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Abstract— Evaluating the degree of dysarthria's severity 

can help pathologists plan therapy, help automated 

dysarthric speech recognition systems, and give insight 

into how well the patient is improving. This article presents 

comparative research on the use of several deep learning 

algorithms and acoustic characteristics for the 

categorization of dysarthria severity levels. First, we assess 

the fundamental architecture options, including the 

convolutional neural network, DNN, GRU, and LSTM, 

utilizing fundamental characteristics Subsequently, DNN 

models are used to assess aspects related to speech 

disorders. 

 

Index Terms- Speech Disorder, Deep Neural Network, 

Severity 

 

I. INTRODUCTION 

 

Speech disorder is a motor speech disease brought on 

by either a breakdown in the speech production 

subsystems or inadequate coordination. It either 

develops together with any neuro-degenerative illness 

or results from a neurological damage such as cerebral 

palsy [1]. It causes uneven speech pace, aberrant 

prosody, poor audibility, and inaccurate articulation, 

all of which worsen speech quality. The patients would 

sound harsher when speaking, have poor facial 

responses, hypernasality, and increased weariness. 

Thus, dysarthric individuals are unable to phonetically 

construct or speak syntactically proper sentences, even 

when they can  

 

be conceived. Their social life is impacted and they 

start speaking incoherently as a result. Due to their 

poor muscular coordination, dysarthric patients 

experience physical limitations like shaky hands, 

which reduces interactive apps. normal ASRs created 

have substantial mistake rates when utilized by 

disordered speakers. 

 

II. RELATED WORK 

 

Because of their familiarity with the patient, 

professionals' perceptions of their evaluations would 

differ depending on their background and listening 

abilities. Nonetheless, monitoring customers during 

recuperation. establishes  necessity of an automated 

technique for classifying the severity of dysarthria. 

Additionally, ASR systems designed for people with 

dysarthria may function better as a result of this 

categorization. 

 

Speech processing uses a wide range of perceptual 

features. Through the application of machine learning 

classifiers, MFCCs have demonstrated their value in 

the literature and for identifying the severity of 

dysarthria. MFCCs demonstrate their effectiveness 

that is similar for the identification. A multilayer 

perceptron (MLP) is used to classify the severity of 

dysarthria. The advantages of DBN features are 

negligible. The basic fared better than the glottal 

features utilized in [8] when it came to recognizing 

solitary perform better. These studies inspired us to 

examine the effectiveness of many deep learning 

models for dysarthric severity estimate using the 

fundamental MFCC features in order to see whether 

any appreciable gains over machine learning 

classifiers could be made. CQCCs have been a great 

option having first been suggested. The authors of [11] 

have demonstrated the effectiveness of CQT in 

dysarthria severity detection by demonstrating how 

the intensity of formants and harmonics in CQT 

spectrograms diminishes as the intelligibility level 

drops. Additionally, CQCCs have shown promising 

outcomes when included as baseline characteristics in 

[12]. These results have encouraged us to examine 

CQCCs' suitability for the suggested job. Numerous 

other novel and established features have been 
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investigated in the literature to improve the accuracy 

of dysarthria severity identification. These include the 

use of audio descriptors in [14], the introduction of the 

PE-SFCC in [12], and the use of breath-iness indices 

in [13].  

 

III. INCLUSION 

 

• Using MFCCs and CQCCs, we performed 

performance analyses of the fundamental deep 

learning architectures, including CNN, DNN, 

GRU, and LSTM. Our first stage of research using 

MFCCs is documented. 

• Prosodic, glottal, phonetic, and articulatory aspects 

are evaluated using DNN classifiers. The 

concatenated feature set is further subjected to 

dimensionality reduction, with the outcomes being 

analyzed. 

• Putting into practice a "two-level learning 

classifier" that classifies data using DNNs at the 

secondlevel. Trials use leave-one-speaker-out 

(LOSO) round-robin cross validation  

 

IV. DATASETS 

 

UA-Speech is used. for assessing the suggested task. 

The audio three-dimensional characteristics eight 

dysarthric patients and seven healthy speakers make 

up the TORGO database. Only the words utilized in 

this study are included in the corpus, which also 

includes non-words, words, and limited and 

unrestricted phrases. Thirteen speakers in good health 

and nineteen patients with dysarthria are represented 

in UA-Speech. Only 15 patients' worth of data are 

accessible, though. 155 popular terms are used three 

times. 

 

matching the 100 frequent words in the Brown corpus, 

computer instructions, international radio alphabets, 

and English numbers. The training data consists of 465 

frequent words per speaker, or 6975 utterances in total. 

Additionally, each speaker in the corpus contains 300 

unique unusual words that were chosen to optimize 

variety. These words were taken from children's 

novels that Project Gutenberg had digitized [27]. 

