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Abstract— This paper presents a modified design of RISC-

V RV32I 32-bit microprocessor. The RISC-V processor 

consists of a flexible 5 stage pipelined processor with 

certain techniques for hazard management. The processor 

consists of 6 blocks- fetch block, decode block, control logic 

block, memory block, register block and the ALU block. 

The processor is then pipelined into 5 stages – the fetch 

stage, the decode stage, the execute stage, the memory stage 

and the write backstage. After pipelining, the pipeline 

hazards such as data hazards and control hazards are 

managed by using data forwarding from previous stages of 

the pipeline and by introducing delay slots for control 

transfer instructions. After that, the schematic for the 

processor is obtained by feeding the Verilog code in cadence 

software. Also, there is a future scope of implementing new 

instructions that can combine the functions of two separate 

instructions into one single instruction, which are 

considered extensions to the existing ISA of RV32I. 
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management, 5 clock cycles. 

 

I. INTRODUCTION 

 

Reduced Instruction Set Computers (RISC) are meant 

to use a reduced instruction set in order to have a 

reduced execution time. They can carry out minor 

tasks in response to commands. These processors are 

more efficient at completing commands. 

The format used in this project is RV32I which is v2.0 

of RISC V. It is an optimized ISA for creating RISC 

machines. This ISA can support almost all modern 

operations and features. It has 32 general purpose 

registers x0 to x3. x0 is hardwired to the constant 0. 

There is one more register with a specific purpose, 

called the Program Counter or PC. The PC is 

responsible for fetching the next instruction into the 

processor from the memory. 

The Instruction Set Format is shown in Figure 1. 

 
Figure 1: Instruction Set Format 

 

II. INSTRUCTION SET ARCHITECTURE OR ISA 

 

The RISC-V ISA consists of a total of 47 

instructions, from which we have implemented 20 

instructions. The Instruction Set consists of 6 major 

instruction types: r-type, s-type, i-type, u-type, b-

type and j-type. Register type instructions perform 

operations between two source registers rs1 and rs2, 

and the result is stored in a destination register rd. 

Immediate type instructions perform operations 

between rs1 and an immediate value and store the 

result in rd. Store type instructions store data inside 

the memory instead of a destination register. Upper 

immediate type instructions store a 32-bit upper 

immediate value directly into rd. Jump and Branch 

instructions are control transfer instructions which 

change the next PC value. 

Architecture of RISC-V Our proposed RISC-V 32-

bit architecture involves 6 blocks that are 

interconnected and communicate with each other.  

 

These blocks are: 

• Instruction fetch Block 

• Instruction Decode Block 

• ALU Block 

• Memory Block 

• Register Block 

• Control Logic Block 

Instruction fetch block: The fetch block is responsible 

for retrieving instructions from the memory based on 

the current program counter (PC) value. It reads the 
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instruction stored at the memory location pointed to by 

the PC and loads it into a buffer for further processing. 

It sends an RD signal to the memory and when the 

signal is acknowledged by the memory, the memory 

sends the instruction to the decode block, where it is 

decoded. Also, the logic for the next PC is present 

there. 

 

Instruction Decode Block: The decode block receives 

the instruction fetched from memory and extracts 

essential fields such as opcode, source register 

identifiers, destination register identifiers, funct3 and 

funct7, immediate values, and operation types. The 7-

bit opcode corresponds to instruction type, the funct 3 

along with funct 7 represents the operation to be 

performed. The 5-bit rd represents the address location 

of the destination register, the 5-bit rs1 and rs2 

represents the address location of the source registers, 

the 11-bit immediate value is sign extended to 32-bit 

immediate value, and the same goes for the 7-bit offset 

1 and the 5-bit offset 2, used in store type instructions. 

The 22-bit upper immediate value is also sign 

extended to 32 bit and used in u type instructions. 

 

ALU Block: The ALU processes data from registers or 

memory based on the instruction's requirements. For 

example, it can perform operations like adding two 

register values (add), bitwise AND between two 

operands (and), or compare two values (compare). The 

data is stored in rd, for r type, I type, u type and j type 

instructions, whereas it is stored in memory for s type 

instructions. 

 

Memory Block: The memory block stores both 

instructions and data required by the processor. 

Instructions are fetched from memory during the 

instruction fetch stage, when RD is active. Data (such 

as variables, arrays, and stack contents) are accessed 

during load/store operations executed. 

 

Register Block: Registers are small, high speed 

storage locations directly accessible by the processor's 

arithmetic and logic units (ALUs). They store 

operands for arithmetic and other data needed during 

instruction execution. Registers are typically 

organized as a register file, where each register has a 

unique identifier (register number) and can hold a fixed 

number of bits (e.g., 32 bits in a 32-bit RISC-V 

architecture). The registers rs1, rs2 and rd are present 

in the register file only. The first register x0 always 

contains a 32-bit 0s as data. There are 32 registers x0 

to x31. 

