Software Defined Network: Security Attacks and Solutions for Security Enhancements

SULBHA MANOJ SHINDE¹, Dr. GIRISH ASHOK KULKARNI²

¹ Associate Professor, Department of E&TC, SSGBCOET Bhusawal, India

Abstract— The fundamental idea behind SDN technology is the separation of the data (forwarding) layer from the control layer. Contrary, the traditional network comprises the data layer and the control layer together. The framework of the SDN offers a logically centralized network control and its management through a central controller. The communication devices in the data layer forward traffic according to control requests. It also provides dynamic programming and reconfiguration of rules and policy settings, which decreases the risk of cybercrime attacks. The downside of SDN separation led to innovative network security challenges, such as Denial-of-Service (DoS) threats. This paper deals with main security issues of the SDN Network and it's problems and security attacks that may affect the structure of network. Review of previous research done is also presented. Different Attempts associated with security related design issues for SDN and the future needs to secure SDN Network is also presented.

Indexed Terms- SDN, firewall, DDoS, POX, authentication.

I. INTRODUCTION

There are the following main issues related to SDN: Forwarding Device Attack: The network traffic can be disturbed by access points or switches, which results in malicious users launching denial of service (DoS) attack that can result in network failure or disruption.

Threats in Control Plane: Due to the use of central controller, any problem arising in the network results in the failure of the central controller. The approach that is being used to solve this problem is to use either horizontal or hierarchical controller distributions.

Vulnerability of Communication Channel: SDN southbound API's such as Open Flow protocol uses TLS for data-control channel communication security but it is often disabled administratively and is prone to

man-in-the middle attacks thus not suitable for implementation of channel security.

Fake Traffic Flows: A non-malicious faulty device or an attacker can launch this or DoS attack to dissipate the resources in forwarding devices or controllers.

Authenticity: It refers to the property that entities in networks are actually the ones they claim to be. the issue of authenticity for forwarding devices in SDWN networks is similar to that in traditional networks; it can result as hindrance in network performance.

Confidentiality: it prevents from the expose of information to unauthorized users, if not ensured can lead unauthorized users to access network information or data.

Availability: It means that authorized users can access data, devices, and services whenever they need.

Open Programmable API: The open nature of API makes the vulnerabilities more transparent to attackers. Man-in-the-Middle-Monitors: The switches and the controllers are not directly connected for the transmission of information, which "man-in-the-middle" monitors can steal or misuse the information without being caught thus leading to black hole attack.

II. SDN SECURITY ATTACKS AND SOLUTIONS

According to six features could be identified to achieve and obtain the prospective network security improvements based on the implementation of SDN infrastructure and deployment. The identification of these features provides effectiveness to build up or develop more secure and reliable SDN applications or SDN infrastructure. This section reviewed, the

² Head and Professor, Department of E&TC, SSGBCOET Bhusawal, India

opportunities introduced by SDN to network security from various research works. This will offer novel insights for future research in this significant area.

2.2Collect Traffic, Detect and Mitigate Attacks

In this stage, a method involved collecting intelligence data from previous Intrusion Detection Systems and Intrusion Prevention Systems, followed up by investigation and consolidated reprogramming of the network, which can offer the SDN more efficient and reliable to intrusion attacks than traditional networks will be discussed. This process is well illustrated as Step one the Collector, in which traffic information is collected through the Open Flow protocols. Step two the intrusion Detection, at this stage analysis is performed on the statistics, and intrusion is identified. Step three the intrusion Mitigation, at this stage flowentry can be injected to override the known attack. In Table 2.2, a comprehensive fact of the problems and solutions presented for each research work introduced under collect, detect, and mitigate to protect and provide Network Security Enhancements in SDN is provided.

Table 2.2 Research Works Based on Collect-Traffic, Detects, and Mitigates Attacks.

