Analysis Of Labour Productivity for Building Construction Industry

NILESH S. PATIL¹, ADITYA A. SAPKALE², ROHIT R. SHINDE³, PIYUSH G. GAVIT⁴, NEHA V. BAGDIYA⁵

^{1,2,3,4}Student B.E., Dept. of Civil Engineering, D. Y. Patil College of Engineering Akurdi, Pune ⁵Assistant Professor, Dept. of Civil Engineering, D. Y. Patil College of Engineering Akurdi, Pune

Abstract- Construction project contractors are seeking for ways to reduce waste and boost profitability because profit margins are always narrowing and competition is growing. The use of statistical techniques holds the potential of minimising, if not completely eliminating, non-value-added activity, despite the fact that numerous strategies have been created to increase the efficacy and efficiency of the construction process. One of the most important businesses in every economy is construction. It makes a sizable contribution to the national economy and employs a sizable number of people. The scientific study of the conservation of human resources in the quest for the most effective way to complete a task is known as time and motion study (sometimes known as motion and time studies; the phrases are interchangeable). Time and motion studies are conducted to assess human efficiency through improved planning and reliable employee incentive schemes.

Index Terms- Labour Productivity, Time Motion, Work Study, Regression Analysis

I. INTRODUCTION

Work study might be characterized as the investigation of a vocation to locate the favoured strategy for doing it and furthermore deciding the standard time to perform it by the liked (or given) technique. Work study, hence, contains two territories of study: technique study (movement study) and time study (work estimation). So as to comprehend the job of work study, we have to comprehend the job of technique study and that of time study. Technique study (likewise some of the time called Work Method Design) is generally used to improve the strategy for doing work. It is similarly relevant to new openings. At the point when applied to existing employments and existing occupations, technique study intends to discover better strategies for carrying out the responsibilities that are affordable and safe, require less human exertion, and need shorter prepare/set away time. The better strategy includes the ideal utilization of best materials and proper labour with the goal that work is acted in efficient way prompting expanded asset usage, better quality and lower costs. It can along these lines be expressed that through technique study we have an orderly method for creating human asset adequacy, giving high machine and gear use, and utilizing materials. Time study, then again, gives the standard time, that is the time required by specialist to finish a vocation by the standard strategy. Standard occasions for various employments are fundamental for legitimate estimation of

- Manpower, apparatus and hardware necessities
- Daily, week by week or month to month prerequisite of materials
- Production cost per unit as a contribution to all the more likely settle on or purchase choice
- Labour spending plans
- Worker's effectiveness and make motivating force wageinstallments.

By the utilization of strategy study and time study in any association, we would thus be able to accomplish more prominent yield at less expense and of better quality, and henceforth accomplish higherprofitability

Movement and time study can decrease and control costs, improve working conditions and condition, and rouse individuals. The essential object is to improve the work and to decrease squander.

- 1. Movement examination methods
- 2. Time study methods
- 3. Employments of time guidelines.

Assembling the board and building understudies are being set up to structure work stations, create productive and compelling work techniques, set up time guidelines, balance sequential construction systems, gauge work costs, create viable tooling, select appropriate gear, and design fabricating offices. In any case, the most significant thing is to figure out how to prepare creation laborers in these abilities and procedures so they can become movement and time cognizant. Movement study offers an incredible potential for reserve funds in any region of human exertion. We can decrease the expense by consolidating components of one assignment with components of another. Movement study utilizes the standards of movement economy to create work stations that are amicable to the human body and effective in their activity. Movement study must consider the administrator's security Time study can lessen cost fundamentally well. benchmarks are objectives to take a stab at. On the off chance that extra generation yield is required, don't purchase more hardware, don't include a subsequent move, and don't assemble another plant. Simply set up a movement and time study program. Movement and time study is viewed as the foundation of mechanical building, innovation, and modern administration programs in light of the fact that the data that time thinks about create influences such a large number of different zones, including the accompanying:

- 1. Costevaluating
- 2. Generation and stockcontrol
- 3. Plantformat
- 4. Materials and procedures
- 5. Quality
- 6. Wellbeing

Movement study starts things out before the setting of time models. Movement study is a nitty gritty examination of the work strategy with an end goal to improve it.

