
© May 2024| IJIRT | Volume 10 Issue 12 | ISSN: 2349-6002

IJIRT 164897 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2779

Design of 5 Stage Pipelined RISC-V Processor

Aakash A1, Aparna R2, Abey Biju Abraham3, S.R. Malathi4

1,2,3Student, Sri Venkateswara College of Engineering
4Professor, Sri Venkateswara College of Engineering

Abstract— This paper presents a modified design of RISC-

V RV32I 32-bit microprocessor. The RISC-V processor

consists of a flexible 5 stage pipelined processor with

certain techniques for hazard management. The processor

consists of 6 blocks- fetch block, decode block, control logic

block, memory block, register block and the ALU block.

The processor is then pipelined into 5 stages – the fetch

stage, the decode stage, the execute stage, the memory stage

and the write backstage. After pipelining, the pipeline

hazards such as data hazards and control hazards are

managed by using data forwarding from previous stages of

the pipeline and by introducing delay slots for control

transfer instructions. After that, the schematic for the

processor is obtained by feeding the Verilog code in cadence

software. Also, there is a future scope of implementing new

instructions that can combine the functions of two separate

instructions into one single instruction, which are

considered extensions to the existing ISA of RV32I.

Keywords— RV32I, Flexibility, 5 stage pipelined, hazard

management, 5 clock cycles.

I. INTRODUCTION

Reduced Instruction Set Computers (RISC) are meant

to use a reduced instruction set in order to have a

reduced execution time. They can carry out minor

tasks in response to commands. These processors are

more efficient at completing commands.

The format used in this project is RV32I which is v2.0

of RISC V. It is an optimized ISA for creating RISC

machines. This ISA can support almost all modern

operations and features. It has 32 general purpose

registers x0 to x3. x0 is hardwired to the constant 0.

There is one more register with a specific purpose,

called the Program Counter or PC. The PC is

responsible for fetching the next instruction into the

processor from the memory.

The Instruction Set Format is shown in Figure 1.

Figure 1: Instruction Set Format

II. INSTRUCTION SET ARCHITECTURE OR ISA

The RISC-V ISA consists of a total of 47

instructions, from which we have implemented 20

instructions. The Instruction Set consists of 6 major

instruction types: r-type, s-type, i-type, u-type, b-

type and j-type. Register type instructions perform

operations between two source registers rs1 and rs2,

and the result is stored in a destination register rd.

Immediate type instructions perform operations

between rs1 and an immediate value and store the

result in rd. Store type instructions store data inside

the memory instead of a destination register. Upper

immediate type instructions store a 32-bit upper

immediate value directly into rd. Jump and Branch

instructions are control transfer instructions which

change the next PC value.

Architecture of RISC-V Our proposed RISC-V 32-

bit architecture involves 6 blocks that are

interconnected and communicate with each other.

These blocks are:

• Instruction fetch Block

• Instruction Decode Block

• ALU Block

• Memory Block

• Register Block

• Control Logic Block

Instruction fetch block: The fetch block is responsible

for retrieving instructions from the memory based on

the current program counter (PC) value. It reads the

© May 2024| IJIRT | Volume 10 Issue 12 | ISSN: 2349-6002

IJIRT 164897 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2780

instruction stored at the memory location pointed to by

the PC and loads it into a buffer for further processing.

It sends an RD signal to the memory and when the

signal is acknowledged by the memory, the memory

sends the instruction to the decode block, where it is

decoded. Also, the logic for the next PC is present

there.

Instruction Decode Block: The decode block receives

the instruction fetched from memory and extracts

essential fields such as opcode, source register

identifiers, destination register identifiers, funct3 and

funct7, immediate values, and operation types. The 7-

bit opcode corresponds to instruction type, the funct 3

along with funct 7 represents the operation to be

performed. The 5-bit rd represents the address location

of the destination register, the 5-bit rs1 and rs2

represents the address location of the source registers,

the 11-bit immediate value is sign extended to 32-bit

immediate value, and the same goes for the 7-bit offset

1 and the 5-bit offset 2, used in store type instructions.

The 22-bit upper immediate value is also sign

extended to 32 bit and used in u type instructions.

ALU Block: The ALU processes data from registers or

memory based on the instruction's requirements. For

example, it can perform operations like adding two

register values (add), bitwise AND between two

operands (and), or compare two values (compare). The

data is stored in rd, for r type, I type, u type and j type

instructions, whereas it is stored in memory for s type

instructions.

Memory Block: The memory block stores both

instructions and data required by the processor.

Instructions are fetched from memory during the

instruction fetch stage, when RD is active. Data (such

as variables, arrays, and stack contents) are accessed

during load/store operations executed.

Register Block: Registers are small, high speed

storage locations directly accessible by the processor's

arithmetic and logic units (ALUs). They store

operands for arithmetic and other data needed during

instruction execution. Registers are typically

organized as a register file, where each register has a

unique identifier (register number) and can hold a fixed

number of bits (e.g., 32 bits in a 32-bit RISC-V

architecture). The registers rs1, rs2 and rd are present

in the register file only. The first register x0 always

contains a 32-bit 0s as data. There are 32 registers x0

to x31.

Control Logic Block: the control logic block is the

central controller of a RISC-V processor, orchestrating

the operation of pipeline stages, generating control

signals, managing hazards, and optimizing

performance. Its effective design and implementation

are essential for achieving efficient and correct

execution of instructions within the processor pipeline.

