
© June 2024| IJIRT | Volume 11 Issue 1 | ISSN: 2349-6002

IJIRT 165533 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1122

Stock tracker and trend prediction system

Vedant Hiwarde1, Sahil Nikam2, Prajwal Alekar3, Prajwal Nimbalkar4, Omkar Shinde5, Vedant

Kumbhar6, Girija Teli7, Jayesh Salunke8

1,2,3,4,5,6Department of Robotics & Automation Engineering, Zeal College of Engineering & Research,

Narhe, Pune-41, Savitribai Phule Pune University

Abstract- The stock exchange of India is part of the stock

exchanges investing in shares across the world. It consists

of, National Stock Exchange and Bombay Stock

Exchange. In the context of National Stock Exchange, the

total counts of firms 2,266, while total registered firms in

Bombay Stock Exchange are 5,309. At least, the Indian

stock market situation is more complex and changeable,

and therefore, a stock prediction system is required. The

Bombay Stock Exchange (BSE) and the National Stock

Exchange (NSE) are two well-known measures that prove

the importance of the Indian stock market. The past

experience indicates that, the Indian stock market does

possess a sort of diversity which challenges investors.

However, I believe that benchmark indices (BSE Sensex

and Nifty 50) are not only the measure of market

popularity but also economic viability. It has assumed a

stronger form with liberalization in India as the stock

market contributes to wealth creation, resource

mobilization for businesses and overall economic

progress. Thus, the necessity of presentations like stock

prediction systems, in order to restore investor

confidence, improve the corporate image of the capital

markets and continue the growth in one of the world’s

fastest growing economies for shares – India. This

prediction system involves data for the stock and

approximately it covers the period from the year 2000 to

2024. It has been observed that heightened importance is

being given to the reliable forecasting of stock prices

because of the unpredictable nature and volatility of

returns as well as risks associated with the stock market

investments, where investment risks possess a significant

impact on the institutions and at the same time both

financial firms as well as the regulatory authorities have

paid special concern to this problem. By its nature, stocks

as another aspect of the distribution of assets have always

been considered the favorite among investors due to the

high return rate. unprecedented and unrelenting

evolution the literature on stock price prediction as a field

of study has not slowed down. The necessary data of this

project concerned about the XGBoost process and extend

from about 24 years of work.

INTRODUCTION

Analyzing the stock market has been an important

focus in both the academic and practical arena for

many years, owing to the attention it attracts due to its

volatility and therefore the potential for great gains or

losses. The present state of the stock market’s dynamic

character and the prospect of its further development

continues to be a matter of keen interest among

investors who care greatly about choosing an optimal

trend for stocks. It is difficult to isolate specific causes

for the oscillations in the stock market as multiple

factors like political events, changes in economic data,

culture, and even the general public mood have impact

on stock prices. Therefore, the search for accurate

approaches in the prediction of stock price movements

has come out a constant issue of focus and research.

This endeavour has been driven by the desire to

effectively reduce the amount of risk that is associated

with stock market investment while at the same time

pursuing the maximalization of potential gain. In the

pursuit of this aim, research and practitioners have

looked to draw upon numerous methods and

LOGICAL methodologies, one of which is the use of

historical stock price data for predictive modelling.

Using historical data which includes among other

things opening prices, closing prices, trading volumes

and daily trends, analysts seek to identify recurring

patterns and trends that may be seen to potentially

provide an indication of the future direction of prices.

The key foundation for such a form of predictive

modeling is within the ability of historical data to

signal the future tendencies of the market. Using the

matics in the historical series, analysts try to find

reoccurring periodicities, relationships between

variables, and contexts that could be useful for their

forecasts of subsequent fluctuations in the stock price.

Core to it is the application of sophisticated

mathematical tools to learn information processing

patterns from the data that exist by training behavior

© June 2024| IJIRT | Volume 11 Issue 1 | ISSN: 2349-6002

IJIRT 165533 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1123

learning models over large historical data sets and

make findings that can go unnoticed by human

observations.

