
© May 2024| IJIRT | Volume 10 Issue 12 | ISSN: 2349-6002

IJIRT 164678 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2067

Music Generation Using ML

Yashayah Tirupati Boram, Shital Mantayya Durgam, Sumit Nandanwar, Naresh Jadhav, Prof. Minakshi

Getkar

Department of Computer Science and Engineering, Rajiv Gandhi College of Engineering Research and

Technology, Chandrapur, India

Guide, Department of Computer Science and Engineering, Rajiv Gandhi College of Engineering

Research and Technology, Chandrapur, India

Abstract-The intersection of music and artificial

intelligence (AI) has sparked innovative approaches to

music generation, leveraging the power of machine

learning (ML) algorithms. This abstract delves into the

burgeoning field of music generation using ML

techniques, presenting an overview of methodologies,

challenges, and future directions.

Music generation with ML involves the utilization of

algorithms to analyze patterns, structures, and styles

inherent in musical compositions. From classical to

contemporary genres, ML models can learn from

existing musical datasets to generate novel compositions

that mimic the characteristics of the training data.

Techniques such as recurrent neural networks (RNNs),

generative adversarial networks (GANs), and

transformer models have been prominent in this domain.

INTRODUCTION

Recent developments in integrating Deep Neural

Networks (DNNs) with audio generators have

renewed interest in using the unaltered audio of a

musical instrument as a control source for a

synthesizer. One such example is the DDSP

architecture and its derivatives, that allows for real-

time control of a synthesizer using a set of features

extracted from an input audio signal. It has been used

to develop various creative timbre transformation

applications, which we collectively refer to as Tone

Transfer applications.

We situate the scope of our work on audio-based

synthesis control for real-time performances, looking

at sonic diversity and synthesizer phrasing and

articulation. These essential components of musical

expression have been thoroughly studied for

composition with MIDI for decades but we argue that

they open new challenges and possibilities when

considering an audio-based control approach.

Transients at the beginnings of notes and the

transitions between notes play a vital role in defining

the continuity and flow of musical phrasing. We argue

that a continuous control approach such as Tone

Transfer could potentially learn mappings that capture

beginnings, endings, and the links between notes

during performance, generating musically articulated

synthetic sounds.

REQUIREMENTS

Project focused on music generation using machine

learning (ML) techniques, there are several

requirements that are instrumental in ensuring the

success and effectiveness of the project. Here's an

explanation of some essential requirements:

1. Programming Languages:

• Python: Python is widely used in the machine

learning community due to its rich ecosystem of

libraries and tools for data analysis, machine

learning, and signal processing.

• JavaScript: If the project involves web-based

applications or interactive user interfaces,

knowledge of JavaScript would be beneficial.

• HTML: HTML forms the structure of web

applications, providing the framework for

delivering content and interacting with users.

2. Machine Learning Libraries:

• TensorFlow or PyTorch: These are two of the

most popular deep learning frameworks used for

building and training neural networks, including

those for music generation.

• Keras: Keras is a high-level neural networks API,

which can run on top of TensorFlow or other

frameworks. It simplifies the process of building

and training neural networks.

• Scikit-learn: Scikit-learn provides simple and

efficient tools for data mining and data analysis,

including various machine learning algorithms for

© May 2024| IJIRT | Volume 10 Issue 12 | ISSN: 2349-6002

IJIRT 164678 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2068

classification, regression, clustering, and

dimensionality reduction.

3. Signal Processing Libraries:

• Librosa: Librosa is a Python library for music and

audio analysis. It provides functions for extracting

features from audio signals, such as mel-

frequency cepstral coefficients (MFCCs),

spectrograms, and chroma features.

• PyDub: PyDub is a simple and easy-to-use Python

library for audio manipulation. It can be used for

tasks such as reading and writing audio files,

converting between different audio formats, and

applying various effects to audio.

4. Data Collection and Preprocessing:

• Dataset: Access to a high-quality dataset of

musical compositions across different genres and

styles is essential for training machine learning

models for music generation.

• Data Preprocessing: Preprocessing steps may

include audio file conversion, feature extraction,

normalization, and augmentation to prepare the

data for training.

5. Model Development:

• Neural Network Architectures: Designing and

implementing neural network architectures

suitable for music generation tasks, such as

recurrent neural networks (RNNs), convolutional

neural networks (CNNs), or transformer models.

• Hyperparameter Tuning: Tuning the

hyperparameters of the models to optimize

performance and generalization.

6. Evaluation Metrics:

• Audio Quality Metrics: Metrics such as signal-to-

noise ratio (SNR), perceptual evaluation of audio

quality (PEAQ), or melodic similarity can be used

to evaluate the quality and fidelity of generated

music compared to the original compositions.

• Human Evaluation: Conducting subjective

evaluations with human listeners to assess the

musicality and creativity of the generated music.

7. Deployment and Integration:

• Web Development: If the project involves

deploying the model in a web-based application,

knowledge of web development frameworks like

Flask or Django for backend development, and

HTML/CSS/JavaScript for frontend development

would be useful.