Referen	Problem	Solution
ce		
[1]	Control layer DOS	Developed an SDN-based
	traffic overload during	Intrusion detection system and
	Open Flow traffic	intrusion prevention system
	collection.	on traffic Collection Modules
		for intrusion Detection and
		intrusion Mitigation.
[2]	Defective and	Provided Network Response
	Uncertain	Control that providing
	Programmable	consistent
	Security	security.
	Infrastructure.	
[3]	Issues of intrusion	Used Open Flow SDN to
	detection for	identify intrusion traffic and
	embedded portable	reconfigure the network.
	devices.	
[4]	Avoid data centre	Used Open Flow proxy device
	network congestion	to identify traffic overload
	challenges.	based on flow aggregation.
[5]	ome weaknesses of	Orchestrator-based SDN
	network security	model to implement security

	applications.	applications.
[6]	*	A cognitive module is applied in the infrastructure layer.
[7]	Issues of DDOS overload in SDN.	A confidence interval and mean throughput are applied at the SDN controller to identify intrusions.
[8]	monitoring and	Introduced intrusion detection to classify and validate using machine learning algorithms.

2.3Rule Updating and Traffic Analysis

This category of SDN security enhancements s recognized by their effort on a particular intrusion detection and prevention scheme enforced. Precisely, the high-level security rules are established based on network traffic analysis and applied by computerized switches to enforce policy or rule updating [11]. This system is introduced for securing enterprise networks and its results are range from dynamic access control to traffic tagging an 3108d filtering [12]. Generally, tools are used to checks a distinct traffic statistic condition against locally collected traffic packets to define an appropriate action or request [13], [14]. In Table 2.3, a summary of the problems and solutions offered for each research work presented under Rule Updating and traffic analysis on Network Security Enhancements in SDN is supplied.

Table 2.3 Research Works Based on Rule Updating and Traffic Analysis

Reference	Problem	Solution		
[15]	To increase the capacity	Provided Dynamic		
	of enterprise network	access control system		
	attack response.	for securing		
		enterprise networks.		
[16]	To Protect the Control	Introduced		
	layer against DOS	Connection		
	intrusions and dynamics	Migration Tool		
	flow response.	dropping data-		
		control layer		
		communication and		
		Initiating Prompt to		
		install flow rules.		

[17]	To Protect enterpriseIntroduced Traffic
	networks against flow monitoring and
	Computer viruses classification for
	(malware) distribution. flow tracking and
	filtering.
[18]	To recurrently change Presented Random
	host IP addresses for Host Mutation using
	mobile defense targets. virtual-to-real IF
	translation.
[19]	To protect against SDN-based mobility
	network and service Target network
	exploration. defense systems.
[20]	To protect exposed Introduced Network
	virtual systems in cyberanomaly detection,
	space from beingmeasurement, and
	compromised. counter measure
	assortment
	framework.
[21]	Overcome the Introduced an
	performance flexibilityenhanced Open
	problems of presentFlow-based Intrusion
	Intrusion Prevention Prevention Systems
	Systems. to improve latency
	and accuracy.
[22]	The problem of An enhanced SDN-
	reconfiguring cloudbased Anomaly
	networking on the flyPrevention solution.
	with the Intrusion
	Prevention Systems.
[23]	Issue of increasingProvided Scalable
	capacity of networkIDS model with
	traffic. sampling rate
	modification
	technique.
[24]	Issues of home/ officeIntroduced Intrusion
	network security Detection techniques
	problems. mounted in NOX
	controller.
[25]	To Use SDN to identify Develop a fuzzy
	and secure the networklogic-based
	from malicious attacks. information security
	management system
	for SDN.
<u> </u>	

2.3DOS/DDOS Protection

In Table 2.4, a precise description of the problems and solutions provided for each research work presented

under DOS/DDOS Protection on Network Security Enhancements in SDN is conveyed.