These are tested (a total of 4500 unseen words) in 

order to assess how resilient the models are. The sixth 

channel's data, at fs = 16 kHz in the microphone array, 

was utilized. Based on the intelligibility reports from 

five unsuspecting listeners for UA-Speech, the 

severity levels are rated as very low, low, medium, and 

high. In terms of TORGO, these are 

according to the FDA, given by  SLP  

 

V. EXPERIMENTAL DESIGN 

 

• MFCC AND CQCC 

Speech intelligibility is influenced by coordination, 

and MFCCs can record abnormal motions or the 

absence or alterations [4]. CQCCs are produced by 

coupling between the conventional cepstral analysis 

and CQT. With these insights, we carry out the first 

experiment (E1), in which MFCCs [25] and CQCCs 

are used as features and the fundamental deep learning 

techniques—DNN, CNN, GRU, and LSTM—are used 

for classification.  

 

VI. FEATURE EXTRACTION 

 

Analysis is done on how well they emphasize the 

paralinguistic elements of speech. When diagnosing 

dysarthria, one of the most obvious signs that doctors 

see that goes along with it. Both the imprecise and 

delay in the lip, tongue, jaw motions are explained by 

articulatory aspects. Variations in phonation can 

account for the deterioration of voice quality in 

dysarthric individuals with respect to stability and 

periodicity [28]. Thus, in this sense, phonetic 

characteristics pertaining to perturbation are retrieved. 

The aberrant variations in pitch, loudness, and length 

that characterize dysarthric speech the identification 

and diagnosis of dysarthria. These Disturbances hinder 

the expression of appropriate emotion and cadence in 

speech, and they can be measured using prosodic 

characteristics. This study uses DNN characteristics. 

A more comprehensible representation is produced by 

concatenating them and using dimensionality 

reduction. This is done using FA approach. As a result, 

factors are constructed from the concatenated feature 

set to indicate their shared variance or correlation. 

With this method, a succinct and satisfying 

explanation of the multi-variate data may be produced. 

It is possible to think of it as a more complex and 

advanced version. Consequently, the feature  lowered 

in the work suggested.  

FA is typically used in conjunction with machine 

learning classifiers to pick the optimal features by 
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eliminating duplicate representations. As a result, the 

classifiers would be forced to handle less complexity, 

which would enhance their overall performance. On 

the other hand, feature capture all of the therein are 

inherent to deep learning models. As a result, 

dimensionality reduction methods are not frequently 

applied in tandem. However, we investigate if this 

inclusion can lead to any improvements.  

 

An estimated average is used to determine the number 

of frames over the total number of utterances in the 

sample (400 for UA-Speech and 180 for TORGO). 

The bigger utterances are clipped, and the smaller ones 

are zero padded. The  obtained by computing the 

average horizontal axis. Derivatives are not employed 

and MFCCs are provided frame-wise to the RNN, 

GRU, and Long Short Term Memory. Since these 

networks are able to learn temporal information on 

their own, introducing deltas would introduce 

redundancy and may highlight speech qualities that 

aren't important. The frequency range is restricted to 

100Hz - 8kHz (fs/2) and there are 48 bins in an octave. 

A sampling period is used for the resampling. the 

acoustic parameterization is carried out utilizing, 

together with their first two deltas, in order to extract 

i-vectors. Next, the auxiliary database including sound 

audio samples of UA-Speech is used to train the UBM 

ten times over using the expectation-maximization 

(EM) technique. After computing the i-vectors 

consideration. By applying the Eigen-Voice Adaption 

approach, the Target (dysarthric) GMM is adapted 

from the UBM.  

 

M = m + T w 

  

VII. BASELINE CLASSIFIERS 

 

The foundational classifiers in machine learning are 

random forest (RF) and support vector machines 

(SVM). Radial basis function (RBF) and linear basis 

function (SVM) kernels were also supported, with the 

ideal regularization parameter, c, which is adjusted 

between 1 and 10. The best results were obtained with 

c = 1 for E3, c = 6 for E1 and E2, and 30% of training 

the data for E3. The RF were designed with (ntree) 

being tweaked between 10 and 150 in the validation 

data. The best results were achieved with ntree = 

50,125, and 100 for E1, E2, and E3. Together with 

these classifiers, the PLDA scoring system is applied 

for E3. 

 

VIII. DL CLASSIFIERS 

 

A model is learns and modeling the high-level 

abstractions seen in the feature sets. In Keras, Deep 

Neural Network models are constructed by building 

dense layers. of the activation of ReLU.  neuron count 

is intended to increase in powers of two in tandem with 

the model depth. The number of nodes in the first layer 

is the same as the product of the two closest. Since 39 

MFCCs are utilized for E1, there are 32 nodes in the 

first layer, 64 in the second, and so on.  