II. METHODOLOGY WORK STUDY

To understand the work of work studies, we need to understand the work of technology studies and time

studies. Study technique (also called Work Method Design here) is mostly used to improve the strategy for doing work. It is similarly suitable for new openings. As the study of technology is applied to existing occupations and jobs, it intends to discover better strategies for performing duties that are conservative and safe, require less human effort, and require less preparation/dedication time. Better engineering involves the ideal use of the best materials and the right work to get the job done efficiently, resulting in increased asset utilization, better quality, and lower costs. It can therefore be stated that by studying technology we have a precise method of creating the adequacy of human assets, high utilization of machinery and hardware, and utilization of materials. The time study then again gives the standard time, which is the time required by the worker to complete the occupation according to the standard strategy. Standard opportunities for different occupations are important for a legitimate estimate

- Manpower, machinery and equipment requirements
- Daily, weekly or monthly material needs
- Production cost per unit as an input for better decision making or purchasing
- Work budgets
- Efficiency of workers and payment of incentive wages.

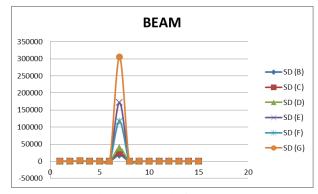
A. Method Study Procedure

The following general steps describe the procedure for conducting a method study.

- 1. Select the job to which method the study should be applied.
- 2. Get information and record it.
- 3. Examine the information critically.
- 4. Create the most functional, prudent and successful strategy by thinking about the real obstacles of the circumstances.
- 5. Install the new method as standard procedure.
- 6. Maintain standard procedure by regular monitoring.

III. PROBLEM STATEMENT

Improve productivity using correlation and regression method and reveal the cause of low productivity. Higher productivity in an organization leads to national prosperity and a better standard of living for the entire community. Productivity improvement using time and motion studies is used in construction and related industries. Work study consists of 2 aspects, method study and measurement, which when effectively applied lead to higher productivity. The main problem of construction productivity depends on the way labor is used. Work productivity may be higher or lower depending on factors such as availability of workload, material, work tools, energy availability, work efficiency, motivation level, training level of working conditions (comfortable or bad) etc. For the above target 5 days of observation are recorded from Sinhgad Guardian, Paranjape Broadway Wakad & Pristine Equilife.


- 1) Study Area 1- Sinhgad Guardian
- 2) Study Area 2 Paranjape Broadway Wakad
- 3) Study Area 3 Pristine Equilife

IV. RESULT AND DISCUSSION

A. Study Area 1 - Sinhgad Guardian Table 1 Data Analysis - Beam

DATA ANALYSIS						
SD	SD	SD	SD	SD	SD	SD
(A)	(B)	(C)	(D)	(E)	(F)	(G)
163.	132.	159.	196.	414.	342.	552.
7442	7107	7152	8711	2902	4310	4501
288	77	67	39	978	25	879
MA	MA	MA	MA	MA	MA	MA
X(A)	X(B)	X(C)	X(D)	X(E)	X(F)	X(G)
900	1300	633	870	1200	990	1895
MIN	MIN	MIN	MIN	MIN	MIN	MIN
(A)	(B)	(C)	(D)	(E)	(F)	(G)
240	68	0	-58	0	0	0
VAR	VAR	VAR	VAR	VAR	VAR	VAR
(A)	(B)	(C)	(D)	(E)	(F)	(G)
2681	1761	2550	3875	1716	1172	3052
2.17	2.15	8.96	8.24	36.4	59.0	01.2
246	04	64	55	508	07	101
ME	ME	ME	ME	ME	ME	ME
DIA	DIA	DIA	DIA	DIA	DIA	DIA
N(A)	N(B)	N(C)	N(D)	N(E)	N(F)	N(G)
		350.		534.	450.	1476
		6346		8404	2483	.965
564	250	69	181	847	67	075