Table 2.4 Research Works Based on DOS/DDOS

Protection

	olection			
Ref Problem	Solution			
eren				
ce				
[26] Issue of DDOS	Presented Statistical			
attack detection.	information with self-			
	organizing maps method to			
	categorize traffic flow as			
	normal or malicious.			
[27] Issues of DDOS	The rate and pattern of			
attack detection	content requests are			
and response in	examined to identify DDOS			
the content-	attacks.			
oriented network.				
[28] The problem of	Use Open Flow to identify			
DDOS attack	and drop DDOS traffic			
detection and	based on traffic flow			
response.	capacity.			
[29] To Overcome the	9] To Overcome the Introduced DDOS blocking			
problem of	solution for SDN-managed			
detecting and	network.			
blocking DDOS				
attacks by botnet				
[30] Problems of DOS	roduced Entropy-based rule			
at the Controller	and Correlation-based rule			
and performance	to identify DDOS attacks			
flexibility.	against SDN controllers.			
[31) To stop Threat	Presented an optimized			
targeting and	technique to Classify and			
	identify malicious traffic			
SDN controller.	flow based on Traffic			
	Statistics.			
	The introduced firewall			
attack	security system is an			
identification and				
mitigation on	protecting Open Stack cloud			
Open Stack	infrastructures.			
Cloud.				
[33] Issues of network	Implemented security			
performance due	scheme on SDN model, at			
to DOS cyber-	the client-side.			
attacks.				
[34] Ineffectiveness of	Applied feature selection			
machine learning	methods for data pre-			

classifiers in	processing.
classifying DOS	3
traffic	
redundancy.	
[35] Issues of traffic	ed mean entropy andthe rate
overload at the	of percentage drop to stop
controller.	the occurrence of DDOS
	attacks.
[36] Issue of DOS	Introduced a NID scheme to
attack flooded a	improve the performances of
the controlle	the SDN controllers against
affecting SDN	DOS attacks.
performance.	
[37] SDN lacked an	Proposed machine learning-
effective	based NIDS methods for
mechanism to	detecting. Introduced
detect maliciou	multiple controller systems
traffic. The	to tackle new incoming
problem of using	packets. Introduced feature
single controller	selection methods to a
Issue of correlated	produced redundancy-free
data in a	dataset.
available dataset.	

III. SDN Security Design and Services

It's important to consider SDN security challenges and middle boxes when designing and deploying SDN architecture. SDN security problems, middle boxes, and application service necessities to identify the vibrant platforms in which SDN will be deployed e.g. cloud, data centre, and mobile. SDN characteristics are provided to incorporate network layer with security middle boxes such as intrusion prevention system or Firewall to stop intruders at the network end. To offer protected visibility of networks through dynamic and multiple networks, innovative security designs will be essential. SDN-based Security models or applications have related to improving network security when integrated with intrusion detection systems or prevention systems. In Table 2.5, a summary of the problems and solutions identified for each research work provided under SDN Security design and services for Network Security Enhancements in SDN is presented.

Table 2.5 Research Works Based on SDN Security
Design and Services

Deferre	Design un			
Reference		Solution		
[40]		SDN architecture adds tags to		
	•	outgoing traffic flow to provide		
		correct context.		
	reinforcement in the			
	presence of SDN			
	Architectures.			
[41]	_	Tag and tunnel traffic between		
	SDN-specific traffic	SDN architecture.		
	steering.			
[42]	To overcome the	Introduced dynamic security		
	problem of Quality	traversal scheme with SDN		
	of Service assurance	models.		
	in security traversal.			
[43]	To Restrict secret	Introduced Multi-level security		
	traffic channels.	network switch using Open		
		Flow filter.		
[44]	To control network	Used Open Flow to implement		
	traffic flow through	trigger policy for identifying		
	security monitoring	and handling traffic paths.		
	applications.			
[45]	To improve	Introduced SDN Application to		
	monitoring activities	control and direct traffic flows		
	for cyberspace	through security services.		
	networks.			
[46]	Use SDN to protect	Secure traffic analysis system		
		to trace malicious behaviors on		
	from intrusions.	internal networks.		
[47]	Problems of data	Presented an SDN-based		
		forensic model that monitors,		
	*	investigates and tracks network		
		behaviors.		
	nodes.			
[48]		Presented an SDN-based multi-		
r.~j	program network			
	μ –	DDOS detection system to		
	eliminate the need	_		
		infrastructure.		
	vendor-specific	inirasa acture.		
	hardware.			
	maruwarc.			

IV. AUTHENTICATION, AUTHORIZATION, AND ACCOUNTING (AAA)

AAA signifies Authentication, Authorization, and Accounting. It involves in a group of protocols that

facilitate network access control [49]. Scott-Hayward et al. defined AAA as a structure for logically controlling access to computer data and information, implementing policies/rules, checking network usage, and offering the data essential to bill for service requests. Moreover, accounting stands for record-keeping, monitoring, and tracing of client events on a computer network.

