
© June 2024| IJIRT | Volume 11 Issue 1 | ISSN: 2349-6002

IJIRT 165596 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2603

Dynamic hand gesture detector using python and open

CV

Lakshya Gaur1, Kapil Tomar2, Dr. Naveen Tyagi3

1M.Tech Scholar, Department of Computer Science and Engineering, MIT, Bulandshahr
2Assistant Professor, Department of Computer Science and Engineering, MIT, Bulandshahr

3Professor, Department of Computer Science and Engineering, MIT, Bulandshahr

Abstract- Hand Gesture Recognition and Image Overlay

Using OpenCV and MediaPipe

This research paper presents a method for real-time

hand gesture recognition and image overlay using

OpenCV and MediaPipe. The system captures live video

feed from a webcam, detects hand gestures, and overlays

corresponding images based on the detected gestures.

The implementation leverages the capabilities of

MediaPipe for hand tracking and OpenCV for image

processing and display. The proposed method is efficient

and runs in real-time, providing immediate feedback on

detected gestures. This paper discusses the system model,

the underlying algorithm, and the results obtained from

the implementation.

1. INTRODUCTION

Hand gesture recognition is a crucial technology in the

field of human-computer interaction. It allows users to

interact with digital devices using natural hand

movements, enhancing the user experience. This

project focuses on creating a hand gesture recognition

system that identifies specific gestures and overlays

images accordingly. The system uses Python,

OpenCV, and MediaPipe, leveraging their powerful

image processing and machine learning capabilities.

The journey towards gesture-based interaction

represents a departure from the conventional notion of

computer interfaces as passive tools controlled solely

through manual manipulation. Instead, it seeks to

imbue technology with a deeper understanding of

human intention and expression, enabling seamless

interaction that mirrors the fluidity of human

communication. At its core, gesture-based interaction

draws inspiration from the rich tapestry of human

movement, encompassing gestures, postures, facial

expressions, and even subtle nuances of body

language. By decoding and interpreting these non-

verbal cues, computers can discern user intent and

respond in a manner that feels more natural and

intuitive.

The evolution of gesture-based interfaces has been

propelled by advancements in a myriad of

technologies, including computer vision, machine

learning, sensor technology, and augmented reality.

The main objectives of this project are:

• To develop a real-time hand gesture recognition

system.

• To overlay images based on detected gestures.

• To provide a seamless and responsive user

experience.

2. SYSTEM MODEL

2.1 The system comprises the following components:

• Webcam: Captures live video feed.

• OpenCV: Handles video capture, image

processing, and display.

• MediaPipe: Detects and tracks hand landmarks.

• Gesture Recognition: Identifies specific hand

gestures.

• Image Overlay: Overlays corresponding images

based on detected gestures.

2.2 The flow of the system is as follows:

1. Capture live video feed using OpenCV.

2. Process each frame to detect hand landmarks

using MediaPipe.

3. Identify gestures based on the positions of the

landmarks.

4. Overlay images on the video feed based on

detected gestures.

5. Display the processed video feed in real-time.

© June 2024| IJIRT | Volume 11 Issue 1 | ISSN: 2349-6002

IJIRT 165596 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2604

3. ALGORITHM

3.1 Initialization

• Import necessary libraries.

• Initialize video capture using OpenCV.

• Load images for overlay.

• Initialize MediaPipe for hand detection.

3.2 Frame Processing

For each frame captured from the webcam:

1. Flip the frame horizontally for a mirror effect.

2. Convert the frame to RGB format.

3. Detect hand landmarks using MediaPipe.

4. Identify gestures by analyzing the positions of

landmarks.

5. Overlay images based on detected gestures.

6. Display the processed frame.

3.3 Gesture Detection

The algorithm identifies gestures by analyzing the

positions of finger tips and thumb:

• LIKE: Thumb up gesture.

• DISLIKE: Thumb down gesture.

• NEUTRAL: No specific gesture.

