
© June 2024 | IJIRT | Volume 11 Issue 1 | ISSN: 2349-6002

IJIRT 165307 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1060

Exploring the Dynamics of Version Control Systems: An

In-depth Analysis

ARUN KUMAR N V1, BASAVARAJ2, DANESH KADAPPA HOSUR3, DILIP RATHOD4, DR.

SRINIVASA A H5
1, 2, 3, 4, 5 Dr. Ambedkar Institute of Technology, Bengaluru, Karnataka, India

Abstract— Managing the source code of the project and

other related documents in an organization is a mandatory

need, which may ensure clarity in the delivery of the

product enhancing the focus of the organization towards

its intended product’s quality. We have a plethora of

software configuration management tools at our disposal

in this digital age of computing to manage different

documents, their revisions, versions, and so on. This article

examines the significance of different Version Control

Systems (VCS) that have developed to support software

development lifecycles, compares popular VCS products

available on the market based on features, and evaluates

their effectiveness across selected attributes. Also, we

suggest a new tool bearing few of the best face raise in our

comparison study as well as a few extra attributes that we

believe will raise the quality of this new tool. This finishes

can combat the issues we challenge existing finishes

concerning business.

I. INTRODUCTION

In the ever-evolving landscape of software

development, managing codebase changes and

facilitating seamless collaboration among developers

are paramount challenges. Version Control Systems

(VCS) emerge as a fundamental solution to these

challenges, providing a structured and efficient

approach to tracking modifications, coordinating team

efforts, and safeguarding the integrity of software

projects.

A Version Control System serves as a repository for

source code and project files, enabling developers to

work collaboratively without the risk of conflicting

changes. By meticulously recording alterations, it

offers a historical perspective on the evolution of a

project, facilitating not only error correction but also

strategic decision-making regarding feature

development and software releases.

Version Control Systems, emphasizing their pivotal

role in modern software engineering. From the basic

principles of capturing changes and creating a version

history to the more advanced features such as

branching and merging, VCS provides a robust

framework for maintaining order in the collaborative

development process. As we navigate through the

complexities of distributed teams, parallel

development, and the imperative for agile

methodologies, understanding and implementing

effective version control practices become imperative.

As complex teams are involved in the modern

software development, it is very frequent for many

versions of the same software to be deployed in

different locations or systems and for them to be

working synchronously on its development. Most of

the times only a specific part of the program does

contain bugs or features (by the fixing of some

problems and the introduction of others as the program

develops). Therefore, to locate and to fix bugs, it is of

absolute important to be able to retrieve and run

various versions of the software to determine in which

version(s) the problem occurs. It may also be

necessary to develop different parts of the software in

parallel (for instance, where one version which has all

its bugs fixed, but no new features (branch), while the

different adaptation is place new features, that is still

under experiment are processed on this project.

At a basic level, we can keep multiple copies of

different versions of the program and label them

accordingly, which is a form of manual version

control. This method was previously used in large

operating system projects. Although feasible, it

requires a significant amount of work and is highly

inefficient. It demands a great deal of discipline and

can introduce new errors by the developer. Since the

codebase remains largely unchanged, it also

necessitates the creation of an admin user to control

© June 2024 | IJIRT | Volume 11 Issue 1 | ISSN: 2349-6002

IJIRT 165307 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1061

who can configure which version, ensuring the

codebase is not compromised. This adds a

considerable amount of complexity. To address these

issues, we have various VCS that separate version

control management from the users' perspective.

Furthermore, in various fields beyond software

development, it has become commonplace for a single

document to be managed by a team whose members

may not be physically co-located and may have

different responsibilities. A Version Control System

(VCS) that can track and document ownership of

revisions to documents would be highly beneficial in

such scenarios.