In this context, the main goal of the model described

in the present paper is to apply the principles of

predictive business analytics and machine learning for

evaluation of the future stock prices trend. In

particular, the model aims at offering valuable

recommendations to investors with regard to the

opening rate, minimum rate, maximum rate, closing

rate, and overall trading pattern of a particular stock

during a given trading day. In order to achieve this

objective, the model uses a historical stock market data

as a network imported from a CSV file and applies the

XGBoost as an enhanced machine learning model.

In this work, the approach taken captures several

phases that are vital in helping attain the ability to

forecast future stock prices well. Initially, historical

stock market data from a CSV file is gained, which

captures virtually all the market parameters possible

such as the opening price, closing price, volumes, and

daily fluctuations. Next, current data is extracted from

Yahoo Finance using the yfinance library in Python so

that the assumed model has a live, up-to-date outlook

on the current market. This particular model is an

attempt to aggregate the predictive capabilities of

automative data analytics complemented by machine

learning techniques to produce accurate predictions on

the prospective movement of the stock price. Through

the use of past data to analyze trends together with the

help of highly developed machine learning methods,

an investor receives essential information that may

help him determine the possible future state of stock

prices, thus helping investors to reduce risks

effectively and make wise investment decisions based

on it. In light of this, it is significant to note that the

study lies in a field of development of the predictive

modelling, but it is still relevant to the efforts to

continue the development of the new and better ways

of stock market forecasting. The libraries being used

in the code of the application were the following.

• Pandas: that used for loading and processing

the specified csv file, thus it was involved in both data

preprocessing part of the study, and the data analysis.

• XGBoost: employed to establish the structure

of the machine learning algorithm, and to train the

classifier in stock forecast.

• Scikit learn: Data partition where the data set

is split into training and testing sets, model

optimization by grid search cross validation and

converting categorical data into numerical values.

• Tkinter: GUI (Graphical User Interface)abyte

• Tcalender: It was found out that it’s used in

selection of date.

• Yfinance: used for fetching the financial data

to fetch the financial data from yahoo finance.

• OS: For instance, the ‘if’ statement is utilized

for confirming the existence of a file as well as

handling the operations related to files.

• PIL(python imaging library) : initializing and

preparing the display on the venue of the background

image.

LITERATURE REVIEW

Finance as a field of study has been significantly and

positively affected by the emerging technology, more

especially, the use of Artificial Intelligence and

Machine Learning in the study and prediction of the

stock market. Due to the abundance of data sources in

the financial domain that includes social media, news

sentiment, economics, and other varieties of data

feeding into it – advanced models have been designed

to handle the incoming data streams and make sound

of them.

Multi-source heterogeneous data in stock market, it

could incorporate stock price data, trading volumes,

financial ratios, company earnings reports, news

articles, social media posts, macroeconomic data and

several others. These diverse information is a treasure

trove of information to be used in gauging market

trends, or the psychological state of investors, or even

the fundamental causes of certain changes in stock

prices. Whereas EMH holds to the view that stock

prices adjust for all available information, behavioural

finance advocates for the notion that the behaviour of

investors and their adherence to certain psychological

processes significantly implicates market movements

to afford certain levels of inefficiency. As a result,

studies on stock market prediction endeavour to find

out various patterns and signals in information that

presage the probability of price variation. Of specific

field of interest, predictive techniques like artificial

neural networks(XGBoost) have been identified as

suitable approaches to aid in the prediction of a stock

market. Therefore, XGBoost, that is an Ensemble

learning model that operates based on decision trees,

has also been used significantly for various prediction

tasks such as to predict the stock prices effectively.

© June 2024| IJIRT | Volume 11 Issue 1 | ISSN: 2349-6002

IJIRT 165533 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1124

This is due to the capability of XGBoost models that

can capture intricate features of price history and

market characteristics through historical price,

technical indicators and other types of data.