There is a layer with a dropout value of 0.4 after the 

thick layers. There is softmax activation on the output 

layer. Every DNN undergoes training using a learning 

batch size of 32. 

 

CNN consists of alternating convolution and pooling 

layers. Every speech frame in the front end is thirteen 

provide the two-dimensional use. As a result, the 

frame-wise feature representation's contained 

variabilities may be effectively used to retrieve local 

information. n layered are used to create CNN models. 

Each layer is followed by a batch-normalization layer. 

Similar to DNN models, grows in two. resultant 

flattened result is transmitted to the dense layers, 

where n is the number of units that decrease in powers 

of 2. Here, just MFCC functionalities are utilized. 

It has been demonstrated that recurrent neural 

networks (RNNs) are effective in capturing the 

temporal relationships for sequential tasks.  

One of its variants, LSTM, can adaptably capture 

long-range relationships by solving the standard 

RNNs' vanishing gradient issue. Three gates regulate 

the information in the network are used to accomplish 

this. They also contain information.  

 

IX. RESULTS 

 

The CNN and DNN are adjusted. Figures 1 plot the 

findings for the MFCC along with CQCC features, 

correspondingly. The highest layers of the model 

identify effective feature representations that perform 

well across datasets as it becomes more and more 

complex. As a result, when employing MFCCs with 

DNNs, an improvement in accuracy was shown up to 

n = 5 for both databases [25]. UAS is the term used to 
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refer to UA-Speech when labeling the graphs. Upon 

beyond four layers, the overall accuracy of 

categorization declines. This is due to the fact that as 

model complexity increased, generalization ability 

dropped. The network overfits the training set and is 

unable to provide 

wise choice based on the test data that wasn't viewed. 

As can be observed in Fig. 1(a), the best results. 

Similar to the DNN models, accuracy decreased with 

additional increase. A similar tendency was noted for 

models that used CQCCs, but with lower accuracy 

ratings than those obtained with MFCCs. The graphs 

clearly show that there is a 20% variation in the 

accuracy. One reason might be because the speaker's 

speech pattern, in addition to their physical attributes, 

both demonstrate the severity of dysarthria. The 

variations in the monotonicity pattern displayed by 

patients with dysarthria 

 

 
Fig 1 Variation of classification accuracy 

 

X. DISCUSSION 

 

SLPs' use of auditory perceptual measurements to 

identify the evolution of dysarthria has been 

automated in E1 utilizing speech perceptual 

characteristics such as MFCCs and CQCCs. The 

outcomes demonstrate that they may be utilized in 

conjunction with effective classifiers to offer an 

objective assessment of the degree of dysarthria. 

When utilizing MFCCs, CNN and DNN. However, 

GRU handled CQCCs more skillfully, suggesting the 

significance of their temporal dependencies. In the SD 

test scenario, MFCCs fared better on features than 

CQCCs, but CQCCs exhibit less speaker-overfitting, 

which suggests that they will make better SID models. 

When i-vectors were used, iMFCCs outperformed all 

other features in the SD scenario and improved 

classification accuracy over raw MFCCs in SID 

systems by about 20%. vector-PLDA paradigm 

provides a notable improvement over the traditional 

one i-vectors. When employing gain margin can be 

enhanced and is worth the extra processing work. The 

models' subpar performance in the SID scenario is 

indicative of their training limitation—having just a 

small number of subjects each class.  

It would be advantageous to develop UBM for the i-

vector, just like with deep learning models. All pioneer 

efforts, however, have been conducted usingUA-

Speech. 

 

Although the speech disorder specific traits have been 

widely employed in the literature to distinguish 

between healthy and disordered speech, they have not 

shown to be as effective in modeling the severity 

levels of dysarthria. The 28-dimensional phonation 

characteristics came in second. It demonstrated that 

accuracy need not be impacted by the feature set's size, 

supporting the conclusions of [42]. In the automated 

assessment of Parkinson's disease patients, articulation 

traits have been shown to be more effective than the 

others. in the references [17]. To choose the best 

feature descriptors. PFE can be used to quantify the 

differences and similarities between the various 

feature sets within and between classes. This would 

score the characteristics according to how well they 

classified the severity levels and assess each feature's 

capacity for discrimination. This would also explain 

why, when all the features taken into account for the 

study, the DNN classifiers are unable to produce good 

results. 

 

CONCLUSION 

 

classifying the severity of speech disorder using 

distinct acoustic cues. Also, we have implemented 

DNNs for a advanced level feature analysing. Out of 

all the characteristics that have been studied, MFCCs 

have the min. computational complexity. Nonetheless, 

the DNN-iMFCC structure must be applied if accuracy 

is the main consideration. Investigation of the 

application of ETEO in future research to distinguish 
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between the various degrees of dysarthria severity is 

needed.  
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