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Abstract– Starting in the 1980s, cryptocurrencies, then 

referred to as cyber currencies began to become popular. 

In this respect, the history of cryptocurrencies can be 

traced back to the 1980s when they were called cyber 

currencies. Bitcoin, the first digital currency based on 

blockchain technology was introduced in 2008 which led 

to the rise of alternative cryptocurrencies and attracted 

interest for its potential effect on even financial systems 

during this time frame blockchain technology developed 

while other cryptocurrencies emerged forcing attention 

towards it and other sectors due to its potential 

consequences in financial systems and beyond since then 

regulatory implications and wider interest have been 

spawned by both that growth of cryptocurrency market 

and advancements in blockchain technology.  
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1. INTRODUCTION 

 

As we all know that in the past few years Crypto 

Currency has taken an immense Growth. The price of 

Bitcoin has gone from 600$ in 2016 to 63558$ in April 

2021 currently there are not sufficient tools for analysis 

and methodologies for accurately predicting crypto 

prices of the currencies.  

This scarcity presents a challenge for investors and 

analyst who seek reliable means to forecast the price 

movements of digital assets within the crypto currency 

market.  

One of the key challenges for investors and traders in 

the crypto currency market is predicting the price 

movements of these digital assets. Machine learning 

algorithms can analyse historical data, identify 

patterns, and make predictions based on these patterns. 

When applied to crypto currency price prediction, 

machine learning models can assist investors in 

making informed decisions about buying, selling, or 

holding crypto currencies.   

Crypto currency is a peer-to-peer system that can 

enable any person anywhere to receive or send 

payments. It is a digital payment system that don’t rely 

on banks to verify transactions. It is stored in a digital 

wallet. It received its name because it is using 

encryption to verify all the transactions.    

Seeing in the increasing economics and geopolitics 

issues from last 2 years global currency value has been 

decreased, all the investors had a bad fall in stock 

market and have lost their wealth. This has started 

people’s interest in digital currencies.   

Therefore, our system helps in crypto currency price 

prediction using machine learning python. Some 

traders and analysts may use other methods like 

fundamental analysis, technical analysis to predict 

prices but there is always some risk and uncertainty. 

With this system the traders and investors have various 

new opportunities to explore new approaches and 

incorporate advancements in AI, data analytics, other 

relevant fields and tailored prediction solutions to suit 

different trading or investment strategies. 

 

2. ORIGIN 

 

Starting in the 1980s, cryptocurrencies, then referred 

to as cyber currencies began to become popular. In this 

respect, the history of cryptocurrencies can be traced 

back to the 1980s when they were called cyber 

currencies. Bitcoin, the first digital currency based on 

blockchain technology was introduced in 2008 which 

led to the rise of alternative cryptocurrencies and 

attracted interest for its potential effect on even 

financial systems during this time frame blockchain 
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technology developed while other cryptocurrencies 

emerged forcing attention towards it and other sectors 

due to its potential consequences in financial systems 

and beyond since then regulatory implications and 

wider interest have been spawned by both that growth 

of cryptocurrency market and advancements in 

blockchain technology  

  

3. MACHINE LEARNING MODELS AND 

ANALYSIS 

 

For this project we have used the LSTM model (Long 

Short-Term Memory) which is an extensive part of 

RNN (Recurrent Neural Network). The LSTM is 

mainly designed to address the vanishing gradient 

problem. First of all, let’s understand what RNN is and 

how it is works. RNN is a type of neural network 

specially works in the sequential data such as time 

series prediction or more commonly in cryptocurrency 

prediction. In RNN the output of the previous step is 

fed as an input to get the output of the next step. In 

traditional Neural Network, all the inputs and outputs 

are independent from each other but in some cases to 

predict the next word or next output, the previous 

output is required and as a result it is required to 

remember the previous output. Thus, RNN solved this 

with the help of Hidden Layer or Hidden State. The 

RNN works with the sequential data, this hidden state 

helps the RNN to remember the information about the 

sequence of the data. At each time step, the network 

takes an input vector and combines it with the hidden 

state from the previous time step to produce an output 

and update the hidden state. This recurrent connection 

allows RNNs to incorporate information from previous 

time steps into the current prediction or output. 