There are a lot of version control systems available

these days, but the earlier ones required more mental

effort to grasp and had a higher learning curve because

they were many modern version control systems

(VCS) reduce the complexity by offering a user-

friendly command-line interface (CLI) with

comprehensive documentation and built-in help (e.g.,

Git). Additionally, some VCS tools provide

straightforward graphical user interfaces (GUIs) or

integrate seamlessly with the system’s default file

explorer (e.g., Subversion and TortoiseSVN).

These tools are available in two architectural types:

centralized and distributed. Centralized systems

depend on a single repository for storing most of the

project data and versioning information, with client

interfaces retrieving only the latest version for use. In

contrast, distributed systems—currently more

popular—store a complete copy of the repository on

each user's machine, facilitating independent and

offline work.

II. RELATED WORK

We intentional several adaptation control systems

common now which cover various approaches that

went in construction them in the way that centralized

vs distributed architectural types. We have also

included some older tools in the study to identify how

far their modern counterparts have come regarding

performance, usability and interoperability.

Specifically, we studied the following eight tools:

• Source Code Control System

• Revision Control System (RCS)

• Concurrent Version System (CVS)

• DVCS

• Subversion

• GNU Bazaar

• Git

• Mercurial

A. Revision Control System (RCS)

RCS, individual of the very first VCS, that happened

into life in 1982 by Walter F. Tichy who was from

Purdue University [1]. RCS is now kept up for one

GNU Project. RCS was initially developed for

software development, but it is also useful for text

documents which need frequent revision. RCS can

only do single file operation[2]. As of now, it does not

have a provision to support atomic commit. It supports

branching though for individual files, but the syntax of

its operation is hard to handle. Besides utilizing arms,

teams favor to use the included locking mechanism

and bother a sole head arm. It has got straightforward

to understand the structure. However, the main con

being its operational limitation is restricted to only one

user at a time. No concurrency. It is only capable of

working locally. This tool can only support the

waterfall model of the software development

workflow[3-5]. No GUI alternative is available.

B. Concurrent Version System (CVS)

CVS uses a client-server architecture model[6].

Released under the GNU GPL. It was very popular

with open-source projects in its early days. No new

releases since 2008 or put in other words, is dead. CVS

uses a client-server architecture. Client and server may

be run on the same machine for local development.

Supports concurrent development where each

developer edits his/her working copy and checks-in

the changes to the server. All files are versioned

accompanying any that is incremented accompanying

further check-ins. We have got a feature which allows

the users to different versions, a complete history of

changes can be viewed and analyzed, besides being

able to check out an old snapshot of the project sorted

by a given date or as of a revision number. CVS

servers can allow "anonymous read access“. Can

maintain different branches for a project [7]. CVS can

store various versions of the same file using a unique

feature known as delta compression. CVS does not

consider the move and renaming as separate versions.

© June 2024 | IJIRT | Volume 11 Issue 1 | ISSN: 2349-6002

IJIRT 165307 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1062

GUI clients such as Tortoise CVS and Smart CVS

available.

C. Source Code Control System

In the early days of software development, managing

code changes was a cumbersome and error-prone

process. Developers relied on manual tracking and

notation systems, often leading to confusion and lost

versions. This is where Marc J. Rochkind's "Source

Code Control System" (SCCS), introduced in 1972,

emerged as a revolutionary solution. SCCS, developed

at Bell Labs, was a version control system designed

specifically for tracking modifications in source code

and other text files. It offered a powerful and

innovative way for programmers to collaborate and

maintain a clear history of their work. At its core,

SCCS functioned by storing each revision of a file as

a "delta," a set of changes applied to the previous

version. This approach minimized storage space by

only saving the differences between versions. When

needed, SCCS could reconstruct any historical version

by applying deltas in sequence. One of SCCS's

defining features was the automatic inclusion of an

"sccsid string" within the source code itself. This

allowed developers to easily navigate back in time,

retrieve older code, and analyze the evolution of their

software. The first publicly available version, SCCS

v4, released in 1977, marked a significant milestone.

This version introduced a text-based history file

format, replacing the earlier binary formats and

enhancing user readability. This shift made it easier for

developers to understand and manage the version

control history.