• API Development: Creating RESTful APIs or

web services to expose the model's functionality

for integration with other applications or

platforms.

ALGORITHM DESCRIPTION

DDSP

Differential Digital Signal Processing builds on the

field of Digital Signal Processing by making its

components differentiable. For example, additive

filters (which add the two input sources) and reverb

filters (which add reverb to the input source) can then

be part of our signal processing pipeline, and we can

use backpropagation to train these components.

Moreover, the fact that the DSP components are

differentiable allows us to backpropagate the gradient

through these components, meaning we can train

differentiable components that come earlier in the

pipeline (e.g., neural nets).This means it's easier to use

neural networks to adaptively learn signal processing

techniques. In what follows, we design a pipeline

which adaptively learns latent representations of the

"style" of input audio, in such a way that this style can

be transferred to a new sequence of tones.

Pipeline Design

The pipeline we use, originally developed by the

creators of DDSP, is depicted below. The yellow

components are DDSP components which add

inductive bias, helping our model better represent the

encoded audio. f0f_0f0, ZZZ, and LLL are latent

space variables:f0f_0f0 is the fundamental frequency

of the input, inversely related to the length of time we

wait for the signal to repeat itself. This captures the

pitch of the input.LLL is the loudness of the input,

which captures the volume of the input.ZZZ is a latent

space variable whose representation is learned by end-

to-end training. Hypothesis: since the autoencoder

reconstructs the original audio given pitch, volume,

and ZZZ, we hypothesize that the learned

representation of ZZZ will contain information

relevant to the style of the original audio

https://magenta.tensorflow.org/ddsp

© May 2024| IJIRT | Volume 10 Issue 12 | ISSN: 2349-6002

IJIRT 164678 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2069

Fig 3: DDSP Pipeline Design

Now let's take a look at the universal function

approximators that make everything tick. We need to

design architectures for the encoder and decoder.

Luckily, the creators of DDSP have already devised

working encoders and decoders, so we can simply use

their architecture. Both the encoder and decoder rely

primarily on the use of a Gated Recurrent Unit (GRU),

which is a type of Recurrent Neural Network

frequently used in sequence processing tasks. If you

want to learn more about how GRUs work, this blog

post does an excellent job explaining and visualizing

them.

Decoder Design

The creators of DDSP advocate for a decoder design

which individually processes the input latent space

variables with an MLP (whose design we will see

shortly), then processes the output of the ZZZ MLP

with a GRU. Next, we concatenate the

separate ZZZ, LLL, and f0f_0f0 channels before

passing the result through one last MLP (identical

deisgn) to assist the interpolation of information from

each channel. Finally, two dense layers are tasked with

mapping the MLP outputs to the inputs of the

harmonic audio and filtered noise components. The

creators of DDSP provide the image below as an

illustration of the decoder design. Note that this image

is misleading; lines from the LLL MLP and f0f_0f0

 MLP should be drawn to the second "concatenate"

block, after the GRU.

Fig 4: DDSP Decoder Design

Notice the pipeline relies several Multi-Layer

Perceptron (MLP) layers, which are essentially just

three 512-unit densely connected neural network

layers. Here's a visualization of the MLP pipeline used

repeatedly in the above decoder design:

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

© May 2024| IJIRT | Volume 10 Issue 12 | ISSN: 2349-6002

IJIRT 164678 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2070

Fig 5: MLP

This decoder, which has over a million parameters,

should contain enough flexibility to allow efficient

style representation. Now let's take a look at the

encoder we'll use.

Encoder Design

The encoder designed by the DDSP authors is

relatively simple in comparison to the decoder. To

encode the f0f_0f0 latent space variables, we use a

pretrained fundamental frequency extraction model;

we used the CREPE model. To encode the ZZZ latent

space variables, we design our own pipeline as

described by the image below. We first calculate the

Mel Frequency Cepstral Coeffcients (MFCCs) since

these featurize audio data in a way that better

represents the periodic nature of audio data. Then we

normalize the MFCCs and use a GRU to process them,

followed by a final Dense layer to map the GRU

outputs to the correct output size.

Fig 6: DDSP Encoder Design

With the help of the CREPE model, we have created

an encoder capable of capturing as much information

about the style of audio data necessary to regenerate

the original audio data. Now let's see our design in

action.

CONCLUSION

Transforming the audio of an instrument to a synthetic

sound is a challenging task, as it involves a one-to-

many relationship. Each instrument has its unique

timbral palette, dynamic contour, and articulation

possibilities, which can vary significantly even among

instruments of the same type. On the other hand, the

sound produced by a synthesizer can be highly

versatile; and only a subset of the source instrument’s

characteristics may be desired in the output.

We can argue that there is no definitive "gold

standard" that can provide a baseline mapping

between an instrument’s audio and a synthetic sound:

tradeoffs are necessary to find viable solutions. In this

work, we first analyzed current Tone Transfer

architectures and identified a tradeoff in their

rendering capabilities: these models learn new timbres

from audio corpora and can project the input loudness

to the output, at the expense of a good resolution of

note beginnings and endings which are essential for

musical articulation and phrasing

https://github.com/marl/crepe