Furthermore, understand how a hidden state in RNN 

works with some examples. Let us consider the 

following two input and output of the sequences  

XY=[a,b,c,d,…,y,z]=[b,c,d,e,…,z,a]  

We will first try to train a MLP (Multi-Layer 

Perceptron) with one input and output from X and Y. 

We can write this relationship in maths as f(x) →y 

where x is an element of X and y is an element of Y 

and f (⋅) is our MLP. After training, if given the input 

a=x, our neural network will give an output b=y 

because f (⋅) learned the mapping between the 

sequence X and Y. Now, let’s try to teach other 

sequences to the same MLP.  

  XY=[a,a,b,b,c,c,⋯,y,z,z]=[a,b,c,⋯,z,a,b,c,⋯,y,z]  

More likely, this MLP will not be able to recognise or 

learn the relationship between X and Y. This is because 

a normal MLP can't learn and understand the 

relationship between the previous and current outputs. 

Now, we will use the same sequences to train an RNN. 

In general, in an RNN we take two inputs one for our 

input and the previous hidden values and two outputs 

one for the output and the next hidden values. F(x, ht) 

→(y, ht+1)  

Important: here ht+1 represents the next hidden value.  

Below we will execute some sequences of this RNN 

model.  

x = a and h = 0 (a, next_hidden) <- f(x, h) prev_hidden 

= next_hidden x = a and h = prev_hidden (b, 

next_hidden) <- f(x, h) prev_hidden = next_hidden x = 

b and h = prev_hidden (c, next_hidden) <- f(x, h) 

prev_hidden = next_hidden If we look at the above 

process we can see that we are taking the previous 

hidden state values to compute the next hidden state. 

What happens is while we iterate through this process 

prev_hidden = next_hidden it also encodes some 

information about our sequence which will help in 

predicting our next character.  

 

About LSTM:  

The LSTM is an extension of recurrent neural 

networks which is mainly designed to overcome the 

limitations of RNN. The vanishing gradient is 

particularly problematic for traditional RNN because 

they are unable to retain information over long 

sequences. Thus, LSTM is designed to overcome the 

issue with the help of their gate architecture which 

helps to regulate the flow of information and gradients 

throughout the network. LSTM contains a memory 

cell, which is a container that can hold information for 

a long period of time. These networks are capable of 

learning long term dependencies in a sequential data, 

which makes them suitable for task such as time series 

forecasting. In LSTM the memory cell is controlled by 

the three gates that are input gate, output gate and 

forget gate. These gates are responsible on managing 

the information on what should be add, remove to and 

output from the memory cell. The input gate controls 

what information is added to the memory cell. The 

forget gate controls what information is removed from 

the memory cell and the output gate controls what 

information is output from the memory cell.  
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Architecture and working of an LSTM:  

The LSTM architecture has a chain structure that 

contains four neural networks and different memory 

blocks called cells. Information is retained by the cells 

and the memory manipulations are done by the gates. 

In mathematically this gate is computed with the help 

of a sigmoid activation function. The sigmoid 

activation functions. The sigmoid activation function 

is a mathematical function which is often used in 

neural networks. It is called "sigmoid" because it’s in 

S-shaped curve.  

• The Input Gate: The input gate decides which new 

information to add in the cell state. It determines 

whether the current input and the previous hidden 

state is relevant for updating the cell state. The 

output of an input gate (between 0 and 1) is 

multiplied with the output of tanh block that 

produces the new values that must be added to 

previous state. This vector is then added to the 

previous state to generate the current state.  

Mathematically, the input gate it is computed using a 

sigmoid activation function and is typically 

represented as follows:  it = σ (Wi⋅ [ht−1, xt] +bi)  

Where:  

Wi is the weight matrix associated with the input gate,  

[ht−1, xt] is the concatenation of the previous hidden 

state ht−1 and the current input xt, bi is the bias vector 

for the input gate, and σ is the sigmoid activation 

function, which squashes the input to a value between 

0 and 1.  

 

• The Output Gate: The output gate controls the 

flow of the information from the cell state to the hidden 

state. It determines how much of the information stored 

in the cell state should be output at the current time 

step. In output gate, the input state and the previous 

state are gated as before so that to generate another 

scaling fraction that is combined with the output of 

tanh block that brings the current state. 