Furthermore, researchers have explored the integration

of XGBoost with other machine learning techniques,

such as deep learning and natural language processing

(NLP), to enhance prediction accuracy further. Hybrid

models combining XGBoost with recurrent neural

networks (RNNs) or transformer-based architectures

have shown promising results in incorporating

sequential information from time-series data and

textual data from news articles and social media.

METHODOLOGY FOR TREND PREDICTION

The Stock Price Tracker & Trend Predictor system

goes through several stages to develop, and I'll break

them down for you. We start by preprocessing the data,

selecting the right model, tuning the hyperparameters,

designing the user interface, and evaluating the

system. This report will give you all the details about

each step so you can understand the development

process better.

Let's start with Data Preprocessing. In this step, we

load and process the dataset. The dataset is stored in a

CSV file called 'TCS.csv' and it contains historical

stock market data for Tata Consultancy Services

(TCS). We make sure the 'Date' column is in the

correct format, and we extract additional features like

'Year', 'Month', and 'Day' to capture temporal

information. For the target variable, which is the

'Trend', we use the Label Encoder to assign numerical

labels to bullish (1) and bearish (0) trends.

There you have it! We've covered the first step of the process, and now you know how we preprocess the data.

Table 1.1 Sample of data stored in CSV [4]

Date Open High Low Close Volume trend

08/12/2002 38.725 40 38.725 39.7 212976 bullish

08/13/2002 39.75 40.3875 38.875 39.1625 153576 bearish

08/14/2002 39.25 39.25 35.725 36.4625 822776 bearish

08/15/2002 36.4625 36.4625 36.4625 36.4625 0 bearish

08/16/2002 36.275 38 35.75 36.375 811856 bullish

08/19/2002 36.675 36.675 35.1375 35.475 205880 bearish

08/20/2002 35.725 38.725 35.4875 36.4625 3773624 bullish

Model Selection and Training:

We chose the XGBoost (Extreme Gradient Boosting)

algorithm as our main model for predicting stock

trends because it's really good at handling structured

data and capturing complicated relationships. We used

the XGBClassifier from the XGBoost library and

trained it on our pre-processed data. To make the

model perform even better, we did some

hyperparameter tuning using GridSearchCV. This

helped us find the best combination of

hyperparameters like 'max_depth', 'learning_rate', and

'n_estimators'. We then selected the classifier that

performed the best based on accuracy scores we got

through cross-validation.

Fig.1.2 Flow chart showing working of machine

learning algorithm

© June 2024| IJIRT | Volume 11 Issue 1 | ISSN: 2349-6002

IJIRT 165533 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1125

User Interface Design:

The Tkinter library in Python was used to build the

GUI, which provides the user with an intuitive and

interactive environment in which to work. The

interface consists of mechanisms for picking dates,

and identification stock entries are represented by

widgets where the entries can be made. There are

buttons to make predictions and load the stock price

data; after the data is loaded, it is rendered in the

interface. Furthermore, a background image was

incorporated for better visual appeal of the interface.

Fig.1.3 Home page of the application(GUI)[6]

System Evaluation:

The performance evaluation of the system took a two-

fold approach: the accuracy of stock trend predictions

and GUI functionality and usability. The former was

conducted by testing the accuracy of the stock trend

prediction using previous market data. The latter was

done by conducting user testing and collecting user

feedback on the system's GUI. Software testing on the

GUI collected feedback, and all problems and bugs

were identified and fixed to ensure the system was

robust and reliable. In its development, the Stock Price

Tracker & Trend Predictor system was designed to

meet the following requirements: comprehensive data

preprocessing, model selection, and hyperparameter

tuning. Such a GUI, system evaluation, and the

methodology in which the final results were obtained.