D. Subversion

Subversion, developed by CollabNet, is a centralized

revision control system. It is open-source under the

Apache license and is the second-most popular VCS

after GIT. Currently, it is an Apache-funded top-level

project. Prominent organizations such as SourceForge,

Apache Software Foundation, GCC, Mono, and

FreeBSD use SVN for source control. Subversion

supports branching and tagging, facilitating non-linear

workflows. Unlike other VCS, branching is not a

costly operation. Any change, even minor, retains the

full revision history of files. Commits are true atomic

operations. It has a native client-server, layered library

design, and offers language bindings for various

programming languages. Subversion provides a single

source of access control and supports tracking

features, including change lists to organize commits

into groups. Mature user interfaces like TortoiseSVN

are available, and online hosting options are offered by

Deveo, Assembla, and RiouxSVN [14-16].

E. GNU Bazaar

GNU Bazaar, developed by Canonical, the team

behind Ubuntu, is a distributed and client-server

system. It suits individual developers managing

multiple branches of local content [17-19]. Crafted in

Python, it's cross-platform, free, and open-source.

Embraced by major players like Linux Foundation,

Ubuntu, MySQL, Debian, MariaDB, and more, it

offers genuine branching at low cost. Whether in

central or distributed mode, it excels in code

management, with seamless migration from

Subversion due to CLI similarity. Its CLI is intuitive,

complemented by extensive documentation and built-

in GUI tools. Highly adaptable to various workflows,

it performs remarkably well even on sluggish

networks with substantial revision histories.

Renaming tracking for files and directories is

provided, sans the necessity of a dedicated server.

Boasting over 100 plugins and a Python API for

custom development, it integrates smoothly with

Launchpad for online hosting [20].

F. Git

Git, an advanced version control system (VCS),

enables working on files and facilitating collaboration

among multiple individuals while tracking changes.

Linus Torvalds initially developed Git in 2005 to

support the development of the Linux kernel. It

operates under the GNU General Public License

version 2.0 and is presently the most widely adopted

VCS, both within companies and among standalone

developers. As of 2016, it commands a significant

70% of search interest among VCSs and generates the

most questions per day on Stack Overflow. Backed by

a robust open-source community, Git offers

comprehensive support for MS Windows and Unix-

like systems. It accommodates both linear and

nonlinear development and is compatible with

traditional (waterfall) and modern (agile) software

models. Git simplifies complex operations like

branching, committing, undoing, checkpointing, and

merging, making it invaluable for intricate software

projects. With its distributed repository type, Git

© June 2024 | IJIRT | Volume 11 Issue 1 | ISSN: 2349-6002

IJIRT 165307 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1063

ensures the cryptographic integrity of every aspect of

a software project through checksums on files and

commits. For users unfamiliar with Git's workflow, it

supports various workflows such as Dictator and

Lieutenants, Integration Manager, and Subversion-

style workflows. It suits projects of all sizes, from

kilobytes to exabytes, across any IDE, offering an

easy-to-use command-line interface. Popular online

hosting providers for Git repositories include GitHub,

BitBucket, and GitLab..

G. Mercurial

Mercurial, developed by Matt Mackall and written in

Python, is among the most popular version control

systems (VCS) in use today [24-28]. It boasts a

decentralized, fully-distributed architecture and is

favored by prominent companies such as Facebook,

Mozilla, Nginx, and NetBeans, as well as projects like

Mozilla and Octave. With its cross-platform

compatibility, Mercurial facilitates collaborative

development without the need for centralized

permissions management. Each commit is identified

by a unique hexadecimal string generated through

cryptographic hashing. Its command-line interface

(CLI) is intuitive, and there are numerous graphical

user interface (GUI) clients available, including the

user-friendly TortoiseHg. Additionally, Mercurial

offers a variety of online hosting options, such as

CodePlex, Assembla, BitBucket, and RhodeCode.

