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Abstract—This paper presents a comprehensive 

examination of the intrinsic role that mathematics plays in 

the field of quantum computing. It focuses into the specific 

mathematical concepts and principles that helps quantum 

algorithms, error correction, quantum cryptography and 

the modeling of quantum systems. The aim of this paper is 

to illustrate the mathematical application that enable 

quantum computing to solve complex problems faster than 

classical computing. 

 

I. INTRODUCTION 

 

Quantum computing (QC) is a growing technology 

beyond traditional computing. Instead of using bits that 

are either 0s or 1s, QC uses qubits that can be both at the 

same time, thanks to a phenomenon called superposition. 

It's like flipping a coin and instead of landing on heads or 

tails, it can have both head and tail as the coin spins. This 

allows quantum computers to handle incredibly complex 

tasks that regular computers struggle with. They could 

revolutionize areas like medicine, by modeling 

molecules in new drugs, or cyber security, by providing 

quantum safe cryptography. Overall, QC is a new area 

that's all about making use of the weirdness of quantum 

mechanics for which Mathematics remains to be the core 

an fundamental.  

Mathematics is the backbone of quantum theory and 

quantum computing. It's the language that describes the 

behavior of particles at the quantum level. Just like you 

need grammar to put together sentences, scientists use 

math to make sense of how these tiny particles interact 

and exist in many states at once. 

In quantum computing, math [1] is the toolkit that helps 

us understand and control qubits, the basic units of 

quantum information. These qubits follow mathematical 

rules that are quite different from the normal world. So, 

math isn't just important; it's essential. Without it, we 

wouldn't be able to unlock the potential of quantum 

computing or even describe the quantum world 

accurately. It turns abstract quantum concepts into real-

world applications that might one day transform 

technology as we know it. 

The purpose of this paper is to clarify how mathematics 

enables the extraordinary capabilities of quantum 

computing [2]. We aim to bridge the gap between 

complex quantum theories and  

their practical applications, by translating mathematical 

concepts into the language of quantum computing. 

 

Our focus will be on explaining the fundamental math 

that allows quantum computers to operate, and how it 

differs from classical computing mathematics. 

The scope of the paper provides a walkthrough of basic 

mathematical concepts like complex numbers [3] and 

linear algebra, as they apply to quantum bits, or qubits. 

We’ll explore how these principles give rise to quantum 

algorithms that can solve problems previously thought 

intractable. Additionally, we’ll touch upon the role of 

mathematics [1] in quantum error correction, 

cryptography, and the simulation of quantum systems. 

Through this paper, we aim to provide a clear, 

approachable understanding of the subject for students 

and enthusiasts, without requiring a deep background in 

advanced mathematics or quantum physics [4]. Our 

ultimate goal is to highlight the significance of 

mathematical concepts in driving the future of quantum 

computing technology. 
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II. MATHEMATICAL FOUNDATION OF QUANTUM 

COMPUTING 

 

A. Complex Numbers and Quantum Bit Representation: 

In a classical computer we refer the basic building block 

as bit (a unit to measure the capacity of the computer). In 

Quantum computers, the basic building block is a 

Quantum Bit (Qubit). 

The fundamental difference between a bit and a Qubit is 

that bits can store only 2 binary values (i.e.) Either 1 or 

0. In case of a Qbit, it can store Either 1, 0 or both 1 & 0. 

To explain this, we must understand that Quantum 

Computers works with principle of Quantum Mechanics 

[4] which deals with the mechanics of sub atomic particles 

such as electrons, photons, Boson and so on. If you 

consider electron for the sake of explanation, then one of 

the properties of an electron is that it keeps spinning with 

values +1/2 and -1/2. If you wanted to measure the state 

of the electron at a random time t, then the probable spin 

values shall be either +1/2, -1/2 or both +1/2 & -1/2 (due 

to the speed at which it rotates). This can also be 

explained in the analogy of tossing a coin as explained in 

the introduction section.  

In the context of quantum computing and qubits, the state 

of a qubit can be represented by a complex number 

expression las  

ψ=α∣0⟩ + β∣1⟩ 
Here, ψ represents the state of the qubit. The variables α 

and β are complex numbers that describe the probability 

amplitudes for the qubit to be in the ∣0⟩ state (think of 

it as the "off" state) and ∣1⟩ state (the "on" state), 

respectively. The symbols ∣0⟩ and ∣1⟩ are known as 

"ket"[3] notation from Dirac notation [3], a standard in 

quantum mechanics for representing quantum states. 