In an authentication and access control were introduced as a solution to the problem of unauthorized access in SDN models. The capability of an Open Flow-based SDN to aid access control to match services to identities could be involved as an SDN network security enhancement. An SDN-based authentication, authorization, and accounting system are introduced in to improve network security. In Table 2.6, a summary of the problems and the solutions proposed for each research work presented under Authentication, Authorization, and Accounting for Network Security Enhancements in SDN is conveyed.

Table 2.6 Research Works Based on Authentication, Authorization, and Accounting.

. eference	Problem	Solution				
[50]	Reinforce network	Provided Open Flow				
	security by SDN-driven	cantered controller				
	access control.	with authentication.				
[51]	To Provide robust,	Presented a				
		certificate model that				
	management for SDN	encloses				
	*	authentication,				
	facilities.	authorization, and				
	accounting for SD					
		experimental				
		facilities.				
[52]	Issue of unauthorized	Offered a				
	activities in SDN.	measurement system				
		that assembles				
		network traffic flow				
		factors to detect				
		unauthorized				
		activities using				
		machine learning.				
[53]	Issue of sophisticated					
	attack traffic and a large					
	number of users	-				
	accessing an	massive attack traffic				

unauthorized	network	flow	in	an	SDN
resource.		netwo	rk.		

V. CONCLUSION AND FUTURE SCOPE

We can conclude this paper by Applying SDN to improve performance, scalability of network is being widely used in industry for some years, for both wired and wireless connections. One of the challenges of SDN is to ensure the quality of service for various functions of network by resisting against intrusions, malicious attacks and liabilities, how to develop an authentication between a control plane and a data plane and how the sufficient security services can be provided in networks in future in an economic way.

ACKNOWLEDGMENT

Authors would like to welcome the reviewers comments and suggestions to carry out this research work. Authors would also like to thanks authorities of SSGBCOET College of engineering, Bhusawal for providing the research laboratory to carry out this research.

REFERENCES

- [1] E.Lyczkowski, C.Sauer, N.Brödner, W.Kiess, and M.Schmidt, "SDNcontrolledvisiblelightcommu nicationclustersfor AGVS," in *Proc. Joint Eur. Conf. Netw. Commun. 6GS ummit (EuCNC/6GS ummit)*, 2021, pp.154–159.
- [2] R.Mohammadi, R.Javidan, M.Keshtgari, and N.Ri khtegar, "SMOTE: Anintelligent SDN-based multi-objective traffic engineering technique for telesurgery," *IETEJ.Res.*, vol.0, pp.1–11, Mar. 2021.
- [3] W.Xia,J.Zhang,T.Q.S.Quek,S.Jin,andH.Zhu, "MobileedgecloudbasedindustrialInternetofThin gs:ImprovingedgeintelligencewithhierarchicalS DNcontrollers," *IEEEVeh.Technol.Mag.*,vol.15, no.1,pp.36–45,Mar.2020.
- [4] A.Yazdinejad,R.M.Parizi,A.Dehghantanha,Q.Z hang,andK.-K.-R.Choo, "An energy efficient SDN controller architecture for IoT networks with blockchainbased security," *IEEETrans. Services Comput.*, vol.13,no.4,pp.625–638,Jul.2020.