By fine-tuning the XGBoost and creating an intuitive

GUI, the project will tend to deliver accurate stock

trend predictions and, therefore, the possibility of

aiding users in investment decision-making. Through

continuous refinements and updates, as per the

feedback from users and market dynamics, make the

system more effective and user-friendly.

Python Code of Implementation:[2]

import pandas as pd

import xgboost as xgb

from sklearn.model_selection import train_test_split,

GridSearchCV

from sklearn.preprocessing import LabelEncoder

from tkinter import *

from tkinter import messagebox

from datetime import datetime

import yfinance as yf

from PIL import Image, ImageTk

import os

from tkcalendar import DateEntry # Importing

DateEntry widget from tkcalendar module

import tkinter.ttk as ttk

Load your dataset (replace 'TCS.csv' with the path

and filename of your CSV file)

try:

 data = pd.read_csv('TCS.csv')

except FileNotFoundError:

 print("Error: CSV file 'TCS.csv' not found.")

 exit(1)

Parse the Date column with the correct format

data['Date'] = pd.to_datetime(data['Date'],

format='%m/%d/%Y')

Extract features (Year, Month, Day, Open, High,

Low, Close) and target variable (Trend)

data['Year'] = data['Date'].dt.year

data['Month'] = data['Date'].dt.month

data['Day'] = data['Date'].dt.day

Map trend to numerical labels (0 for bearish, 1 for

bullish)

label_encoder = LabelEncoder()

data['trend'] =

label_encoder.fit_transform(data['trend'])

Prepare features (X) and target variable (y) for

training

X = data[['Year', 'Month', 'Day', 'Open', 'High', 'Low',

'Close']]

y = data['trend']

© June 2024| IJIRT | Volume 11 Issue 1 | ISSN: 2349-6002

IJIRT 165533 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1126

Split the data into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2, random_state=42)

Initialize XGBoost Classifier with adjusted

parameters

clf = xgb.XGBClassifier(objective='binary:logistic',

random_state=42)

Optionally perform hyperparameter tuning using

GridSearchCV

param_grid = {

 'max_depth': [3, 5, 7],

 'learning_rate': [0.1, 0.01],

 'n_estimators': [100, 200]

}

grid_search = GridSearchCV(clf, param_grid, cv=3,

scoring='accuracy')

grid_search.fit(X_train, y_train)

best_clf = grid_search.best_estimator_

Train the classifier on the full training data with the

best parameters

best_clf.fit(X_train, y_train)

Function to predict trend for user-provided date

def predict_trend():

 date_input = cal.get_date().strftime("%m/%d/%Y")

Convert datetime.date to string

 try:

 user_date = datetime.strptime(date_input,

"%m/%d/%Y")

 except ValueError:

 messagebox.showerror("Error", "Invalid date

format. Please use the format MM/DD/YYYY.")

 return

 # Prepare input data for prediction using the user-

provided date

 input_data = {

 'Date': [user_date],

 'Open': [0.0], # Example values for other

features (not used for prediction)

 'High': [0.0],

 'Low': [0.0],

 'Close': [0.0]

 }

 input_df = pd.DataFrame(input_data)

 input_df['Year'] = input_df['Date'].dt.year

 input_df['Month'] = input_df['Date'].dt.month

 input_df['Day'] = input_df['Date'].dt.day

 # Make predictions on the input data

 new_predictions = best_clf.predict(input_df[['Year',

'Month', 'Day', 'Open', 'High', 'Low', 'Close']])

 # Display the predicted trend

 if new_predictions[0] == 1:

 messagebox.showinfo("Prediction Result",

f"Predicted Trend for {date_input}: Upward

(Bullish)")

 else:

 messagebox.showinfo("Prediction Result",

f"Predicted Trend for {date_input}: Downward or

Neutral (Bearish)")