The values of α and β contain both magnitude and phase 

information. The magnitude (or absolute value) of α and 

β squared (i.e., ∣α ∣2 and ∣β ∣2 gives the probability of 

the qubit being found in the ∣0⟩ or ∣ 1⟩state upon 

measurement. 

The phase (or angle) of α and β contributes to the qubit's 

behavior in quantum interference and entanglement, 

crucial for quantum algorithms. 

The complex nature of α and β allows qubits to exist in a 

superposition (as shown in Fig-A) of states, enabling the 

parallelism that gives quantum computing its potential 

power. 

 
(Fig-A – Illustrative image of a qubit in superposition state) 

 

B. Hilbert Spaces and State Vectors: 

Hilbert spaces are like vast, multidimensional stages 

where each point can represent a quantum state, such as 

the state of a qubit. In this space, state vectors are arrows 

pointing to these points, showing where a quantum state 

is "standing." The length of the arrow tells us the state's 

magnitude, crucial for figuring out probabilities in 

quantum mechanics. These vectors follow specific math 

rules, ensuring they play nicely together and maintain 

quantum states' integrity. By using the rich structure of 

Hilbert spaces, quantum computing can manipulate these 

state vectors to perform complex calculations, harnessing 

the strange and wonderful properties of quantum 

mechanics. 

In the context of quantum computing, the mathematical 

expression [1] for a state vector in a Hilbert space can be 

represented as: 

|ψ⟩=∑i ci |i⟩ 
where:  
∣ψ⟩ is the state vector representing the quantum state 

in the Hilbert space. 

∑ i   denotes the sum over all possible states i, which 

means we add up contributions from all basis states in the 

Hilbert space. 

ci are complex coefficients (complex numbers) 

associated with each basis state ∣i⟩.  
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These coefficients contain the probability amplitude for 

the quantum system to be found in each basis state upon 

measurement. 

∣i⟩ represents the basis states of the Hilbert space. These 

are like the standard directions (e.g., up, down, left, right 

in a 2D space) but in the much higher-dimensional space 

of quantum states. 

In a quantum computing context, each ∣ i⟩ could 

represent a different configuration of qubits and the 

coefficients ci indicate how much each configuration 

contributes to the overall quantum state. The sum of the 

squares of the magnitudes of all cis must equal 1 (due to 

normalization, ensuring probabilities sum up to 100%), 

i.e., 

∑i | ci |2 =1 

 

C. Tensor Products and Composite Systems 

Tensor products are a mathematical way to combine 

quantum systems, like linking two qubits to form a more 

complex system. Imagine having two strings, each 

representing a quantum state. The tensor product 

intertwines these strings, creating a new pattern that 

represents the combined states of both qubits. This lets us 

describe the entire system's state in a single mathematical 

expression, even though it involves multiple qubits. It's 

crucial for building quantum circuits and algorithms 

because it helps us understand how individual qubits' 

states contribute to the whole system's behavior, enabling 

the complex, parallel computations that make quantum 

computing so powerful. 

Tensor products are a mathematical [2] way to combine 

quantum systems, like linking two qubits to form a more 

complex system. Imagine having two strings, each 

representing a quantum state. The tensor product 

intertwines these strings, creating a new pattern that 

represents the combined states of both qubits. This lets us 

describe the entire system's state in a single mathematical 

expression, even though it involves multiple qubits. It's 

crucial for building quantum circuits and algorithms 

because it helps us understand how individual qubits' 

states contribute to the whole system's behavior, enabling 

the complex, parallel computations that make quantum 

computing so powerful. 

For tensor products in the context of quantum computing, 

let's consider two qubits, each represented by their state 

vectors.  

If the first qubit is in state ∣ψ⟩ and the second in state 

∣ϕ⟩, their tensor product, representing the composite 

system, is denoted as: 

∣ψ⟩⊗∣ϕ⟩ 
Here,  

∣ψ⟩ might be expressed as a∣0⟩ + b∣1⟩ and  

∣ϕ⟩ as c∣0⟩ + d∣1⟩, where  

∣0⟩ and ∣1⟩ are basis states, and a, b, c, and d are 

complex coefficients representing the state's amplitude in 

each basis state. 