H. DVCS

Traditionally, developers relied on Centralized

Version Control Systems (CVCS) where a single

server stores the entire codebase. This centralized

repository serves as the sole source of truth, with

developers checking out and checking in files to keep

track of changes. Dependence on a central server could

lead to bottlenecks, particularly with slow network

connections. Additionally, a single point of failure –

server downtime – could disrupt development. DVCS

flips the script entirely. Instead of a central repository,

each developer has a complete copy of the codebase,

including its entire history, on their local machine.

This local repository acts as a miniature version of the

central server in CVCS. The magic lies in the peer-to-

peer nature of DVCS. Developers can exchange

changes and synchronize their local repositories with

a remote repository without relying on a single central

server.

III. PROPOSED SYSTEM

This paper proposes a novel Version Control System

(VCS) that incorporates the key strengths identified

through a comparative study of existing VCS

solutions. The proposed system also introduces

features that address the limitations of current

workflows and reduce reliance on third-party tools. A

rigorous analysis was conducted on existing VCS

tools, focusing on the following key parameters

1. Security

2. Storage Model

3. Ease of Use

4. Ease of development

Fig. 2.1. Architecture diagram for the proposed tool.

A. Security

Security This section addresses the security of the

revision history, encryption of revisions, and recently

discovered vulnerabilities.

Secure Communication and Authentication: Secure

communication and user authentication are paramount

for protecting the integrity of the revision history. We

propose HTTPS as the primary protocol for remote

operations due to its:

• Security: HTTPS encrypts data in transit,

safeguarding user information and content from

unauthorized access.

• Efficiency: HTTPS offers efficient data transfer,

minimizing communication overhead.

© June 2024 | IJIRT | Volume 11 Issue 1 | ISSN: 2349-6002

IJIRT 165307 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1064

• Compatibility: HTTPS is widely supported by

existing applications, eliminating the need for

custom protocol implementations.

While SSH (Secure Shell) is also a secure option, its

complexity can be a barrier for some users. HTTPS

and OAuth, a widely adopted authorization

framework, provide a simpler and more user-friendly

approach with comparable security features.

Additionally, the adoption of HTTPS/2 further

enhances both speed and security of communication.

SHA-2 Encrypted Commits: To ensure the integrity of

committed data, our system calculates SHA-2

checksums for files during the commit process. SHA-

2 is a robust and currently uncompromised

cryptographic hash function, safeguarding commit

messages during transfer.

Deprecation of SHA-1: Recognizing the theoretical

vulnerabilities of SHA-1 (deprecated by NIST in

2011), we opt for the more secure SHA-2 algorithm.

This approach mitigates the risk of compromised

revisions due to outdated encryption methods.

B. Storage Model

This section addresses storage considerations,

including change set/snapshot management, disk

space utilization, and binary file handling.

Enhanced Binary File Support: Current VCS tools

often treat all files equally, regardless of type. This

approach can be inefficient for binary files, as

operations like diffs are slower compared to text files.

While existing algorithms address this, lacking

knowledge of specific binary formats hinders

performance.

Our proposed solution involves adding file type

information as attributes during commit. This allows

for implementing specialized algorithms for common

formats (e.g., image, audio) for faster operations. This

approach increases VCS size but offers significant

performance gains. We plan to support common

formats initially, with an extensibility mechanism for

developers to add custom logic for specific needs.

Additionally, current tools often load entire binary

files into memory for diffs, leading to performance

issues with larger files. We propose splitting large files

or deltas into smaller chunks for efficient diffing and

combining the results. This strategy improves

performance when handling large binary files and

repositories.

SHA-2 Encrypted Commits: As discussed previously,

SHA-2 encrypted commits offer security benefits

while also ensuring data integrity. This means the

system can verify data during transmission and

reception, eliminating potential data corruption. As

long as the internal files remain unaltered, the system

maintains complete awareness of file presence and

history, even without direct knowledge of the content

within those files.