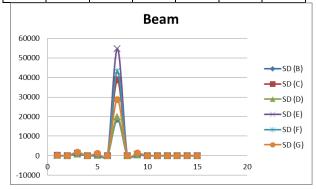
COR	COR	COR	COR	COR	COR	COR
REL	REL	REL	REL	REL	REL	REL
C12	C13	C14	C15	C16	C17	C23
		-	-	-	-	-
0.46	-	0.04	0.19	0.19	0.19	0.27
0133	0.06	8235	9447	7790	2359	0617
563	1716	2	4	76	34	238
COR	COR	COR	COR	COR	COR	COR
REL	REL	REL	REL	REL	REL	REL
C24	C25	C26	C27	C34	C35	C36
-	-	-	-			
0.22	0.31	0.31	0.12	0.39	0.52	0.52
0.22 9976	0.31 9229	0.31 9229	0.12 9478	0.39 4306	0.52 6601	0.52 3347
9976	9229	9229	9478	4306	6601	3347
9976 46	9229 5	9229 4	9478 3	4306 435	6601 45	3347 574
9976 46 COR	9229 5 COR	9229 4 COR	9478 3 COR	4306 435 COR	6601 45 COR	3347 574 COR
9976 46 COR REL	9229 5 COR REL	9229 4 COR REL	9478 3 COR REL	4306 435 COR REL	6601 45 COR REL	3347 574 COR REL
9976 46 COR REL C37	9229 5 COR REL C45	9229 4 COR REL C46	9478 3 COR REL C47	4306 435 COR REL C56	6601 45 COR REL C57	3347 574 COR REL C67

Graph 1 Data Analysis – Beam

Productivity Table

A		No.O			Prod	Non
ct	No.	f	No.	Expec	uctiv	Produc
iv	Of	Obser	Of	ted	e	tive
it	Wor	vatio	Sam	Produ	Work	Work
у	kers	ns	ples	ctivity	%	%
1	6	9	54	89%	80	17.7
2	6	9	54	89%	79	21
3	6	8	48	89%	80	20
4	6	9	54	89%	74.5	25.5
5	6	8	48	89%	78.5	21.5

After tracking all the activities at Sinhgad Guardian and from the productivity table above we conclude


that there is 21.14% unproductive work on site and 78.86% productive work on site.

B. Study Area 2 - Paranjape Broadway Wakad

Table 2 Data analysis -Beam

DATA	ANAL	YSIS				
SD						
(A)	(B)	(C)	(D)	(E)	(F)	(G)
1757	136.	196.	140.	233.	207.	169.
.360	0252	6806	7079	8822	7793	2474
7	2	0	5	43	1	96
MA						
X(A)	X(B)	X(C)	X(D)	X(E)	X(F)	X(G)
7372	990	1025	775	1120	995	1825
MIN						
(A)	(B)	(C)	(D)	(E)	(F)	(G)
	381.	105.	265.	320.	284.	1131
	8042	1853	6340	0624	3411	.357
400	7	0	3	42	8	08
VAR						
(A)	(B)	(C)	(D)	(E)	(F)	(G)
3088	1850	3868	1979	5470	4317	2864
316.	2.86	3.26	8.72	0.90	2.24	4.71
62	1	0	9	40	3	49
ME						
DIA						
N(A)	N(B)	N(C)	N(D)	N(E)	N(F)	N(G)
2194	534.	544.	458.	598.	531.	1412
.373	9564	3814	3314	7235	9017	.904
02	8	8	6	89	6	69
COR						
REL						
C12	C13	C14	C15	C16	C17	C23
0.22	0.54	0.81	0.70	0.70	0.30	0.54
6520	9164	2050	5819	5819	4160	5829
01	7	0	2	20	1	46
COR						
REL						
C24	C25	C26	C27	C34	C35	C36
0.25	0.65	0.65	0.66	0.59	0.83	0.83
7726	1534	1534	9049	9344	0917	0917
36	0	0	4	83	61	606
COR						
REL						
C37	C45	C46	C47	C56	C57	C67
0.49	0.73	0.73	0.34	0.43	0.65	0.65

				2211	6051	6051	l
794	04	04	9		99	992	

Graph 2 Data analysis -Beam

Productivity Table

A	No.	No.O	No.	Expe	Prod	Non
ct	Of	f	Of	cted	uctiv	Produ
iv	Wo	Obse	Sa	Produ	e	ctive
it	rker	rvati	mpl	ctivit	Wor	Work
у	S	ons	es	у	k %	%
1	6	9	54	89%	80	17.7
2	6	9	54	89%	79	19
3	6	8	48	89%	80	20
4	6	9	54	89%	74.5	25
5	6	8	48	89%	78.5	21

After observing all the activities at Paranjape Broadway Wakad and from the productivity table above we conclude that there is 20.54% unproductive work and 79.46% productive work at the site.

