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Abstract— This project combines hardware and software 

components to monitor sound levels in various 

environments, particularly focusing on noise-restricted 

zones. The hardware setup involves a sound sensor module 

and an Arduino microcontroller to calculate and display 

sound decibel levels continuously. The software aspect 

employs machine learning techniques to classify audio 

samples based on their sound characteristics. Specifically, 

the UrbanSound8K dataset is utilized for training and 

testing classification models. Various algorithms such as 

Support Vector Machines (SVM), Random Forest, and 

Decision Trees are implemented and evaluated for their 

accuracy in classifying sound samples. 

 

Index Terms— UrbanSound8K dataset, Support Vector 

Machines (SVM), Random Forest, Decision Trees, Audio 
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I. INTRODUCTION 

 

In urban environments, noise pollution is a significant 

concern, particularly in areas designated as noise-

restricted zones. Monitoring sound levels in such 

zones is crucial for ensuring compliance with noise 

regulations and maintaining a peaceful environment. 

This project addresses this challenge by developing a 

system that combines hardware and software 

components to monitor sound levels effectively. 

The hardware setup consists of a sound sensor module 

and an Arduino microcontroller. The sound sensor 

module detects ambient sound and sends the data to 

the Arduino, which calculates the decibel level. The 

calculated decibel levels are then displayed 

continuously, providing real-time monitoring of sound 

levels. 

 

The software aspect of the project focuses on 

classifying audio samples based on their sound 

characteristics. To achieve this, machine learning 

techniques are employed using the UrbanSound8K 

dataset. This dataset contains a diverse range of 

environmental sounds, making it suitable for training 

and testing classification models. 

The system comprises two main components: 

hardware and software. The hardware component 

includes a sound sensor module and an Arduino 

microcontroller. The sound sensor module detects 

ambient sound, and the Arduino calculates the decibel 

level based on the detected sound. This information is 

then displayed continuously, providing real-time 

monitoring of sound levels. 

The software component involves the use of machine 

learning techniques to classify audio samples. The 

UrbanSound8K dataset is utilized for this purpose, 

containing a wide variety of environmental sounds. 

Classification models, including Support Vector 

Machines (SVM), Random Forest, and Decision 

Trees, are trained using features extracted from audio 

samples. These models are then evaluated for their 

accuracy in classifying sound samples into predefined 

categories. 

 

II. LITERATURE REVIEW 

 

Early studies in urban sound classification 

predominantly relied on traditional signal processing 

techniques and handcrafted features, such as Mel-

frequency cepstral coefficients (MFCCs), spectral 

centroid, and energy features, in an effort to extract 

meaningful information from audio signals[1]. These 

manually designed features were intended to capture 

relevant characteristics of urban sounds. However, 

these initial approaches encountered limitations when 

confronted with the complexity and diversity of urban 

soundscapes[2]. 

 

The evolution of urban sound research has been 

significantly influenced by the availability of diverse 

and well-labeled datasets. Notably, the UrbanSound 

dataset, introduced by Salamon and Bello in 2014, has 
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emerged as a fundamental resource[5]. This dataset 

encompasses a wide array of urban sound classes, 

including air_conditioner, car_horn, children_playing, 

dog_bark, drilling, engine_idling, gun_shot, 

jackhammer, siren, and street_music, enabling 

researchers to explore various urban soundscapes and 

develop models capable of addressing real-world 

scenarios[6]. 

 

Despite the advancements in urban sound 

classification, persistent challenges remain. Urban 

environments are characterized by dynamic and 

heterogeneous conditions, resulting in variations in 

background noise, overlapping sounds, and limited 

labeled data[7]. Effectively classifying sounds amidst 

such diverse conditions continues to be a pressing 

challenge[8], compounded by the necessity for models 

to generalize across different urban settings[9]. 

 

While numerous studies have proposed individual 

models for urban sound classification, there exists a 

noticeable gap in comprehensive comparative 

analyses[10]. Our research aims to fill this void by 

evaluating and comparing the performance of five 

distinct models: Random Forest, Support Vector 

Machine (SVM), Decision Tree, K-Nearest Neighbors 

(KNN), and Convolutional Neural Network 

(CNN)[12]. This comparative analysis will offer 

insights into the relative strengths and weaknesses of 

different machine learning techniques specifically 

within the context of urban sound classification[13]. 

 

To facilitate this comparative analysis, we have 

selected the UrbanSound8K dataset as our 

foundation[14]. This dataset comprises 8732 sound 

excerpts across 10 urban sound classes, providing a 

representative and diverse set of audio samples[15]. Its 

accessibility and popularity render it an ideal choice 

for benchmarking and comparing the performance of 

various models. 

