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Abstract: An extensive review of optimisation methods 

for training machine learning (ML) models a crucial 

branch of artificial intelligence is provided in this article. 

ML uses statistical techniques to allow systems to learn 

from experience and become more intelligent without the 

need for explicit programming. The study emphasises the 

value of optimisation in machine learning, emphasising 

how it can be used to improve training efficiency and 

generalisation by modifying model parameters to 

minimise loss functions. Numerous optimisation 

techniques are examined, such as Constraint-based 

techniques, Gradient Descent Variants, Adaptive 

Learning Rate Techniques, Second-Order Optimisation 

Techniques, and Bayesian Optimisation. Every segment 

delves into the fundamentals, uses, and advantages of 

these methods, highlighting their significance in 

addressing issues like overfitting, scalability, and 

computational effectiveness. The purpose of this page is 

to help practitioners, academics, and enthusiasts 

navigate the wide range of optimisation approaches 

designed for various machine learning algorithms and 

applications. 
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1. INTRODUCTION 

Optimization methods are fundamental to the efficient 

training of machine learning models. Artificial 

intelligence (AI) includes machine learning (ML), 

which gives systems the ability to learn from 

experience and get better on their own without explicit 

programming. By employing statistical techniques, 

ML enables machines to enhance their performance on 

tasks through exposure to increasing amounts of data 

over time. Three main categories exist for machine 

learning: supervised, unsupervised, and reinforcement 

learning techniques [1 - 2]. The goal of supervised 

learning algorithms is to map inputs to outputs based 

on input-output pairings by learning from labelled 

data. Image classification is a common example, in 

which the algorithm is trained to identify objects from 

labelled images. Conversely, unsupervised learning 

algorithms use unlabelled data to find patterns and 

structures in the data. This type is exemplified by 

clustering, where the algorithm groups comparable 

data points without predetermined labels. 

Reinforcement learning algorithms pick up new skills 

by interacting with their surroundings in order to 

maximise cumulative rewards or accomplish goals [3]. 

When teaching a computer programme to play chess, 

for example, the algorithm must learn the best moves 

via trial and error and be rewarded for employing 

winning tactics. 

Optimisation in machine learning refers to changing 

model parameters in order to minimise or maximise a 

loss function. Finding the optimal model parameters 

that produce the lowest loss function value is the main 

goal. The difference between the model's expected and 

actual outputs is quantified by a loss function, which 

evaluates the model's performance. The objective of 

training is to reduce this "loss," honing the model to 

increase forecast precision. By iteratively modifying 

parameters to lessen the difference between forecasts 

and actual results, optimisation makes sure that the 

model improves its predictive power over time and 

becomes more capable of generalising to new data. 

Algorithms that modify model parameters in order to 

minimise a loss function are used in the training of 

machine learning models. In this process of 

adjustment, optimisation techniques are essential 

because they guarantee that models learn from data in 

an efficient manner [4-6]. Millions or even billions of 

parameters in sophisticated models are present in 

many machine learning problems. These models can 

be trained within appropriate time and computational 

resource restrictions thanks to effective optimisation 

techniques. In order to minimise the possibility of 

overfitting—a situation in which a model performs 
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well on training data but badly on test data—effective 

optimisation approaches are crucial for creating 

models that generalise effectively to unseen data [7–

8]. Scalable optimisation techniques are more and 

more important as datasets get bigger and models get 

more intricate. By using these methods, models are 

guaranteed to be computationally feasible even when 

dealing with large volumes of data [9]. Many models 

and algorithms fall under the umbrella of machine 

learning, and each one needs unique optimisation 

strategies based on its unique properties. Optimisation 

techniques offer the adaptability to modify and refine 

these algorithms to fit particular issues. 

2. VARIANTS OF GRADIENT DESCENT 

Gradient Descent updates parameters by moving them 

in the direction opposite to the gradient of the loss 

function. Stochastic Gradient Descent (SGD) 

accelerates computation by using a subset of data to 

compute the gradient, though it introduces more noise 

compared to standard gradient descent. Mini-Batch 

Gradient Descent strikes a balance between full 

dataset processing and SGD, updating parameters with 

small random batches of data. Momentum enhances 

stability by incorporating a fraction of the previous 

update vector into the current one, aiding navigation 

through regions of high curvature. These Gradient 

Descent Variants are versatile optimization techniques 

applicable across diverse domains such as machine 

learning, deep learning, and optimization theory. 