C. Study Area 3 - Pristine Equilife

Table 3 Data analysis –Beam

DATA ANALYSIS						
SD	SD	SD	SD	SD	SD	SD
(A)	(B)	(C)	(D)	(E)	(F)	(G)
1729	96.4	220.	163.	244.	224.	180.
.878	6232	2736	2344	5372	2987	8397
15	9	9	8	93	3	90
MA	MA	MA	MA	MA	MA	MA
X(A)	X(B)	X(C)	X(D)	X(E)	X(F)	X(G)
7372	1100	1125	900	1200	1100	1950
MIN	MIN	MIN	MIN	MIN	MIN	MIN
(A)	(B)	(C)	(D)	(E)	(F)	(G)
503.		105.				1208
2775		1853	338.			.847
92	560	0	1	380	335	29

| VAR |
|------|------|------|------|------|------|------|
| (A) | (B) | (C) | (D) | (E) | (F) | (G) |
| 2992 | 9304 | 4852 | 2664 | 5979 | 5030 | 3270 |
| 478. | .980 | 0.49 | 5.49 | 8.48 | 9.92 | 3.02 |
| 41 | 9 | 8 | 6 | 79 | 1 | 98 |
| ME |
| DIA |
N(A)	N(B)	N(C)	N(D)	N(E)	N(F)	N(G)
2574	671.			708.	591.	1509
.890	7397		517.	6855	1491	.678
93	7	591	6556	97	2	98
COR						
REL						
C12	C13	C14	C15	C16	C17	C23
0.27	0.58	0.78	0.75	0.71	0.31	0.61
4758	8898	4236	6509	3582	1647	5842
41	1	0	3	84	2	85
COR						
REL						
C24	C25	C26	C27	C34	C35	C36
0.27	0.66	0.69	0.68	0.51	0.85	0.86
3846	4511	8006	3198	5448	5295	6109
30	9	3	1	29	0	74
COR						
REL						
C37	C45	C46	C47	C56	C57	C67
0.51	0.63	0.58	0.22	0.99	0.64	0.66
9933	0810	4103	5485	5729	0344	0266
76	06	72	71	927	98	425

Graph 3 Data analysis –Beam

• Productivity Table

A	No.	No.Of	No.	Expect		Non
ct	Of	Obser	Of	ed	Produ	Prod
iv	Wor	vation	Sam	Produc	ctive	uctiv
it	kers	S	ples	tivity	Work	E

у					%	Work
						%
1	8	7	56	88%	79	18
2	8	7	56	88%	80	20
3	8	7	56	88%	79	21
4	8	7	56	88%	75	25
5	8	7	56	88%	78	22

After observing all activities at Pristine Equilife and from the productivity table above, we conclude that there is 21.2% non-productive work on site and 78.8% productive work on site.

Table 4 Labour Productivity

S/	Trades	Unit of	Average
N		Measure	Trade
1		ment	Productivity
1	Formwork	m ² /man/	2.3
	(Tableform for	hour	
	slab/beam)		
2	Mesh placing and	kg/man/	142
	fixing	hour	
	(Slab)		
3	Concrete	m³/man/	1.85
	placement	hour	
	(Slab, using		
	stationary		
	concrete pump)		
4	Drywall	m ² /man/	2.25
	(12 mm thick	hour	
	board)		
5	Painting	m ² /man/	5.5
	(Emulsion 3 coats,	hour	
	using roller)		
6	Timber door	num/ma	0.34
	installation	n/hour	
	(Dimensions 2100		
	mm x 950 mm)		
7	Wall tiling	m^2 /	1.02
	(Using adhesive to	man/hou	
	lay ceramic tiles)	r	
8	Floor tiling	m ² /man/	2.03
	(Using adhesive to	hour	
	lay ceramic tiles)		
9	Suspended ceiling	m ² /	5.04
	(Exposed grid	man/hou	

	system)	r	
10	Air-con		
	ducting (Metal)		
a)	Formed and	m ² /man/	2.9
	insulated on-site	hour	
b)	Pre-formed and	$m^2/$	4.2
	pre-insulated	man/hou	
		r	
11	Electrical conduit	m/man/h	2.71
	installation	our	
	(20 mm diameter		
	uPVC electrical		
	conduit fixed to		
	ceiling)		
12	Water pipe	m/man/h	1.65
	installation	our	
	(20 mm diameter		
	copper pipe		
	concealed in wall)		