 

Upon reviewing the existing literature, a conspicuous 

research gap emerges: while various models have been 

proposed for urban sound classification, there is a 

notable absence of systematic studies comparing their 

performance specifically on the UrbanSound8K 

dataset. Our research endeavors to bridge this lacuna 

by delving into this aspect, thereby furnishing 

pertinent insights into the comparative efficacy of 

different machine learning models in the realm of 

urban sound classification. 

 

In essence, the transition from early signal processing 

methodologies to the realm of deep learning has 

significantly propelled the field of urban sound 

classification forward. Our study contributes to this 

evolutionary trajectory by undertaking a 

comprehensive comparative analysis of machine 

learning models on the UrbanSound8K dataset, 

thereby not only addressing prevailing research voids 

but also offering substantial insights to guide future 

investigations. Main Objectives are as follow: 

 

1. Data Acquisition and Preprocessing: 

Utilize the Kaggle API to acquire and preprocess the 

UrbanSound8K dataset for seamless integration with 

the project. 

Extract pertinent features from audio files, such as the 

Mel spectrogram, to represent audio data in a format 

conducive to machine learning algorithms. 

2. Dataset Exploration and Analysis: 

Explore and comprehend the inherent characteristics 

of the UrbanSound8K dataset. 

Employ visualization techniques to inspect audio 

waveforms and spectrograms of sample files, gaining 

insights into the diversity and nuances of urban 

sounds. 

3. Model Implementation and Training: 

Implement five distinct models for sound 

classification: Random Forest, Support Vector 

Machine (SVM), Decision Tree, K-Nearest Neighbors 

(KNN), and a Convolutional Neural Network (CNN). 

Train each model using the preprocessed audio data. 

4. Performance Evaluation and Comparative Analysis: 

Evaluate the performance of each model, utilizing 

accuracy as the primary evaluation metric. 

Generate a comparative study of model accuracies to 

discern the strengths and weaknesses of each 

approach. 

Utilize bar charts to visually compare the accuracies of 

the five models. 

5. Identification of Optimal Model: 

Identify the most effective model for urban sound 

classification based on the experimental results. 

6. Application and Results: 

Apply the trained models to classify and predict the 

categories of urban sounds in practical scenarios. 

Present classification results for specific audio files, 
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showcasing the practical application of the models. 

Generate detailed classification reports for each 

model, incorporating precision, recall, and F1-score 

metrics. 

 

Provide insights into the performance of models for 

each class of urban sound, aiding in comprehensive 

analysis and interpretation of results. 

 

III. SYSTEM DESIGN 

 

In our project on sound classification, we've crafted a 

system architecture that harnesses the capabilities of 

machine learning models to analyze audio data 

sourced from the UrbanSound8K dataset.In this we've 

opted to utilize audio samples as the primary data 

source for our classification tasks. The UrbanSound8K 

dataset, housing a collection of 8732 labeled sound 

snippets, serves as the foundation of our exploration, 

offering a diverse array of urban soundscapes across 

ten distinct classes.  

 

At the heart of our system architecture are five robust 

classification models: K-Nearest Neighbors (KNN), 

Convolutional Neural Network (CNN), Support 

Vector Machine (SVM), Decision Tree, and Random 

Forest. These models are carefully tailored to process 

and analyze the intricate audio features extracted from 

the dataset, such as Mel-frequency cepstral 

coefficients (MFCCs) and spectral features. Each 

model undergoes meticulous training to discern subtle 

patterns and distinctions within the audio samples, 

enabling precise classification into predefined sound 

categories. 

 

Before initiating model training,  we establish a 

comprehensive preprocessing pipeline to extract and 

refine the audio features for analysis. This pipeline 

includes essential steps like feature scaling, 

normalization, and, when necessary, dimensionality 

reduction. These preprocessing techniques play a 

crucial role in optimizing model performance and 

efficiency, laying a robust groundwork for subsequent 

training iterations. 

 

Once the audio features are meticulously processed, 

they are fed into our classification models, undergoing 

rigorous training iterations to uncover the intricate 

relationships between audio characteristics and sound 

classes. Through iterative learning, our models 

become adept at discerning underlying patterns, 

resulting in accurate and robust classification 

outcomes. 

 

Evaluating how well our models perform is a 

cornerstone of our project. We use a variety of 

standard metrics like accuracy, precision, recall, and 

F1-score to get a comprehensive view of how effective 

they are. These metrics give us different angles to look 

at and understand the capabilities of our models. 

