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Abstract-The intersection of music and artificial 

intelligence (AI) has sparked innovative approaches to 

music generation, leveraging the power of machine 

learning (ML) algorithms. This abstract delves into the 

burgeoning field of music generation using ML 

techniques, presenting an overview of methodologies, 

challenges, and future directions. 

Music generation with ML involves the utilization of 

algorithms to analyze patterns, structures, and styles 

inherent in musical compositions. From classical to 

contemporary genres, ML models can learn from 

existing musical datasets to generate novel compositions 

that mimic the characteristics of the training data. 

Techniques such as recurrent neural networks (RNNs), 

generative adversarial networks (GANs), and 

transformer models have been prominent in this domain. 

INTRODUCTION 

 

Recent developments in integrating Deep Neural 

Networks (DNNs) with audio generators have 

renewed interest in using the unaltered audio of a 

musical instrument as a control source for a 

synthesizer. One such example is the DDSP 

architecture and its derivatives, that allows for real-

time control of a synthesizer using a set of features 

extracted from an input audio signal. It has been used 

to develop various creative timbre transformation 

applications, which we collectively refer to as Tone 

Transfer applications. 

We situate the scope of our work on audio-based 

synthesis control for real-time performances, looking 

at sonic diversity and synthesizer phrasing and 

articulation. These essential components of musical 

expression have been thoroughly studied for 

composition with MIDI for decades but we argue that 

they open new challenges and possibilities when 

considering an audio-based control approach. 

Transients at the beginnings of notes and the 

transitions between notes play a vital role in defining 

the continuity and flow of musical phrasing. We argue 

that a continuous control approach such as Tone 

Transfer could potentially learn mappings that capture 

beginnings, endings, and the links between notes 

during performance, generating musically articulated 

synthetic sounds. 

 

REQUIREMENTS 

 

Project focused on music generation using machine 

learning (ML) techniques, there are several 

requirements that are instrumental in ensuring the 

success and effectiveness of the project. Here's an 

explanation of some essential requirements: 

1. Programming Languages: 

• Python: Python is widely used in the machine 

learning community due to its rich ecosystem of 

libraries and tools for data analysis, machine 

learning, and signal processing. 

• JavaScript: If the project involves web-based 

applications or interactive user interfaces, 

knowledge of JavaScript would be beneficial. 

• HTML: HTML forms the structure of web 

applications, providing the framework for 

delivering content and interacting with users. 

2. Machine Learning Libraries: 

• TensorFlow or PyTorch: These are two of the 

most popular deep learning frameworks used for 

building and training neural networks, including 

those for music generation. 

• Keras: Keras is a high-level neural networks API, 

which can run on top of TensorFlow or other 

frameworks. It simplifies the process of building 

and training neural networks. 

• Scikit-learn: Scikit-learn provides simple and 

efficient tools for data mining and data analysis, 

including various machine learning algorithms for 
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classification, regression, clustering, and 

dimensionality reduction. 

3. Signal Processing Libraries: 

• Librosa: Librosa is a Python library for music and 

audio analysis. It provides functions for extracting 

features from audio signals, such as mel-

frequency cepstral coefficients (MFCCs), 

spectrograms, and chroma features. 

• PyDub: PyDub is a simple and easy-to-use Python 

library for audio manipulation. It can be used for 

tasks such as reading and writing audio files, 

converting between different audio formats, and 

applying various effects to audio. 

4. Data Collection and Preprocessing: 

• Dataset: Access to a high-quality dataset of 

musical compositions across different genres and 

styles is essential for training machine learning 

models for music generation. 

• Data Preprocessing: Preprocessing steps may 

include audio file conversion, feature extraction, 

normalization, and augmentation to prepare the 

data for training. 

5. Model Development: 

• Neural Network Architectures: Designing and 

implementing neural network architectures 

suitable for music generation tasks, such as 

recurrent neural networks (RNNs), convolutional 

neural networks (CNNs), or transformer models. 

• Hyperparameter Tuning: Tuning the 

hyperparameters of the models to optimize 

performance and generalization. 

6. Evaluation Metrics: 

• Audio Quality Metrics: Metrics such as signal-to-

noise ratio (SNR), perceptual evaluation of audio 

quality (PEAQ), or melodic similarity can be used 

to evaluate the quality and fidelity of generated 

music compared to the original compositions. 

• Human Evaluation: Conducting subjective 

evaluations with human listeners to assess the 

musicality and creativity of the generated music. 

7. Deployment and Integration: 

• Web Development: If the project involves 

deploying the model in a web-based application, 

knowledge of web development frameworks like 

Flask or Django for backend development, and 

HTML/CSS/JavaScript for frontend development 

would be useful. 

• API Development: Creating RESTful APIs or 

web services to expose the model's functionality 

for integration with other applications or 

platforms. 