The Control Logic Block provides Enable (EN)

signals to all the blocks, thus sequentially enabling the

blocks in a non-pipelined architecture. But in a

pipelined architecture, all the blocks are always

enabled at all the times, for pipeline to occur.

III. PIPELINING OF THE PROCESSOR

Pipeline ensures that all operations within the

processor components are synchronized to the clock

(clk) using positive edge triggers. This ensures that the

pipeline stages progress synchronously, aligning with

the processor's clock cycle. In order to efficiently

pipeline the processor, we need to register the signals

that V. Simulation Results are needed by the

subsequent blocks, like the Program Counter. By

registering the signals and forwarding it to subsequent

blocks, we can bring in the next data by storing the

intermediate value in the register. During pipeline, we

may experience the following hazards:

• Data hazards

• Control hazards

• Structural hazards

To detect and resolve data hazards by implementing

data forwarding logic, i.e., when an instruction

requires data that is being produced by a previous

instruction in the pipeline, forward the data directly

from the execution stage to the dependent stage. If the

data has been changed by the previous instruction,

then that data has to replace the current source register

data, if the same register that has been used as a

destination register in the previous instruction is called

upon as the source register in the in the current

instruction. Block Diagram of the Proposed Processor

is shown in Figure 2.

© May 2024| IJIRT | Volume 10 Issue 12 | ISSN: 2349-6002

IJIRT 164897 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2781

Figure 2: Block Diagram of the Proposed Processor

To address control hazards (e.g., branches), we can

predict branch outcomes early in the pipeline or using

branch prediction mechanisms to minimize stalls.

Implement techniques like branch target prediction to

predict the target address of branch instructions before

they are fully decoded, allowing subsequent

instructions to proceed without waiting for branch

resolution. But this is very complex. Instead, the delay

slots occurring in the pipeline is a necessary price that

most processors pay for simplicity in hardware and

functionality. Delay slots occur due to the PC

incrementing even before the instruction has been

decoded as a branch type or jump type by the

processor. Due to this, three clock cycles are being

wasted. Structural Hazards: It is common to avoid

structural hazards by ensuring that resources (e.g.,

ALU, memory units) are efficiently shared among

pipeline stages. Use techniques like resource

duplication or scheduling to allocate resources

dynamically based on pipeline stage requirements,

reducing contention and hazards.

IV. SIMULATION RESULTS

Our Proposed work contains 20 instructions out of the

47 instructions from the RISC-V RV32I architecture.

The mnemonics of the instructions have been attached

below, along with the simulation results.

ADD x1, x10, x6 SUB x2, x10, x6 MUL x3, x10,

x6 DIV x4, x10, x6 XOR x5, x10, x6 OR x7, x10,

x6 AND x8, x10, x6 ADDI x15, x10, 14

XORI x16, x10, 14 ORI x17, x10, 14 ANDI x18,

x10, 14 LW x19, 14(x10) SW x6, x10

LUI x20, 524287

AUIPC x21, 524287

JAL x22, 4

JALR x23, 12(x10) BEQ x0, x0, 4 BNE x1, x0, 2

BLT x0, x1, 2 BGE x1, x0, 2

V. CONCLUSION AND FUTURE WORK

Based on RV32I, the design and verification of a 5-

stage pipelined RISC processor, incorporating 20

instructions across various types and considering

future enhancements such as branch prediction and

data forwarding, represents a comprehensive approach

to processor development. Through meticulous

simulation and validation, including the utilization of

tools like ModelSim and Cadence, critical

functionalities have been verified and potential

performance bottlenecks identified. The outlined

future enhancements, ranging from branch prediction

schemes to synthesis optimization in tools like Xilinx

Vivado, underscore a commitment to improving

execution speed, throughput, and overall efficiency.

Ultimately, this work sets a solid foundation for the

continued evolution of RISC processors, aligning with

the demands of emerging technologies and computing

paradigms. The Simulation Results are shown in

Figure 3.

© May 2024| IJIRT | Volume 10 Issue 12 | ISSN: 2349-6002

IJIRT 164897 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2782

Figure3: Simulation Result

REFERENCES

[1] M. N. Topiwala and N. Saraswathi,

“Implementation of a 32-bit MIPS Based RISC

International Conference on Advanced

Communications, Control and Computing

Technologies,2014, pp. 979-983.

[2] S. P. Ritpurkar, M. N. Thakare and G. D. Korde,

“Synthesis and Simulation of a 32Bit MIPS RISC

Processor using VHDL” 2014 International

Conference on Advances in Engineering &

Technology Research (ICAETR - 2014), 2014, pp. 1-

6.

[3] S. Palekar and N. Narkhede, “32-bit RISC

Processor with Floating Point Unit for DSP

Applications”,2016 IEEE International Conference

on Recent Trendsin Electronics, Information &

Communication Technology (RTEICT), 2016, pp.

2062-2066.

[4] A. Raveendran, V. B. Patil, D. Selvakumar and

V. Desalphine, “A RISCV Instruction Set Processor-

Micro- architecture Design and Analysis”,2016

International Conference on VLSI Systems,

Architectures, Technology and Applications (VLSI-

SATA), 2016, pp. 1-7.

[5] R. J. L. Austria, A. L. Sambile, K. M. Villegas

and J. N.

T. Tabing, “Design of an 8 Bit Five Stage Pipelined

RISC Microprocessor for Sensor Platform

Application”, TENCON 2017 - 2017 IEEE Region

10 Conference, 2017, pp. 2110-2115