C. Ease of Use

This section evaluates user experience (UX) factors,

including command-line interface (CLI) clarity.

Clear and Consistent CLI: While Git dominates the

version control system (VCS) market, its CLI presents

challenges. Discussions reveal user dissatisfaction

with its complexity, particularly for those transitioning

from simpler tools like SVN. Inconsistencies in

command naming and functionality further contribute

to confusion. For instance, resetting files requires

distinct commands for single files and entire

directories . This ambiguity is a hurdle for both

beginners and experienced users.

Our proposed tool addresses these issues by offering a

streamlined, modern interface with clear and

memorable commands. We prioritize explicitness over

implicitness, even if it necessitates additional

commands. Distinct commands like x unstage file.txt

and x reset file.txt enhance clarity.

Cross-platform Support: Subversion excels in user-

friendliness due to its mature user interface options.

While CLI proficiency offers long-term benefits, a

user-friendly interface caters to novice users. Our

solution prioritizes a user-friendly experience across

platforms. The architecture allows developers to create

plugins, potentially offering an online repository for

user-driven features (similar to the binary file support

extension concept).

© June 2024 | IJIRT | Volume 11 Issue 1 | ISSN: 2349-6002

IJIRT 165307 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1065

Platform-specific Filesystem Integration: Tools like

TortoiseSVN provide valuable UX through integration

with file explorers. This allows users to perform VCS

operations directly within the file explorer. Color-

coded icons further enhance the user experience by

visually indicating the repository state.

D. Ease of Development

This section would discuss the factors that make the

proposed tool easier to develop for contributors. Here

are some potential aspects to consider including:

• Modular Design: The codebase could be designed

with modularity in mind, allowing for independent

development and maintenance of different

functionalities. This would make it easier for

developers to contribute specific features or bug

fixes without needing to understand the entire

system.

• Open Source: Consider making the tool open-

source. This would allow the developer

community to contribute code, identify and fix

bugs, and propose improvements.

• Detailed Documentation: Comprehensive

documentation that explains the codebase, design

choices, and contribution guidelines would be

helpful for new developers to get started.

• Testing Framework: A robust testing framework

would ensure the quality and stability of the

codebase. This would make it easier for developers

to write unit tests and integration tests for their

contributions.

• Continuous Integration: Implementing a

continuous integration (CI) system would

automate testing and deployment processes,

providing developers with faster feedback on their

changes.

• Version Control System Integration: Utilizing a

version control system like Git would allow

developers to track changes, collaborate

effectively, and revert to previous versions if

necessary.

Fig 3.1 Data flow diagram.

CONCLUSION

This paper explored the concept of version control

systems (VCS) by examining their key characteristics:

repository structure, concurrency control mechanisms,

storage management, and data unit definition. We also

reviewed the historical development of VCS and their

fundamental functionalities.

There are several directions for research in version

control systems. One field of research maybe making

version control vacant to expansive type of rules by

exploring the likelihood of mixing version control

feature directly into development languages, or

perhaps fortifying the growth surroundings in the form

of a foundation, such that developers could easily

create applications with built-in version control

capabilities. This could be considered as bringing

version control to the context of the application. While

our analysis identified Git as the current market leader,

followed by Apache Subversion, Mercurial, and

Perforce Helix (for enterprise use), each tool possesses

its own limitations. Recognizing these limitations, this

paper proposes a novel VCS tool that integrates the

most advantageous features from existing solutions,

while introducing additional functionalities to support

modern development workflows. The proposed tool

represents a promising avenue for future

implementation and further feature development.

REFERENCES

[1] RCS GNU Project -

https://www.gnu.org/software/rcs/

© June 2024 | IJIRT | Volume 11 Issue 1 | ISSN: 2349-6002

IJIRT 165307 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1066

[2] Tichy, W. F. (1985). RCS—a system for version

control. Software: Practice and Experience,

15(7), 637-654.