CONCLUSION

- A comprehensive study can be carried out for various activities such as flooring, excavation and painting etc.
- It is also possible to use the work study concept for various construction activities to sample work and improve productivity on site.
- A study on motivation, improvement of work techniques, use of good machines and labor conflict can be done through questionnaires and sample surveys to improve productivity.
- according to the analysis in all case studies for the beam, the creation of the bottom cap takes more time than other activities (SD B)
- After monitoring all the activities at Sinhgad Guardian and from the productivity table given, we conclude that there is 21.14% unproductive work on site and 78.86% productive work on site.
- After observing all the activities at Paranjape Broadway Wakad and from the given productivity table, we conclude that there is 20.54% unproductive work on site and 79.46% productive work on site.
- After observing all activities at Pristine Equilife and from the given productivity table, we conclude that there is 21.2% unproductive work on site and 78.8% productive work on site.

REFERENCES

- [1] Paul Chan "Factors Affecting Labour Productivity In The Construction Industry" 18th Annual ARCOM Conference, 2-4 September 2002, Vol. 2
- [2] Mr. Sujay Biswas "Improving Productivity
 Using Work Study Technique" (IJREAS) Vol.
 6 Issue 11, November 2016
- [3] Aparna. B "Influential Factors Affecting Labour Productivity in Concreting of Columns" ISSN Volume 5, Issue 2, April 2015
- [4] Mahesh K.S "Factors Affecting Labour Productivity in Construction Industries" IJIR, Vol-3, Issue-6, 2017
- [5] Nithya C Joseph "Assessment of factors influencing Labour Productivity in Construction- A Review" (IJERT) Vol. 6 Issue 12, December – 2017
- [6] Patange Vidyut Chandra "An Effort To Apply Work And Time Study Techniques In A Manufacturing Unit For Enhancing Productivity" ISSN Vol. 2, Issue 8, August 2013
- [7] Nguyen Van Tam "Factors Affecting Labour Productivity Of Construction Worker On Construction Site: A Case Of Hanoi" NUCE. 12
 (5): 127–138 30 August 2018
- [8] Paul TY Preenen "Labour productivity and innovation performance: The importance of internal labour flexibility practices" Economic and Industrial Democracy March 26, 2015
- [9] Nasiru Zakari Muhammad "Evaluation Of Factors Affecting Labour Productivity In Construction Industry: A Case Study" SSN 2180–3722 12 November 2015
- [10] Brent G. Hickson "Factors affecting Construction Labour Productivity in Trinidad and Tobago" ISSN Vol.42, No.1, April/May 2014
- [11] Prachi R. Ghate "Importance Of Measurement Of Labour Productivity In Construction" ISSN Volume: 05 Issue: 07 | Jul-2016
- [12] Mr.C.Thiyagu "Construction Labor Productivity and its Improvement" (IRJET) Volume: 02 Issue: 08 | Nov-2015

- [13] Nirajan Mani, Ph.D., A.M.ASCE1; Krishna P. Kisi2; Eddy M. Rojas3; and E. Terence Foster4
- [14] josé antonio álvarez-gonzález and mª olga gonzález-morales
- [15] Emir Tarik Dakin a Faculty of Economics and Administrative Sciences, Ozyegin University, Istanbul, Turkey
- [16] Dimitrios Asteriou* Vassilis Monastiriotis The University of Reading London School of Economics
- [17] Nariman Ghodrati,*Tak Wing Yiu, Suzanne Wilkinson Unintended consequences of management strategies for improving 2 labour productivity in construction industry.
- [18] Xiaodong Li *,Kwan Hang Chow ,Yimin Zhu,Ying Lin
- [19] Aynur Kazaz*, Turgut Acıkara Comparison of Labor Productivity Perspectives of Project Managers and Craft Workers in Turkish Construction Industry
- [20] Farnad Nasirzadeh *,Pouya Nojedehi Dynamic modeling of labor productivity in construction projects