• DYBALA CELEBRATION: Specific finger

arrangement.

4. CODE IMPLEMENTATION

4.1 Initialization

python

Copy code

import cv2 import numpy as np import mediapipe as

mp cap = cv2.VideoCapture(0) mpHands =

mp.solutions.hands hands = mpHands.Hands() draw =

mp.solutions.drawing_utils # Load images for overlay

like_img = cv2.imread('like.jpg') dislike_img =

cv2.imread('dislike.jpg') neutral_img =

cv2.imread('neutral.jpg') dybala_img =

cv2.imread('dybala.jpg') Finger_tips = [8, 12, 16, 20]

thumb_tip = 4

4.2 Frame Processing

python

Copy code

while True: success, img = cap.read() img =

cv2.flip(img, 1) h, w, c = img.shape rgb =

cv2.cvtColor(img, cv2.COLOR_BGR2RGB) results =

hands.process(rgb) if results.multi_hand_landmarks:

for hand_landmarks in results.multi_hand_landmarks:

lm_list = [] for lm in hand_landmarks.landmark:

lm_list.append(lm) finger_fold_status = [] for tip in

Finger_tips: x, y = int(lm_list[tip].x * w),

int(lm_list[tip].y * h) cv2.circle(img, (x, y), 13, (0,

255, 0), cv2.FILLED) if lm_list[tip].x < lm_list[tip -

3].x: cv2.circle(img, (x, y), 13, (0, 0, 255),

cv2.FILLED) finger_fold_status.append(True) else:

finger_fold_status.append(False) if

all(finger_fold_status): if lm_list[thumb_tip].y <

lm_list[thumb_tip - 1].y < lm_list[thumb_tip - 2].y: h,

w, c = like_img.shape img[0:h, 0:w] = like_img else:

h, w, c = dislike_img.shape img[0:h, 0:w] =

dislike_img if lm_list[Finger_tips[0]].x >

lm_list[Finger_tips[0] - 1].x: h, w, c =

neutral_img.shape img[0:h, 0:w] = neutral_img if

lm_list[Finger_tips[0]].x < lm_list[Finger_tips[0] -

3].x: if lm_list[thumb_tip].x < lm_list[thumb_tip -

2].x: h, w, c = dybala_img.shape img[0:h, 0:w] =

dybala_img draw.draw_landmarks(img,

hand_landmarks,

mpHands.HAND_CONNECTIONS)

cv2.imshow('Hand Gesture Recognition', img) if

cv2.waitKey(1) == ord('q'): break cap.release()

cv2.destroyAllWindows()

5. CONCLUSION

This project demonstrates an efficient and real-time

hand gesture recognition system using OpenCV and

MediaPipe. By leveraging these libraries, we achieved

accurate hand tracking and gesture recognition,

providing immediate visual feedback through image

overlay. The system can be further enhanced with

additional gestures and applications, making it a

versatile tool for human-computer interaction.

REFERENCE

1. OpenCV: Open Source Computer Vision Library.

Available at: https://opencv.org/

2. MediaPipe: Cross-platform Framework for

Building Multimodal Applied ML Pipelines.

Available at: https://mediapipe.dev/

3. Python: The Python Programming Language.

Available at: https://www.python.org/

https://opencv.org/
https://mediapipe.dev/
https://www.python.org/

© June 2024| IJIRT | Volume 11 Issue 1 | ISSN: 2349-6002

IJIRT 165596 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 2605

Images to Include

1. Development Environment:

• Screenshot of the code editor with the project

open.

• Photo of the setup with the webcam.

Hand Detection Process:

• Raw webcam feed before processing.

• Hand landmarks detection with landmarks

highlighted.

Gesture Recognition Output:

• Examples of each gesture ("LIKE", "DISLIKE",

"NEUTRAL", "DYBALA CELEBRATION")

with the overlay image.

By incorporating these images and code snippets, this

thesis will effectively illustrate the project's

implementation and results.