Function to get stock data from Yahoo Finance

def get_stock_data(stock_identifier):

 try:

 stock = yf.Ticker(f"{stock_identifier}.NS")

 data = stock.history(period='1d')

 if not data.empty:

 current_price = data['Close'][0]

 opening_price = data['Open'][0]

 highest_price = data['High'].max()

 lowest_price = data['Low'].min()

 # Predict trend for the current date

 date_input =

datetime.today().strftime("%m/%d/%Y")

 user_date = datetime.strptime(date_input,

"%m/%d/%Y")

 # Prepare input data for prediction using the

current date

 input_data = {

 'Date': [user_date],

 'Open': [0.0], # Example values for other

features (not used for prediction)

 'High': [0.0],

 'Low': [0.0],

 'Close': [0.0]

 }

 input_df = pd.DataFrame(input_data)

© June 2024| IJIRT | Volume 11 Issue 1 | ISSN: 2349-6002

IJIRT 165533 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1127

 input_df['Year'] = input_df['Date'].dt.year

 input_df['Month'] = input_df['Date'].dt.month

 input_df['Day'] = input_df['Date'].dt.day

 # Make predictions on the input data

 prediction = best_clf.predict(input_df[['Year',

'Month', 'Day', 'Open', 'High', 'Low', 'Close']])

 predicted_price = current_price * (1 + 0.01 if

prediction[0] == 1 else -0.01) # Adjust the predicted

price

 stock_data = {

 'Stock Identifier': stock_identifier,

 'Current Price (INR)': current_price,

 'Opening Price (INR)': opening_price,

 'Highest Price (INR)': highest_price,

 'Lowest Price (INR)': lowest_price,

 'Predicted Price (INR)': predicted_price #

Include the predicted price

 }

 return stock_data

 else:

 raise ValueError("No data available for the

stock")

 except Exception as e:

 messagebox.showerror("Error", f"Failed to fetch

data for {stock_identifier}: {e}")

 return None

Function to track stock prices

def track_stock_prices():

 stock_identifiers = entry.get().strip().split(',')

 if not stock_identifiers:

 messagebox.showerror("Error", "Please enter at

least one stock identifier")

 return

 stock_data_list = []

 for identifier in stock_identifiers:

 stock_data = get_stock_data(identifier)

 if stock_data is not None:

 stock_data_list.append(stock_data)

 if stock_data_list:

 save_to_excel(stock_data_list)

 messagebox.showinfo("Success", "Stock data

tracked and saved successfully")

Function to save stock data to Excel

def save_to_excel(stock_data_list):

 file_name = 'stock_prices_INR.xlsx'

 try:

 if os.path.exists(file_name):

 # Read existing data

 existing_df = pd.read_excel(file_name)

 df = pd.DataFrame(stock_data_list)

 # Append new data to existing DataFrame

 df_combined = pd.concat([existing_df, df],

ignore_index=True)

 df_combined.to_excel(file_name,

index=False)

 else:

 # Create new Excel file

 df = pd.DataFrame(stock_data_list)

 df.to_excel(file_name, index=False)

 except Exception as e:

 messagebox.showerror("Error", f"Failed to save

data to Excel: {e}")

Function to set background image

def set_background_image(window):

 try:

 image = Image.open("background.jpg")

 image = image.resize((500, 450))

 photo = ImageTk.PhotoImage(image)

 background_label = Label(window,

image=photo)

 background_label.image = photo

 background_label.place(x=0, y=0, relwidth=1,

relheight=1)

 label1.lift()

 entry.lift()

 cal.lift()

 # predict_button.lift()

 label2.lift()

 label3.lift()

 label4.lift()

 label5.lift()

 label6.lift()

 label7.lift()

© June 2024| IJIRT | Volume 11 Issue 1 | ISSN: 2349-6002

IJIRT 165533 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1128

 # track_button.lift()

 # show_data_button.lift()

 predict_track_show_button.lift()

 except Exception as e:

 messagebox.showerror("Error", f"Failed to set

background image: {e}")