The tensor product ∣ψ⟩⊗∣ϕ⟩ then expands to: 

(a∣0⟩+b∣1⟩) ⊗(c∣0⟩+d∣1⟩) =  

ac∣00⟩+ad∣01⟩+bc∣10⟩+bd∣11⟩ 
This resulting expression represents the state of the two-

qubit system, where each term corresponds to a possible 

state combination of the two qubits, and the coefficients 

[3] ac, ad, bc, and bd represent the amplitude of each 

combined state. 

 

D. Unitary Operations and Quantum Gates 

  Unitary operations in quantum computing are like 

magical rulebooks that precisely dictate how qubits can 

change without losing their special properties. Imagine 

each qubit as a dancer spinning in a complex dance, and 

unitary operations are the choreography ensuring every 

spin and turn is just right. These operations are 

represented by unitary matrices, special grids of numbers 

that, when multiplied with a qubit's state vector, change 

the qubit's state in a reversible way. This means you can 

always trace the steps back to the starting point. Quantum 

gates, the building blocks of quantum circuits, use these 

operations to manipulate qubits, enabling the complex 

maneuvers required for quantum algorithms [4]. 

Unitary operations in quantum computing are 

mathematically represented by unitary matrices.  

A unitary matrix U applied to a quantum state vector ∣

ψ⟩ transforms it to a new state ∣ψ ′ ⟩ according to 

the equation: 

∣ψ′⟩= U ∣ψ⟩ 

For a matrix to be unitary, it must satisfy the condition: 

U † U = U U † =I 

where U †  is the conjugate transpose (also known as the 

Hermitian adjoint) of U, and I is the identity matrix, 

implying that applying U followed by its conjugate 
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transpose (or vice versa) results in the original state, 

ensuring reversibility. 

A simple example of a quantum gate is the Hadamard 

gate, represented by the unitary matrix: 

   

When H is applied to a qubit state, it creates 

superposition, transforming the basis states ∣0⟩ and ∣

1⟩ into equal superpositions of both, showcasing how 

quantum gates manipulate qubit states through unitary 

operations. 

 

E. Linear Algebra and Quantum Amplitudes 

In quantum computing, linear algebra is the toolkit for 

manipulating qubits, which are represented by vectors in 

complex vector spaces. Quantum amplitudes, the 

components of these vectors, describe the probability of 

finding a qubit in a particular state. Operations on qubits, 

like flipping or entangling them, are performed using 

matrices, which are sets of numbers arranged in rows and 

columns. These matrix operations follow specific rules of 

linear algebra, allowing for precise control over qubits. 

The magnitude squared of an amplitude gives the 

likelihood of a qubit's state upon measurement, making 

these mathematical concepts [3] critical for predicting and 

understanding quantum phenomena. 

In the context of quantum computing, a quantum state of 

a qubit can be represented as a linear combination of 

basis states using quantum amplitudes as represented in 

Fig-B.  

 
(Fig-B – Measurement of Quantum Amplitude) 

Mathematically, this is expressed as: 

ψ=α∣0⟩ + β∣1⟩ 
Here: ∣ψ⟩ is the state vector representing the qubit's 

state in a Hilbert space (a complex vector space used in 

quantum mechanics). 

∣0⟩ and ∣1⟩ are the basis states, often representing the 

classical states of 0 and 1. 

α and β are complex numbers representing the quantum 

amplitudes of the respective basis states. 

The probabilities of measuring the qubit in either state are 

given by the squares of the magnitudes of these 

amplitudes: 

Probability of measuring the state ∣0⟩ is given by : 

P(0) = | α | 2 
Probability of measuring the state ∣1⟩ is given by: 

 P(1)=∣β∣ 2
 

According to the principles of quantum mechanics, these 

probabilities must sum up to 1, which imposes the 

normalization condition: 

∣α∣2 +∣β∣2 = 1 

This expression encapsulates the fundamental aspects of 

linear algebra and quantum amplitudes in the 

representation and manipulation of qubit states in 

quantum computing. 

 

III. CONCLUSION 

 

In conclusion, it is quite evident that math and quantum 

computing are best friends in a magical world. Math 

gives quantum computers their superpowers, helping 

them do things no ordinary computer can. In essence 

without mathematical domains such as Complex 

Numbers, Probability & statistics, Unitary Operations 

and Linear Algebra, it is impossible to bring super 

powers like Quantum Computers and Artificial 

intelligence to life. This mix of smart math and quantum 

tricks is opening up new doors, from super-secure 

messages to solving problems we couldn't crack before. 

We're just at the beginning of this adventure, and who 

knows what amazing things we'll discover next with this 

powerful duo! 
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