To make sure our models are robust and can work well 

in different situations, we rely on cross-validation 

techniques. We split our dataset into several parts and 

train our models on different combinations of these 

parts. This helps us see how our models perform across 

various scenarios and ensures that they can give 

reliable results across different sets of data. 

Another important aspect is fine-tuning the 

hyperparameters of our models. This process allows us 

to adjust specific settings of our models to better fit the 

unique characteristics of our dataset. By making these 

adjustments, we aim to find the right balance between 

model complexity and accuracy, ultimately making 

our models more effective for real-world sound 

classification tasks. 

 

Our system architecture embodies a holistic and 

meticulously crafted approach to sound classification, 

shedding light on the intricate interplay between 

machine learning models and audio data. Through 

careful design and implementation, we aim to unravel 

the complexities of urban soundscapes, ultimately 

enhancing our understanding and analysis of urban 

environments through sound. 
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Fig.1. System Architecture 

 

The flowchart outlines the sequential steps involved in 

our project execution. It begins with loading metadata, 

followed by preprocessing the metadata to ensure data 

quality. Next, features are extracted from the 

preprocessed data to feed into the modeling phase. The 

data is then split into training and testing sets for model 

evaluation. Finally, various metrics are visualized to 

assess the performance of the models used in the 

project. 

 

Hyperparameter Tuned: For SVM (Support Vector 

Machines), the hyperparameters tuned were the kernel 

(RBF), the C value (10), and the gamma value (Auto). 

For Random Forest, the tuned hyperparameters 

included the number of estimators (100), maximum 

depth (None), minimum samples split (2), minimum 

samples leaf (1), and Bootstrap set to False. Decision 

Tree hyperparameters were adjusted for maximum 

depth (20), minimum samples split (2), and minimum 

samples leaf (1). Lastly, for KNN (K-Nearest 

Neighbors), the number of neighbors was set to 3, and 

the weighting scheme was set to distance-based, with 

the algorithm set to Auto. 

 

 
Fig.2. Workflow - From Data Load to Model Metrics 

 

IV. METHODOLOGY 

 

The system comprises two main components: 

hardware and software. Methodology: The project 

involved the integration of both hardware and software 

components to achieve its objectives. Beginning with 

the hardware aspect, a sound sensor module, and an 

Arduino microcontroller were selected for their ability 

to accurately measure sound levels. The setup was 

designed to continuously monitor the ambient sound 

environment and provide real-time feedback in terms 

of decibel levels. This hardware configuration was 

chosen with the specific aim of identifying sound 

levels in areas where noise regulations or restrictions 

are in place, thereby enabling relevant authorities to 

take necessary actions to mitigate noise pollution or 

enforce noise ordinances. 

 

Moving on to the software component, a meticulous 

approach was followed to ensure effective data 

acquisition, preparation, feature extraction, model 

training, and evaluation. The first step in the software 

pipeline involved the acquisition of relevant data. This 

was achieved by importing a variety of essential 

libraries, including pandas, pathlib, os, numpy, 

IPython.display, librosa, and modules from sklearn 

and tensorflow.keras. Additionally, the dataset 

sourced from Kaggle, specifically the 'urbansound8k' 

dataset, was utilized. This dataset comprised audio 
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files along with associated metadata, which were 

instrumental in training and evaluating machine 

learning models for sound classification tasks. 

 

Data preparation played a crucial role in ensuring the 

dataset was appropriately formatted and ready for 

subsequent analysis. To this end, the metadata was 

loaded into a DataFrame using the pd.read_csv 

function, allowing for easy manipulation and 

processing of the data. Furthermore, preprocessing 

steps were undertaken to remove any extraneous 

columns and create a new column to store file paths, 

thus streamlining subsequent operations. These 

preparatory steps were essential in ensuring the dataset 

was well-structured and conducive to effective feature 

extraction and model training. 

 

Feature extraction constituted a critical phase in the 

project, as it involved deriving meaningful features 

from the raw audio data that could be used for 

classification purposes. Mel-frequency cepstral 

coefficients (MFCCs) were chosen as the primary 

feature representation due to their effectiveness in 

capturing relevant aspects of audio signals, such as 

timbral texture and spectral characteristics. 

Leveraging the librosa library, MFCCs were extracted 

from the audio files, thereby transforming the raw 

waveform data into a more compact and informative 

feature space suitable for machine learning analysis. 