Function to display fetched data in a tabular form

def show_data():

 stock_identifiers = entry.get().strip().split(',')

 if not stock_identifiers:

 messagebox.showerror("Error", "Please enter at

least one stock identifier")

 return

 data_list = []

 columns = ["Stock Identifier", "Current Price

(INR)", "Opening Price (INR)", "Highest Price

(INR)", "Lowest Price (INR)", "Predicted Price

(INR)", "Trend Prediction"]

 for identifier in stock_identifiers:

 stock_data = get_stock_data(identifier)

 if stock_data is not None:

 # Predict trend for the current date

 date_input =

datetime.today().strftime("%m/%d/%Y")

 user_date = datetime.strptime(date_input,

"%m/%d/%Y")

 # Prepare input data for prediction using the

current date

 input_data = {

 'Date': [user_date],

 'Open': [0.0], # Example values for other

features (not used for prediction)

 'High': [0.0],

 'Low': [0.0],

 'Close': [0.0]

 }

 input_df = pd.DataFrame(input_data)

 input_df['Year'] = input_df['Date'].dt.year

 input_df['Month'] = input_df['Date'].dt.month

 input_df['Day'] = input_df['Date'].dt.day

 # Make predictions on the input data

 prediction = best_clf.predict(input_df[['Year',

'Month', 'Day', 'Open', 'High', 'Low', 'Close']])

 prediction_text = "Upward (Bullish)" if

prediction[0] == 1 else "Downward or Neutral

(Bearish)"

 data_list.append([

 stock_data['Stock Identifier'],

 stock_data['Current Price (INR)'],

 stock_data['Opening Price (INR)'],

 stock_data['Highest Price (INR)'],

 stock_data['Lowest Price (INR)'],

 stock_data['Predicted Price (INR)'], #

Include the predicted price

 prediction_text

])

 if data_list:

 # Create a new window for displaying data

 data_window = Toplevel()

 data_window.title("Fetched Stock Data")

 # Create Treeview widget for tabular display

 tree = ttk.Treeview(data_window,

columns=columns, show='headings')

 for col in columns:

 tree.heading(col, text=col)

 # Insert fetched data into the Treeview

 for i, row in enumerate(data_list, start=1):

 tree.insert("", "end", values=row)

 tree.pack(expand=True, fill='both')

Function to perform predict, track price, and show

data actions

def predict_track_show():

 predict_trend()

 track_stock_prices()

 show_data()

Create GUI window

window = Tk()

window.geometry("500x450")

window.title("Stock Price Tracker & Trend Predictor

(INR)")

GUI components

label1 = Label(window, text="Select a date:")

© June 2024| IJIRT | Volume 11 Issue 1 | ISSN: 2349-6002

IJIRT 165533 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1129

label1.grid(row=20, column=28, padx=15, pady=5)

Using DateEntry widget for date selection

cal = DateEntry(window, background='darkblue',

foreground='white', borderwidth=2)

cal.grid(row=22, column=28, padx=15, pady=5)

Buttons and other components

predict_button = Button(window, text="Predict

Trend", command=predict_trend)

predict_button.grid(row=24, column=28, padx=15,

pady=5)

label2 = Label(window, text="Enter Stock Identifiers

:")

label2.grid(row=30, column=28, padx=15, pady=5)

entry = Entry(window, width=50)

entry.grid(row=40, column=28, padx=15, pady=5)

track_button = Button(window, text="Track Prices",

command=track_stock_prices)

track_button.grid(row=50, column=28, padx=15,

pady=5)

show_data_button = Button(window, text="Show

Data", command=show_data)

show_data_button.grid(row=60, column=28,

padx=15, pady=5)

predict_track_show_button = Button(window,

text="Show Data", command=predict_track_show)

predict_track_show_button.grid(row=70, column=28,

padx=15, pady=5)

label3 = Label(window, text="Created by: ")

label3.grid(row=80, column=2, padx=15, pady=5)

label4 = Label(window, text="Vedant Hiwarde ")

label4.grid(row=82, column=2, padx=15, pady=5)

label5 = Label(window, text="Sahil Nikam ")

label5.grid(row=84, column=2, padx=15, pady=5)

label6 = Label(window, text="Prajwal Alekar ")

label6.grid(row=86, column=2, padx=15, pady=5)

label7 = Label(window, text="Prajwal Nimbalkar ")

label7.grid(row=88, column=2, padx=15, pady=5)