 

ALGORITHM DESCRIPTION 

 

DDSP 

Differential Digital Signal Processing builds on the 

field of Digital Signal Processing by making its 

components differentiable. For example, additive 

filters (which add the two input sources) and reverb 

filters (which add reverb to the input source) can then 

be part of our signal processing pipeline, and we can 

use backpropagation to train these components. 

Moreover, the fact that the DSP components are 

differentiable allows us to backpropagate the gradient 

through these components, meaning we can train 

differentiable components that come earlier in the 

pipeline (e.g., neural nets).This means it's easier to use 

neural networks to adaptively learn signal processing 

techniques. In what follows, we design a pipeline 

which adaptively learns latent representations of the 

"style" of input audio, in such a way that this style can 

be transferred to a new sequence of tones. 

 

Pipeline Design 

The pipeline we use, originally developed by the 

creators of DDSP, is depicted below. The yellow 

components are DDSP components which add 

inductive bias, helping our model better represent the 

encoded audio. f0f_0f0, ZZZ, and LLL are latent 

space variables:f0f_0f0 is the fundamental frequency 

of the input, inversely related to the length of time we 

wait for the signal to repeat itself. This captures the 

pitch of the input.LLL is the loudness of the input, 

which captures the volume of the input.ZZZ is a latent 

space variable whose representation is learned by end-

to-end training. Hypothesis: since the autoencoder 

reconstructs the original audio given pitch, volume, 

and ZZZ, we hypothesize that the learned 

representation of ZZZ will contain information 

relevant to the style of the original audio 

https://magenta.tensorflow.org/ddsp
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Fig 3: DDSP Pipeline Design 

 

Now let's take a look at the universal function 

approximators that make everything tick. We need to 

design architectures for the encoder and decoder. 

Luckily, the creators of DDSP have already devised 

working encoders and decoders, so we can simply use 

their architecture. Both the encoder and decoder rely 

primarily on the use of a Gated Recurrent Unit (GRU), 

which is a type of Recurrent Neural Network 

frequently used in sequence processing tasks. If you 

want to learn more about how GRUs work, this blog 

post does an excellent job explaining and visualizing 

them. 

 

Decoder Design 

The creators of DDSP advocate for a decoder design 

which individually processes the input latent space 

variables with an MLP (whose design we will see 

shortly), then processes the output of the ZZZ MLP 

with a GRU. Next, we concatenate the 

separate ZZZ, LLL, and f0f_0f0 channels before 

passing the result through one last MLP (identical 

deisgn) to assist the interpolation of information from 

each channel. Finally, two dense layers are tasked with 

mapping the MLP outputs to the inputs of the 

harmonic audio and filtered noise components. The 

creators of DDSP provide the image below as an 

illustration of the decoder design. Note that this image 

is misleading; lines from the LLL MLP and f0f_0f0

 MLP should be drawn to the second "concatenate" 

block, after the GRU. 

 
Fig 4: DDSP Decoder Design 

Notice the pipeline relies several Multi-Layer 

Perceptron (MLP) layers, which are essentially just 

three 512-unit densely connected neural network 

layers. Here's a visualization of the MLP pipeline used 

repeatedly in the above decoder design: 

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Fig 5: MLP 

This decoder, which has over a million parameters, 

should contain enough flexibility to allow efficient 

style representation. Now let's take a look at the 

encoder we'll use. 

 

Encoder Design 

The encoder designed by the DDSP authors is 

relatively simple in comparison to the decoder. To 

encode the f0f_0f0 latent space variables, we use a 

pretrained fundamental frequency extraction model; 

we used the CREPE model. To encode the ZZZ latent 

space variables, we design our own pipeline as 

described by the image below. We first calculate the 

Mel Frequency Cepstral Coeffcients (MFCCs) since 

these featurize audio data in a way that better 

represents the periodic nature of audio data. Then we 

normalize the MFCCs and use a GRU to process them, 

followed by a final Dense layer to map the GRU 

outputs to the correct output size. 

 
Fig 6: DDSP Encoder Design 

With the help of the CREPE model, we have created 

an encoder capable of capturing as much information 

about the style of audio data necessary to regenerate 

the original audio data. Now let's see our design in 

action. 

CONCLUSION 

 

Transforming the audio of an instrument to a synthetic 

sound is a challenging task, as it involves a one-to-

many relationship. Each instrument has its unique 

timbral palette, dynamic contour, and articulation 

possibilities, which can vary significantly even among 

instruments of the same type. On the other hand, the 

sound produced by a synthesizer can be highly 

versatile; and only a subset of the source instrument’s 

characteristics may be desired in the output.  

We can argue that there is no definitive "gold 

standard" that can provide a baseline mapping 

between an instrument’s audio and a synthetic sound: 

tradeoffs are necessary to find viable solutions. In this 

work, we first analyzed current Tone Transfer 

architectures and identified a tradeoff in their 

rendering capabilities: these models learn new timbres 

from audio corpora and can project the input loudness 

to the output, at the expense of a good resolution of 

note beginnings and endings which are essential for 

musical articulation and phrasing 

 

https://github.com/marl/crepe