Mathematically, the output gate ot is computed using a 

sigmoid activation function and is typically 

represented as follows:  

ot = σ (Wo⋅ [ht−1, xt] +bo) Where:  

Wo is the weight matrix associated with the output 

gate,  

[ht−1, xt] is the concatenation of the previous hidden 

state ht−1 and the current input xt, bo is the bias vector 

for the output gate, and σ is the sigmoid activation 

function, which squashes the input to a value between 

0 and 1.  

• The Forget Gate: Just like the output gate, the 

forget gate controls the flow of the information from 

the previous cell state to the current cell state. It 

determines which information from the previous state 

should be retained and which should be removed. In 

forget gate the input is combined with the previous 

output to generate a fraction between 0 and 1 that 

determines how much of the previous state need to be 

retained or in other words, how much of the state 

should be forgotten.  

• Mathematically, the forget gate ft is computed 

using a sigmoid activation function and is typically 

represented as follows:   

ft = σ (Wf⋅ [ht−1, xt] +bf) 

Where:  

Wf is the weight matrix associated with the forget gate,  

[ht−1, xt] is the concatenation of the previous hidden 

state ht−1 and the current input xt, bf is the bias vector 

for the forget gate, and σ is the sigmoid activation 

function, which squashes the input to a value between 

0 and 1.  

4. METHODS 

 

While implementing our machine learning model we 

have first came up with the idea of random forest 

classifier which is a supervised machine learning 

algorithm used for classification, regression and other 

tasks. This classifier is specially used for handling 

complex datasets which contains a number of decision 

trees on various subsets of the given dataset and takes 

the average to improve the predictive accuracy of that 

dataset. As a result, we have first created the model 

using the random forest classifier has it features to 

handle large number of datasets using it decision trees. 

This classifier works by creating number of decision 

trees during the training phase. Each tree is constructed 

by using a random subset of the data set which 

introduces the randomness and diversity into the trees 

preventing them from being too similar to each other 

and as a result it also reduces the risk of overfitting the 

data in the model. This classifier is also useful in 

working with the missing data within the dataset as it 

creates decision trees. Mathematically, the prediction 

of a Random Forest classifier can be represented as 

follows:  
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Let T be the set of decision trees in the forest, and fi (x) 

be the prediction of the i-th decision tree for input 

sample x.  

For a classification task, the predicted class ŷ for input 

sample x is: ŷ = mode{fi(x)∣∀i∈T}  

For a regression task, the predicted value ŷ for input 

sample x is:  

ŷ = ∣T∣1∑i=1∣T∣fi(x)  

Where ∣T∣ denotes the number of decision trees in the 

forest.  

Next model we have implemented by using the 

Extreme Gradient Boosting Classifier or in simple 

XGBoost Classifier. It is a powerful algorithm 

especially used for gradient boosting. Gradient 

boosting is a powerful ensemble learning technique 

used for both regression and classification tasks in a 

machine learning. This XGBoost is known for its 

efficiency, speed, and effectiveness in producing high-

quality predictive models. Additionally, XGBoost is 

efficient in handling of missing values, which allows it 

to handle real-world data with missing values without 

requiring significant preprocessing. It has a built-in 

support for parallel processing, making it possible to 

train models on large datasets in a reasonable amount 

of time. As a result, we have implemented the second 

model using this algorithm. Mathematically, the 

prediction of an XGBoost classifier can be represented 

as follows:  

The XGBoost classifier makes predictions by 

aggregating the outputs of all the weak learners (trees) 

weighted by a shrinkage parameter η ŷ = 

∑k=1Kη⋅fk(x)  

Where fk(x) is the prediction of the k-th tree for input 

sample x.   

In Closing we have implemented the third model by 

using the Long Short Term Memory algorithm or in 

short the LSTM which is the extension of Recurrent 

Neural Network (RNN). IT is specially designed to 

overcome the issue of vanishing gradient problem 

inherent in traditional RNNs. These networks are 

capable of learning long term dependencies in a 

sequential data, which makes them suitable for task 

such as time series forecasting. IT contains a memory 

cell, which is a container that can hold information for 

a long period of time. This memory cell is controlled 

by the three gates that are input gate, output gate and 

forget gate. These gates are responsible on managing 

the information on what should be add, remove to and 

output from the memory cell. The input gate controls 

what information is to be added to the memory cell. 