 

Control Logic Block: the control logic block is the 

central controller of a RISC-V processor, orchestrating 

the operation of pipeline stages, generating control 

signals, managing hazards, and optimizing 

performance. Its effective design and implementation 

are essential for achieving efficient and correct 

execution of instructions within the processor pipeline. 

The Control Logic Block provides Enable (EN) 

signals to all the blocks, thus sequentially enabling the 

blocks in a non-pipelined architecture. But in a 

pipelined architecture, all the blocks are always 

enabled at all the times, for pipeline to occur. 

 

III. PIPELINING OF THE PROCESSOR 

 

Pipeline ensures that all operations within the 

processor components are synchronized to the clock 

(clk) using positive edge triggers. This ensures that the 

pipeline stages progress synchronously, aligning with 

the processor's clock cycle. In order to efficiently 

pipeline the processor, we need to register the signals 

that V. Simulation Results are needed by the 

subsequent blocks, like the Program Counter. By 

registering the signals and forwarding it to subsequent 

blocks, we can bring in the next data by storing the 

intermediate value in the register. During pipeline, we 

may experience the following hazards: 

 

• Data hazards 

• Control hazards 

• Structural hazards 

To detect and resolve data hazards by implementing 

data forwarding logic, i.e., when an instruction 

requires data that is being produced by a previous 

instruction in the pipeline, forward the data directly 

from the execution stage to the dependent stage. If the 

data has been changed by the previous instruction, 

then that data has to replace the current source register 

data, if the same register that has been used as a 

destination register in the previous instruction is called 

upon as the source register in the in the current 

instruction. Block Diagram of the Proposed Processor 

is shown in Figure 2. 
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Figure 2: Block Diagram of the Proposed Processor 

To address control hazards (e.g., branches), we can 

predict branch outcomes early in the pipeline or using 

branch prediction mechanisms to minimize stalls. 

Implement techniques like branch target prediction to 

predict the target address of branch instructions before 

they are fully decoded, allowing subsequent 

instructions to proceed without waiting for branch 

resolution. But this is very complex. Instead, the delay 

slots occurring in the pipeline is a necessary price that 

most processors pay for simplicity in hardware and 

functionality. Delay slots occur due to the PC 

incrementing even before the instruction has been 

decoded as a branch type or jump type by the 

processor. Due to this, three clock cycles are being 

wasted. Structural Hazards: It is common to avoid 

structural hazards by ensuring that resources (e.g., 

ALU, memory units) are efficiently shared among 

pipeline stages. Use techniques like resource 

duplication or scheduling to allocate resources 

dynamically based on pipeline stage requirements, 

reducing contention and hazards. 

 

IV. SIMULATION RESULTS 

 

Our Proposed work contains 20 instructions out of the 

47 instructions from the RISC-V RV32I architecture. 

The mnemonics of the instructions have been attached 

below, along with the simulation results. 

ADD x1, x10, x6 SUB x2, x10, x6 MUL x3, x10, 

x6 DIV x4, x10, x6 XOR x5, x10, x6 OR x7, x10, 

x6 AND x8, x10, x6 ADDI x15, x10, 14 

XORI x16, x10, 14 ORI x17, x10, 14 ANDI x18, 

x10, 14 LW x19, 14(x10) SW x6, x10 

LUI x20, 524287 

AUIPC x21, 524287 

JAL x22, 4 

JALR x23, 12(x10) BEQ x0, x0, 4 BNE x1, x0, 2 

BLT x0, x1, 2 BGE x1, x0, 2 

 

V. CONCLUSION AND FUTURE WORK 

 

Based on RV32I, the design and verification of a 5-

stage pipelined RISC processor, incorporating 20 

instructions across various types and considering 

future enhancements such as branch prediction and 

data forwarding, represents a comprehensive approach 

to processor development. Through meticulous 

simulation and validation, including the utilization of 

tools like ModelSim and Cadence, critical 

functionalities have been verified and potential 

performance bottlenecks identified. The outlined 

future enhancements, ranging from branch prediction 

schemes to synthesis optimization in tools like Xilinx 

Vivado, underscore a commitment to improving 

execution speed, throughput, and overall efficiency. 

Ultimately, this work sets a solid foundation for the 

continued evolution of RISC processors, aligning with 

the demands of emerging technologies and computing 

paradigms. The Simulation Results are shown in 

Figure 3. 
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Figure3: Simulation Result 
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