 

With the feature extraction process complete, attention 

turned to model training, wherein various machine 

learning algorithms were employed to build predictive 

models capable of classifying sound samples into 

different categories. Specifically, Support Vector 

Machines (SVM), K-Nearest Neighbors (KNN), 

Decision Trees, and Random Forests were selected as 

candidate algorithms for classification tasks. Prior to 

training, the dataset was split into training and testing 

sets to facilitate model evaluation and performance 

assessment. 

 

During the model training phase, careful consideration 

was given to hyperparameter tuning, whereby 

different combinations of hyperparameters were 

explored to optimize model performance. This 

involved iteratively adjusting parameters such as 

kernel type, regularization strength, number of 

neighbors, and tree depth to identify the optimal 

configuration for each respective algorithm. By 

systematically evaluating model performance across a 

range of hyperparameter values, insights were gained 

into the relative effectiveness of different parameter 

settings and their impact on classification accuracy. 

 

Following model training, the next crucial step 

involved model evaluation, wherein the trained 

models were subjected to rigorous testing to assess 

their performance on unseen data. Evaluation metrics 

such as accuracy, precision, recall, and F1-score were 

computed to quantify the models' predictive 

capabilities and gauge their suitability for real-world 

deployment. Classification reports were generated to 

provide detailed insights into the models' performance 

across different classes, thereby enabling stakeholders 

to identify areas of strength and areas for 

improvement. 

 

In addition to evaluating individual models, 

comparative analyses were conducted to ascertain the 

relative merits of different machine learning 

algorithms in the context of sound classification tasks. 

By benchmarking performance metrics such as 

accuracy and computational efficiency across multiple 

algorithms, valuable insights were gained into the 

strengths and weaknesses of each approach, thereby 

informing future decision-making processes regarding 

model selection and deployment strategies. 

 

The project did encompass a comprehensive and 

systematic approach to sound classification, spanning 

both hardware and software domains. Through 

meticulous data acquisition, preparation, feature 

extraction, model training, and evaluation, the project 

succeeded in developing robust predictive models 

capable of accurately classifying sound samples into 

predefined categories. By leveraging state-of-the-art 

machine learning techniques and carefully curated 

datasets, the project contributed valuable insights to 

the field of sound analysis and paved the way for 

future advancements in noise monitoring and 

environmental conservation efforts. 

 

V. RESULTS AND DISCUSSION 

 

1. CNN (Convolutional Neural Network): 

Accuracy: 88.50% 
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CNNs' Proficiency in Capturing Complex Patterns: 

Convolutional Neural Networks (CNNs) demonstrate 

exceptional proficiency in capturing intricate patterns 

present in spectrograms. This capability enables them 

to discern nuanced features within audio data, 

contributing significantly to their effectiveness in 

sound classification tasks. 

High Accuracy Reflects Successful Learning: The 

achieved accuracy of 88.50% serves as a testament to 

the successful learning and extraction of 

discriminative features by the CNN model. This high 

level of accuracy indicates that the model has 

effectively learned to differentiate between various 

classes of urban sounds, showcasing its robustness and 

capability in urban sound classification. 

 

2. Random Forest: 

Accuracy: 87% 

Robust Ensemble Learning Model: The achieved 

accuracy of 87% underscores the robustness of the 

ensemble learning model utilized. Ensemble learning 

techniques, by combining multiple models' 

predictions, can often improve overall accuracy and 

robustness, making them valuable in complex 

classification tasks such as urban sound classification. 

Effective Handling of Diverse Characteristics: The 

model's ability to effectively handle the diverse 

characteristics inherent in urban sound classes is 

noteworthy. This indicates that the ensemble learning 

approach has successfully learned and generalized 

across various urban sound features, contributing to its 

overall effectiveness in sound classification tasks. 

 
Fig. 3. ROC AUC Score Comparison 

 

Above image is a bar graph titled “ROC AUC Score 

Comparison”. It compares the ROC AUC scores of 

five different machine learning models: SVM, KNN, 

an unnamed model, Decision Tree, and Random 

Forest. The scores range from 0 to 1.0, with SVM and 

KNN having the highest scores. 

 

3. SVM (Support Vector Machine): 

Accuracy: 52% 

Moderate Performance in Sound Classification: The 

achieved accuracy of 52% indicates a moderate 

performance level in sound classification. While not as 

high as desired, this level of accuracy still suggests 

some level of effectiveness in distinguishing between 

different urban sound classes. 

Challenges in Capturing Nuanced Patterns: The model 

faces challenges in capturing nuanced patterns within 

spectrograms, which are essential for accurately 

categorizing urban sounds. This difficulty in 

discerning subtle features may contribute to the lower 

accuracy compared to more advanced models or 

approaches. 