The forget gate controls what information is removed 

from the memory cell and the output gate controls what 

information is output from the memory cell. The 

LSTM architecture has a chain structure that contains 

four neural networks and different memory blocks 

called cells. The information is been retained by the 

cells and the memory manipulations are done by these 

gates. In mathematically this gate is computed with the 

help of a sigmoid activation function 

 

5. EVALUATION 

 

Finalizing the result of Random Forest Classifier we 

have taken the parameters of closing price of bitcoin as 

a feature to predict the future market price of bitcoin. 

We have also taken the sentiment analysis of bitcoin as 

a negative and positive sentiment to perform a better 

prediction if any unplanned event occurs. This 

performed well but not as good as it should be 

performed. The accuracy over the past prices  

Performed well. The accuracy was 51% which was 

under performed by the algorithm.  

The next model that we trained was the XGBoost 

model. We have taken the same parameters of closing 

price of bitcoin as a feature to predict. Comparing with 

the first model i.e. Random Forest Classifier it over the 

past prices was 60% as compared to the random forest. 

To provide more accuracy over the data we have done 

the back testing of the data within this model. We have 

taken 15 days of interval of the data to perform the 

back testing, the difference came of 5% after 

performing the back testing of the data. As compared 

to Random Forest Classifier with performed well in 

predicting the future prices.  

  The last model that we trained was the LSTM model. 

This LSTM performed very well compare to the rest 

two models. Here also we have taken the closing price 

of bitcoin as a parameter to perform the training of the 

model. To provide a better analysis we have taken past 

100 and 200 days of mean averages. After splitting in 

testing and training part of 7:3 ratio we have added the 

parameters of past 100 days of mean averages to the 

training part. We have then trained the model with the 

epoch of 50 i.e. it will train the model 50 times to 

provide an accurate result. If we would train the model 

above 50 times it would than overfitted in the data. The 

model would not provide accurate result on the other 

data and if less than 50 than more overly the model 
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would be underfitted. After training of the model, we 

tested it with the other 30% data, and it performed 

highly accurate than the other two random forest and 

xgboost which provided the accuracy of 95%. In 

regards to long term predictions it has been observed 

that the LSTM outperformed both the other algorithms.  

 Random Forest Classifier  51%  

XGBOOST Classifier  60%  

LSTM  95%  

 

 
 

6. CONCLUSION 

 

In conclusion the use of machine learning algorithms 

in python for prediction of cryptocurrency prices is a 

significant promising area of research; while 

employing machine learning models to this end can 

provide valuable insights into the volatile nature of 

cryptocurrency markets and help in forecasting price 

trends as well as making more informed investment 

decisions, it is important to recognize that predicting 

cryptocurrency prices has some built-in difficulties and 

uncertainties which includes market sentiment 

regulatory developments and technology changes 

however there are several limitations associated with 

the study including market sentiment regulatory 

developments and technological advancements thus 

more studies should be carried out in order to get better 

understanding about how these models behave   

 

REFERENCE 

 
1."Bitcoin Price Index - Real-time Bitcoin Price 

Charts", Coin Desk Available: https://www.coindesk. 

com/price “  

2. “A. Ng, "Linear Regression with Multi Variable", 

Stanford, CA”  

3. “D. Nelson, A. Pereira and R. de Oliveira, "Stock 

Market’s Price Movement Prediction with LSTM 

Neural Networks", in Neural Networks (IJCNN).  

4.“M. Dixon, D. Klabjan and J. Bang, “Classification-

based Financial Markets Prediction using Deep Neural 

Networks", Illinois Institute of Technology.”  

https://doi.org/10.1162/neco.1997.9.8.1735  

5. S. Hochreiter and J. Schmidhuber, “Long Short-

Term Memory,” Neural Computation, vol. 9, no. 8, pp. 

1735–1780.” 

6. D. Shah and K. Zhang, "Bayesian regression and 

Bitcoin", Massachusetts Institute of Technology.”  

7. I.Georgoula, D. Pournarakis, C. Bilanakos, D. 

Sotiropoulos and G. Giaglis, "Using Time-Series and 

Sentiment Analysis to Detect the Determinants of 

Bitcoin Prices".  

8. Babitha, D., Ismail, M., Chowdhury, S., Govindaraj, 

R., & Prakash, K.B. (2020). Automated road safety 

surveillance system using hybrid cnn-lstm approach. 

International Journal of Advanced Trends in Computer 

Science and Engineering, 9(2), 1767-1773. 

doi:10.30534/ijatcse/2020/132922020  

 