- [5] D.V.Medhane,A.K.Sangaiah,M.S.Hossain,G.M uhammad,andJ.Wang,"Blockchainenableddistr ibutedsecurityframework for next generation IoT:An edgecloudandsoftware-definednetwork-integrated approach, "IEEE InternetThingsJ.,vol.7,no.7,pp.6143–6149, Jul.2020.
- [6] A.Rahman,M.J.Islam,A.Montieri,M.K.Nasir,M. M.Reza,S.S.Band,A.Pescape,M.Hasan,M.Sook hak,andA.Mosavi, "SmartBlock-SDN:An optimized blockchain SDN framework for resourcemanagementinIoT," *IEEEAccess*,vol.9, pp.28361–28376,2021
- [7] P. T. Duy, H. D. Hoang, D. T. T. Hien, N. B.nh, and V.-H. Pham, "SDNLog-foren: Ensuring the integrity and tamper resistance of log files for SDN forensics using blockchain," in Proc. 6th NAFOSTED Conf. Inf. Comput. Sci. (NICS), Dec. 2019, pp. 416–421.
- [8] Scott-Hayward, S., Natarajan, S., and Sezer, S. (2016). A Survey of Security in Software Defined Networks. IEEE Communications Surveys and Tutorials, 18(1),623-654. https://doi.org/10.1109/COMST.2015.2453114
- [9] Giotis, K., Argyropoulos, C., Androulidakis, G., Kalogeras, D., and Maglaris, V. (2013).Combining OpenFlow and sFlow for an effective and scalable Anomaly Detection and Mitigation mechanism on SDN Environments, Computer Networks
- [10] Hand, R., Ton, M., and Keller, E. (2013) "Active Security," ACM SIGCOMM Hot Topics in Networks.Skowyra, R., Bahargam, S., and Bestavros, A. (2013). "SoftwareDefined IDS for Securing Embedded Mobile Devices,".[Online].
- [11] Wang, Y., Zhang, Y., Singh, V., Lumezanu, C., and Jiang, G. (2013) "NetFuse: Short-circuiting traffic surges in the cloud," IEEE International Conference on Communications (ICC). IEEE, pp. 3514–3518
- [12] Zaalouk, A., Khondoker, R., Marx, R., and Bayarou, K. (2014). "OrchSec: An orchestrator-based architecture for enhancing network-security using Network Monitoring and SDN Control functions," Network Operations and Management Symposium (NOMS), IEEE. IEEE, 2014, pp. 1–9.
- [13] Tantar, E., Palattella, M. R., Avanesov, T., Kantor, M., and Engel, T. (2014). Cognition: A

- Tool for Reinforcing Security in Software Defined Networks, ser. EVOLVE-A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation V. Springer, pp. 61–78
- [14] Sangodoyin, A., Babagana, M., Irfan, A., Jules, P. D. (2018). An approach to detecting distributed denial of service attacks in software defined Networks. International Conference on Future Internet of Things and Cloud.DOI 10.1109/FiCloud.2018.00069. pp. 436 – 443.
- [15] Jankowski, D. and Marek, A. (2016). On Efficiency of Selected Machine Learning Algorithms for Intrusion Detection in Software Defined Networks.International Journal of Electronics and Telecommunications. VOL. 62, No. 3, pp. 247 -252. DOI: 10.1515/eletel- 2016-0033.
- [16] Muthamil, K. S. and Deepalakshm, P. (2020). A two level security mechanism to detect a DDoS flooding attack in software-defined networks using entropy-based and C4.5 technique. Journal of High Speed Networks. No. 26, pp 55–76. DOI 10.3233/JHS-200630.
- [17] Xing, T., Xiong, Z., Huang, D., and Medhi, D. (2014). "SDNIPS: Enabling Software-Defined Networking Based Intrusion Prevention System in Clouds," pp. 308–311.
- [18] Xing, T., Huang, D., Xu, L., Chung, C.J., and Khatkar, P. (2013). "Snortflow: Aopenflow-based intrusion prevention system in cloud environment," Research and Educational Experiment Workshop (GREE), 2013 Second GENI. IEEE, pp. 89–92.
- [19] Shin, S., Yegneswaran, V., Porras, P., and Gu, G. (2013) ."AVANT-GUARD: scalable and vigilant switch flow management in softwaredefined networks," Proceedings of the 2013 ACM SIGSAC conference on Computer & Communications Security. ACM, pp. 413–424.
- [20] Kampanakis, P., Perros, H., and Beyene, T. (2014). "SDN-based solutions for Moving Target Defense network protection," A World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2014IEEE 15th International Symposiumon. IEEE, pp.1–6.
- [21] Kaur, G. and Prinima, G. (2018).Proposed Optimization Technique to detect DDOS Attacks on Software Defined Networks.4th International

