substitute for contemporary 

wax coatings mixed with synthetic fungicides. Pectin-

beeswax coating with eugenol may be a successful 

commercial strategy for preventing degradation and 

preserving the quality of citrus fruit. Probiotics and 

antioxidants incorporated within ECs are also 

becoming more popular because of their potential 

advantages for consumer health (Davachi et al., 2021). 

Freshly cut apples were coated with a double coating 

of zein and probiotics in a study by Wong et al. (2021). 

To keep bananas, strawberries, cucumbers, and 

tomatoes fresh longer, Davachi et al. (2021) created a 

covering that also included probiotic lactic acid. 

Probiotic lactic acid led to worse hydrophilicity, 

increased water solubility, and increased surface 

roughness. During one week of storage, Listeria 

monocytogenes development was slowed down in the 

coated samples, whereas the probiotic Lactobacillus 

plantarum concentration remained constant (>6 log10 

CFU/g). Research is speeding up on encapsulating 

bioactive compounds within EC for their controlled 

release at a certain amount and time to maintain the 

quality of fresh produce in the food value chain 

(Lopez-Polo et al., 2021).  

 

Nano-emulsion is another novel method that is gaining 

popularity as it is recognised to be more effective than 

conventional emulsions in maintaining the stability of 

EC. Moreover, nanoemulsions reduce the oxidation of 

bioactive compounds and enhance the sensory quality 

parameters of F&V (Al-Tayyar et al., 2020). Moving 

forward, attention should also be paid to EC with 

nanoparticles, which are referred to as “smart edible 

coatings,” which act as nano-indicators to detect the 

change in colour and temperature as a critical 

reference, indicating potential food spoilage in the 

value chain (Parameswaranpillai et al., 2021). 

However, detailed research on EC is still in its 

developing stages, and rigorous validation is being 

conducted before the wide-scale industrial deployment 

of developed formulations. The development of new 

ECs must aim to maintain distinctive qualities and 

flavours and not modify the sensory profile of fresh 

F&V. As a result, it is anticipated that research on EC 

will rely on a thorough understanding of how each 

ingredient interacts with physicochemical, 

antibacterial, and toxicological properties with a clear 

risk assessment. 

 

Although EC has been thought to be a way to increase 

the shelf-life of F&V, their commercialization still 

confronts several difficulties. Consumer approval may 

occasionally be impacted by the effects of these 

coatings on sensory qualities. Unwanted flavours may 

be added to the products using various herbs, spices, 

antimicrobials, and antioxidants. The rates of food 

respiration and transpiration, as well as the storage 

conditions, are the main determining factors in 

choosing an edible coating. Fruits and vegetables have 

different rates of respiration, gas diffusion, and skin 

resistance; therefore, a covering made for one product 

might not be appropriate for another. The permeability 

of pores is influenced by the coating’s thickness and 

application technique, which have an impact on 

attributes that are connected to transport. Anaerobic 

conditions are created by refined mineral oil-based 



© March 2024 | IJIRT | Volume 10 Issue 10 | ISSN: 2349-6002 

IJIRT 162420 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1054 

coatings, which harm fruit (Moalemiyan et al., 2012). 

Anaerobic respiration causes fermentation and the 

emergence of off-flavours that harm the product’s 

sensory quality. Fresh-cut fruit aromas may be 

negatively impacted using essential oils in EC at 

greater concentrations as antimicrobials. According to 

Azarakhsh et al. (2012), even when lemongrass oil 

was applied in small amounts to cover fresh-cut 

pineapple with an alginate-based coating, the sensory 

score was reduced. When employed in higher doses, 

antibrowning chemicals such as glutathione and N-

acetylcysteine may produce unpleasant odors. Thus, 

minimising negative alterations in sensory qualities 

might be a promising research topic in the future. 

 

CONCLUSION 

 

The food industry is concerned and always optimistic 

about the development of sustainable and innovative 

technologies to improve the quality and shelf-life of 

fresh produce to minimise post-harvest loss and ensure 

food security. One major advantage of EC is their 

recognition as safe to be used on F&V, justifying 

health safety without compromising nutritional and 

sensory attributes. In the modern world, EC is a ‘green 

technology’, which significantly reduces post-harvest 

loss of F&V and has also been proven to cut down 

expenses on complex packaging and logistics 

(Peerzada et al., 2023). Thus, for F&V growers and 

value chain actors around the world, EC is generating 

possible economic benefits. However, to maintain 

food safety, textural integrity, and biodegradability, it 

is vital to comply with global food safety legislation. 

The global regulatory authorities of most countries and 

regions have recommended ingredients as safe to use 

and their acceptable limits. 

 

It might be possible to expand the use of EC for shelf-

life enhancement of diverse F&V crops experiencing 

significant post-harvest loss. Moreover, the traditional 

synthetic polymers and waxes might be substituted 

with more affordable, effective EC, extending the 

shelf life and increasing the nutritional value of F&V. 

Thus, it is essential to build a greater technical 

understanding of the mode of action of new-age edible 

coatings and generate awareness of sustainability 

among consumers for accelerated adoption by value 

chain agents. Surely, there is a dearth of research on 

EC, and that could heighten the benefits of fruit 

consumption and minimise post-harvest loss. Despite 

the extensive and well-defined research plan, from 

improving shelf life to preserving a high nutritional 

value, it is perpetually relevant to deep dive into 

investigated known data on the use of EC on 

agricultural produce, which will accelerate innovative 

product development. This effort will translate into 

developing economical, effective, compatible, and 

ecologically safe EC formulations. The global EC 

market size is expected to reach US$4.2 billion by 

2028, rising at a market growth rate of 7.5% CAGR 

(Markets & Markets, 2021). However, there is still 

much that needs to be done to improve the marketing 

potential and promotion of EC, even though earlier 

efforts led to the commercialization of a handful of 

products in the post-harvest industry. Edible coatings 

hold the strong sustainable potential to ensure food 

security by reducing post-harvest waste, extending 

shelf life, and preserving the quality of fruits and 

vegetables worldwide. 
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