 
Fig. 4. ROC AUC Score 

 

Above image is a colorful bar graph titled “Precision, 

Recall, and F1-score Comparison”. It compares the 

Precision, Recall, and F1-score of five different 

machine learning models: SVM, KNN, Decision Tree, 

and Random Forest. Each model has three bars 

associated with it representing Precision (blue), Recall 

(orange), and F1-score (green). The scores range from 

0.0 to 0.8, with Random Forest having the highest 

scores in all three metrics. 

 

4. Decision Tree: 

Accuracy: 67% 

Reasonable Performance, Interpretable Model: With 

an accuracy of 67%, the model demonstrates 

reasonable performance in urban sound classification. 

Additionally, the model's interpretability is 

highlighted, implying that its decision-making process 

and feature importance can be easily understood and 

explained. Effective Handling of Urban Sound 
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Classification: The model proves effective in handling 

the complexities of urban sound classification, 

indicating its capability to discern and classify 

different urban sound classes with a reasonable level 

of accuracy. 

 
Fig. 5. Micro-Average Precision-Recall Curve 

 

Above image shows a graph titled “Micro-Averaged 

Precision-Recall Curve”. It plots the trade-off between 

precision and recall for four different machine learning 

models: SVM, KNN, Decision Tree, and Random 

Forest. Each curve represents the performance of the 

respective model at various thresholds. The x-axis 

represents Recall and the y-axis represents Precision, 

both ranging from 0 to 1.0. 

 

5. KNN (K - Nearest Neighbours): 

Accuracy: 67% 

Simple and Effective for Classification Tasks: The 

model, with an accuracy of 67%, is characterized by 

its simplicity and effectiveness in classification tasks. 

Its straightforward approach makes it accessible and 

easy to implement, while still achieving a moderate 

level of accuracy in distinguishing urban sound 

categories. Moderate Performance in Capturing Urban 

Sound Characteristics: While the model performs 

adequately in classification tasks, its performance in 

capturing the nuanced characteristics of urban sounds 

is moderate. This suggests that while it can classify 

sounds reasonably well, it may struggle with more 

complex or subtle distinctions between sound classes. 

 
Fig. 6. Comparison of Model Accuracies 

 

Above image shows a bar graph titled “Comparison of 

Model Accuracies”. It compares the accuracies of five 

different machine learning models: Random Forest, 

SVM, Decision Tree, KNN, and CNN. The y-axis 

represents Accuracy, ranging from 0 to 1.0. Random 

Forest has the highest accuracy close to 1.0, while the 

other models have varying accuracies. SVM and KNN 

have accuracies around 0.6, Decision Tree has an 

accuracy approximately 0.8, and CNN has an accuracy 

slightly less than Random Forest but close to 1.0. Each 

model is represented by a different coloured bar. 

 

CONCLUSION 

 

In conclusion, project illustrates the efficacy of 

employing machine learning methodologies for sound 

classification, utilizing the UrbanSound8K dataset as 

the foundation. We conducted a comprehensive 

evaluation of five classification models: 

Convolutional Neural Network (CNN), Random 

Forest, Support Vector Machine (SVM), Decision 

Tree, and K-Nearest Neighbors (KNN). Our objective 

was to assess their performance in accurately 

categorizing sound samples. 

 

Through the application of standard evaluation metrics 

such as accuracy, precision, recall, and F1-score, we 

scrutinized the effectiveness of each model. Notably, 

the Convolutional Neural Network emerged as the 

standout performer, achieving an accuracy of 88.50%. 

This underscores the significance of leveraging 

advanced algorithms tailored specifically for audio 

data analysis. 

 

Furthermore, our adoption of cross-validation 

techniques bolstered the reliability and generalization 

capabilities of our models across diverse subsets of the 
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dataset. Additionally, fine-tuning hyperparameters 

facilitated the optimization of model performance for 

real-world sound classification tasks, achieving a 

delicate balance between complexity and accuracy. 

 

In essence, our software-centric approach highlights 

the potential of machine learning in the realm of sound 

classification, offering valuable insights into the 

development of robust and precise models applicable 

to a range of domains, including environmental 

monitoring and urban planning. Moving forward, our 

commitment to ongoing research and refinement aims 

to propel the advancement of sound classification 

technologies and their practical implementations. 

 

In conclusion, this research not only contributes to the 

advancement of urban sound classification but also 

establishes a foundation for future exploration in audio 

signal processing and machine learning applications 

within the realm of environmental sound analysis. 
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