- Conference on Computers and Management (ICCM).281-287.
- [22] Nayak, A. K., Reimers, A., Feamster, N., and Clark, R. (2009). "Resonance: dynamic access control for enterprise networks," Proceedings of the 1st ACM workshop on Research on enterprise networking. ACM, pp. 11–18.
- [23] Shin, S., Yegneswaran, V., Porras, P., and Gu, G. (2013) ."AVANT-GUARD: scalable and vigilant switch flow management in softwaredefined networks," Proceedings of the 2013 ACM SIGSAC conference on Computer & Communications Security. ACM, pp. 413–424.
- [24] Ramachandran, A., Mundada, Y., Tariq, M. B., and Feamster, N. (2009). "Securing enterprise networks using traffic tainting,".
- [25] Jafarian, J. H., Al-Shaer, E., and Duan, Q. (2012). "Openflow random host mutation: transparent moving target defense using software defined networking, "Proceedings of the first workshop on Hot topics in softwaredefined networks.ACM,pp.127–132.
- [26] Jeong, C., Ha, T., Narantuya, J., Lim, H., and Kim, J. (2014). "Scalable network intrusion detection on virtual SDN environment," in Cloud Networking (CloudNet), International Conference on. IEEE, pp. 264–265.
- [27] Chung, C.J., Khatkar, P., Xing, T., Lee, J., and Huang, D. (2013). "NICE: Network intrusion detection and countermeasure selection in virtual network systems," IEEE Transactions on Dependable and Secure Computing, p.1.
- [28] Xing, T., Huang, D., Xu, L., Chung, C.J., and Khatkar, P. (2013). "Snortflow: Aopenflow-based intrusion prevention system in cloud environment," Research and Educational Experiment Workshop (GREE), 2013 Second GENI. IEEE, pp. 89–92.
- [29] Xing, T., Xiong, Z., Huang, D., and Medhi, D. (2014). "SDNIPS: Enabling Software-Defined Networking Based Intrusion Prevention System in Clouds," pp. 308–311.
- [30] Manso, P., Jose, M. and Carlos, S. (2019). SDN-Based Intrusion Detection System for Early Detection and Mitigation of DDoS Attacks.Information-Open Access Journal.10.106.1-17.
- [31] Mehdi, S. A., Khalid, J., and Khayam, S. A. (2011). "Revisiting traffic anomaly detection

- using software defined networking," Recent Advances in Intrusion Detection. Springer, pp.161–180.
- [32] Dotcenko, S., Vladyko, A., and Letenko, I. (2014). "A fuzzy logic-based information security management for software-defined networks, "Advanced Communication Technology (ICACT), 2014 16th International Conference on IEEE, pp. 167–171.
- [33] Braga, R., Mota, E., and Passito, A. (2010). "Lightweight DDoS flooding attack detection using NOX/OpenFlow," IEEE 35th Conference on Local Computer Networks (LCN). IEEE, pp. 408–415.
- [34] Lim, S., Ha, J., Kim, H., Kim, Y., and Yang, S. (2014). "A SDN-oriented DDoS blocking scheme for botnet-based attacks," in Ubiquitous and Future Networks (ICUFN), InternationalConf on. IEEE,pp. 63–68.
- [35] Suh, J., Choi, H., Yoon, W., You, T., Kwon, T., and Choi, Y. (2010). "Implementation of Content-oriented Networking Architecture (CONA): A Focus on DDoS Countermeasure," European NetFPGA Developers Workshop
- [36] Yu Hunag, C., MinChi, T., YaoTing, C., YuChieh, C., and YanRen, C. (2010)."A novel design for future on-demand service and security," in Communication Technology (ICCT), IEEE International Conference on, pp. 385–388.
- [37] Al-adaileh, M., A. A., Mohammed, A., Yung-Wey, C., and Ahmed, A. (2018). Proposed statistical-based approach for detecting distribute denial of service against the controller of software defined network (SADDCS). MATEC Web of Conferences.218,2012.https://doi.org/10.1051/matecconf/201821802012.
- [38] Kaur, G. and Prinima, G. (2018).Proposed Optimization Technique to detect DDOS Attacks on Software Defined Networks.4th International Conference on Computers and Management (ICCM).281-287.
- [39] Sooraj, V. H. and Prabhakar, K. (2019). SDN based Intrusion Detection System for OpenStack Cloud. International Journal of Innovative Technology and Exploring Engineering (IJITEE). 8, 9, 2443-2449.