Set background image

set_background_image(window)

Start the main GUI event loop

window.mainloop()

Result:

After the application of each step of the methodology,

we get the final result.

To make a stock analysis or prediction we can find the

trend of the particular stock (TCS as per project) just

by entering the date.

Whenever the date is entered in the software with help

of stored data and Ml algorithm carries on its analysis

and presents a trend (bullish or bearish) as output and

stock prediction is carried better accuracy as compared

to earlier techniques or methods.

Along with the prediction the software also implies a

tending hand to know the prices (open, close, low,

high) for the present day.

Due to this, there will be no overdependency on the

software, and running parallel to the software analysis

human analysis can be done.

Fig.1.3Result window displaying the data

ACKNOWLEDGEMENT

I hereby take this opportunity to express my sincere

thanks to deep sense of gratitude to my guide Prof.

Kedar Kulkarni sir for his kind co-operation and

encouragement to me during this project. This project

wouldn’t be possible without his motivation and ever-

increasing support. His curiosity, dedication, and

enthusiasm about the project made this project a

success.

I would like to express sincere gratitude to Prof. Y. R.

Ingole, Head of Robotics & Automation Engineering

Department for believing in me and nurturing my

ideas. I would also like to thank Dr. M.G Reddy & Dr.

Gaurav Kumar (Project based learning Coordinator)

for his support, help & cooperation provided for the

Project work. I would like to thanks Prof. (Dr.) A. M.

© June 2024| IJIRT | Volume 11 Issue 1 | ISSN: 2349-6002

IJIRT 165533 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 1130

Kate, Principal, Zeal College of Engineering &

Research.

I would like to thanks the teaching as well as non-

teaching staff of Robotics & Automation Engineering

Department for their support. I also acknowledge with

thanks, assistance provided by central library staff.

Last, but not least, I would like to thank all my

colleagues, friends and most importantly my parents

for their valuable co-operation and who believed in me

and supported me in their own ways.

CONCLUSION

It is mentioned that stock market is major contribution

to economy and numerous people especially beginners

and young ones highly invest in stock market in order

to achieve higher returns ,but due to lack of data,

knowledge and poor analysis they suffer huge debt.

Dur to which hearing form the experiences of this

beginers the next generation interested in Investment

in not as keen due to their past experiences .

But this project or software consists data of last 24

years and Machine Learning is used to study the data

and predict the trend due to which the analysis has

become much easier.

Hence the users especially the beginners mentioned

before would find it easier to analyse and invest and

ensure the pillar of economy goes strong.

REFERENCE

[1]The stock market prediction system: By C.K

Gomathi

[2] https://chat.openai.com/

[3] https://www.geeksforgeeks.org/xgboost/

[4] https://finance.yahoo.com/quote/TCS?.tsrc=fin-

srch

[5] https://pypi.org/project/yfinance/

[6]https://www.freepik.com/search?format=search&l

ast_filter=query&last_value=stock&query=stock

https://chat.openai.com/
https://www.geeksforgeeks.org/xgboost/
https://finance.yahoo.com/quote/TCS?.tsrc=fin-srch
https://finance.yahoo.com/quote/TCS?.tsrc=fin-srch
https://pypi.org/project/yfinance/
https://www.freepik.com/search?format=search&last_filter=query&last_value=stock&query=stock
https://www.freepik.com/search?format=search&last_filter=query&last_value=stock&query=stock