[3] RCS tutorial -

http://archive.oreilly.com/pub/a/perl/excerpts/sy

stem- admin-with-perl/five-minute-rcs-

tutorial.html

[4] RCS a system for version control-

http://dl.acm.org/citation.cfm?id=4202

[5] RCS in brief

http://jodypaul.com/SWE/RCSTutorial/RCSTut

orial.html

[6] CV wikipedia -

https://en.wikipedia.org/wiki/Concurrent_Versi

ons_System

[7] Using CVS -

https://www.ibm.com/support/knowledgecenter/

SSSHYH_7.1.0.6/com.ibm.netcoolimpact.doc/a

dmin/imag_selecting_CVS_version_mana

ger.html

[8] What is perforce helix -

https://www.perforce.com/versioning-engine

[9] [Perforce manual - -

https://www.perforce.com/perforce/r15.2/manua

ls/dvcs/

[10] Introducing helix -

https://www.perforce.com/blog/150303/introduc

ing-helix

[11] Perforce helix -

https://en.wikipedia.org/wiki/Perforce_Helix

[12] Enterprise perforce -

https://softwareengineering.stackexchange.com/

questions/85845/why-big-companies-use-

perforce

[13] Apache subversion wikipedia - -

https://en.wikipedia.org/wiki/Apache_Subversio

n

[14] Apache subversion -

https://subversion.apache.org/

[15] Subversion wikipedia -

https://en.wikipedia.org/wiki/Subversion

[16] Version control with subversion -

http://svnbook.red-bean.com/

[17] Bazaar - http://bazaar.canonical.com/en/

[18] Bazaar vs git -

http://wiki.bazaar.canonical.com/BrzVsGit

[19] Bazaar stackoverflow -

http://stackoverflow.com/questions/14926774/w

hat-is-the-state-of- bazaar-version-control

[20] GNU bazaar -

https://en.wikipedia.org/wiki/GNU_Bazaar

[21] Git documentation - https://git-scm.com/doc

[22] Github git - https://github.com/git/git-scm.com

[23] Git wikipedia - https://en.wikipedia.org/wiki/Git

[24] Mercurial - https://www.mercurial-scm.org/

[25] Mercurial wikipedia -

https://en.wikipedia.org/wiki/Mercurial,http://st

ackoverflow.com/questions/35837/what-is-the-

difference- between-mercurial-and-git

[26] [Managing with mercurial -

https://www.ibm.com/developerworks/aix/librar

y/au-mercurial/

[27] Mercurial vs git technical aspects -

https://www.atlassian.com/blog/software-

teams/mercurial-vs-git-why- mercurial

[28] Bitkeeper - http://www.bitkeeper.com/

[29] Junqueira, Daniel C, Bittar, Thiago J and Fortes,

Renata P s.1 , A fine-grained and flexible version

control for software artifacts : ACM, 2008. pp.

185--192.Bitkeeper github -

https://github.com/bitkeeper-scm/bitkeeper

[30] Supporting distributed collaboration through

multidimensional software configuration

management. Chu-Carroll, Mark C and Wright,

James. s.1. : Springer-Verlag, 2003. pp. 40--53

[31] Linux and bitkeeper -

https://www.linux.com/news/bitkeeper-and-

linux-end-road

[32] Best version control for a standalone computer -

http://stackoverflow.com/questions/138621/best-

version-control-for-lone-developer

[33] G2crowd best version control -

https://www.g2crowd.com/categories/version-

control-systems

[34] Choosing the best version control -

https://www.codeproject.com/Articles/431125/Choosi

ng-a-Version-Control-System-A-Beginners-Tour

© June 2024 | IJIRT | Volume 11 Issue 1 | ISSN: 2349-6002

IJIRT 165307 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1067

[35] Version control options -

https://www.sitepoint.com/version-control- software-

2014-what-options/

[36] Rhodecode survey -

https://rhodecode.com/insights/version-control-

systems-2016

[37] Popular version control systems -

https://rhodecode.com/insights.com