- [40] Manso, P., Jose, M. and Carlos, S. (2019). SDN-Based Intrusion Detection System for Early Detection and Mitigation of DDoS Attacks. Information-Open Access Journal. 10.106.1-17.
- [41] Kumar, S. D., Raihan, U. and Mahbubur, R. (2020).Performance Analysis of SDN-Based Intrusion Detection Model with Feature Selection Approach.International Joint Conference on Computational Intelligence, Algorithms for Intelligent.pp.483 494.
- [42] Ramkumar, M. P., Emil, S. and Bavani, K. (2020).Statistical Approach Based Detection of Distributed Denial of Service Attack in a Software Defined.International Conference on Advanced Computing & Communication Systems (ICACCS).No. 6.pp. 380 -385.
- [43] Ahmad, F. A., Fatty, M. S., Ashraf, T. and Mohamed, H A. (2020). Performance Analysis and Evaluation of Software Defined Networking Controllers against Denial of Service Attacks. Journal of Physics: Conference Series.Conf. Ser. 1447 012007.
- [44] Ajiya, A. A., Musa, A. B. and Aliyu, M. M. (2021). Solution Model for Intrusion Detection in Software Defined Networking (SDN) using Machine Learning. Quest Journals: Journal of Software Engineering and Simulation, Volume 7,Issue 8, pp: 40-47.
- [45] Scott-Hayward, S., Natarajan, S., and Sezer, S. (2016). A Survey of Security in Software Defined Networks. IEEE Communications SurveysandTutorials,18(1),623654.https://doi.or g/10.1109/COMST.2015.2453114
- [46] Shin, S. and Gu, G. (2012). "CloudWatcher: Network security monitoring using OpenFlow in dynamic cloud networks (or: How to provide security monitoring as a service in clouds?)," IEEE: International Conference on Network Protocols (ICNP). pp. 1–6
- [47] Fayazbakhsh, S. K., Chiang, L., Sekar, V., Yu, M., and J. Mogul, C. (2014). "Enforcing networkwide policies in the presence of dynamic middlebox actions using flowtags," in Proc. NSDI.
- [48] Qazi, Z. A., Tu, C. C., Chiang, L., Miao, R., Sekar, V., and Yu, M. (2013). "SIMPLEfyingMiddlebox Policy Enforcement Using SDN." ACM SIGCOMM.

- [49] Chen, Y. J., Lin, F. Y., and Wang, L. C. (2014). "Dynamic Security Traversal in OpenFlow Networks with QoS Guarantee," International Journal of Science and Engineering, vol. 4, no. 2, pp. 251–256.
- [50] Liu, X., Xue, H., Feng, X., and Dai, Y. (2011). "Design of the multi-level security network switch system which restricts covert channel," International Conference on Communication Software and Networks (ICCSN). IEEE, pp. 233–237
- [51] Ballard, J.R., Rae, I., and Akella, A. (2010) "Extensible and scalable network monitoring using Open SAFE," Proc. INM/WREN.
- [52] Hirono, S., Yamaguchi, Y., Shimada, H., and Takakura, H. (2014). Development of a secure traffic analysis system to trace maliciousactivities on internal networks, "Computer Software and Applications Conference (COMPSAC), IEEE, pp. 305–310.
- [53] Bates, A., Butler, K., Haeberlen, A., Sherr, M. and Zhou, W. (2014). "Let SDN Be Your Eyes: Secure Forensics in Data Center Networks," Workshop on Security of Emerging Networking Technologies (SENT).
- [54] Niyaz, Q., Weiqing, S. and Ahmad, Y. J. (2016). A Deep Learning Based DDoS Detection SysteminSoftwareDefinedNetworking(SDN).htt ps://www.researchgate.net/publication/3106716 61.
- [55] Toseef, U., Zaalouk, A., Rothe, T., Broadbent, M., and Pentikousis, K. (2014). "CBAS: Certificate-based AAA for SDN experimental facilities," European Workshop on Software Defined Networks (EWSDN). IEEE, pp.91–96.