Gradient-based methods are pivotal for minimizing 

loss functions, optimizing model parameters, and 

configuring objectives effectively in complex 

optimization landscapes. Training deep learning 

models like multi-layer perceptron’s (MLPs) relies 

heavily on gradient-based optimization to minimize 

loss functions. Similarly, Convolutional Neural 

Networks (CNNs) and Recurrent Neural Networks 

(RNNs) employ various forms of gradient descent to 

adjust weights and biases during training. Figure 1 

[10] depicts the difference between noiseless and noisy 

SGD training. Using a single example introduces 

fluctuations, resulting in winding and slower 

convergence paths during iterations. Figure 2 [11] 

illustrates vertical oscillations in the gradient's 

direction. A straightforward approach to mitigate this 

issue is to stabilize the gradient horizontally while 

minimizing vertical fluctuations. 

              
Figure 1. Comparison of (a) GD and (b) SGD 

         
Figure 2. Comparison of SGD algorithms (a) without and (b) with momentum 
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3. METHODS FOR ADAPTIVE LEARNING 

RATES 

Adaptive learning rate techniques, such as RMSprop 

and Adam, are essential for machine learning model 

optimisation because they dynamically modify all 

model parameter learning rates according to their 

historical gradients. An exponentially decreasing 

average of squared gradients is used to divide the 

learning rate in RMSprop, an Adagrad modification. 

Adam (Adaptive Moment Estimation) adapts learning 

rates by using both the first and second moments of 

gradients, combining ideas from Momentum and 

RMSprop. 

These methods accelerate optimization algorithms by 

dynamically adjusting learning rates, ensuring 

efficient progress in scenarios where the loss function 

landscape varies across dimensions or iterations. Fixed 

learning rates in standard algorithms can lead to 

oscillations or divergence, particularly in parameter 

spaces with steep gradients. Adaptive methods 

mitigate these issues by scaling the learning rate based 

on gradient nature and history. Adaptive learning rate 

methods provide resilience against challenges such as 

saddle points, gradient issues, and non-stationary 

objectives. By adjusting learning rates adaptively, 

these methods navigate complex optimization 

landscapes more effectively. 

Traditional optimization approaches often require 

manual tuning of hyperparameters like the learning 

rate, a task that can be cumbersome and time-

consuming. Adaptive learning rate methods alleviate 

this burden by automatically adjusting 

hyperparameters based on optimization problem 

characteristics, thereby reducing the need for 

extensive manual tuning. 

4. OPTIMIZATION METHODS THAT UTILIZE 

SECOND-ORDER 

Newton's Method guides the optimisation process, 

which is a computationally demanding effort, 

especially with huge datasets, by using the second 

derivative, also referred to as the Hessian matrix [12]. 

Without explicitly calculating the second derivative, 

Quasi-Newton Methods [13] use gradient information 

to approximate the Hessian matrix and speed up 

convergence. As the name implies, second-order 

derivatives—specifically, the Hessian matrix—are 

incorporated into the optimisation process by means of 

second-order optimisation techniques. On the other 

hand, first-order techniques such as gradient descent 

only use the objective function's first derivative, or 

gradient. 

Compared to first-order approaches, second-order 

methods frequently reach optimal solutions in fewer 

iterations, especially when working with poorly 

conditioned functions. When curvature fluctuates 

greatly, they work particularly well for extremely 

nonlinear or ill-conditioned functions [14]. By 

revealing the local curvature of the optimisation 

landscape, these techniques help algorithms find local 

minima or maxima more quickly. This feature comes 

in handy when dealing with intricate optimisation 

issues where the first-order gradient might not provide 

much insight. Insufficient curvature information might 

cause first-order techniques to oscillate or behave 

erratically in certain situations. Second-order 

approaches provide more steady convergence 

behaviour by accounting for curvature. 

For optimization problems where the Hessian matrix 

[15] provides crucial curvature and condition 

information about the objective function, second-order 

methods excel in adaptively adjusting step sizes to 

enhance convergence. 

5. METHODS OF CONSTRAINTS-BASED 

By using gradient descent, Projected Gradient Descent 

updates parameters while guaranteeing that, in the 

event that certain requirements are not met, the new 

values are restricted to a workable range. Evolutionary 

Algorithms, such as Genetic Algorithms, simulate 

natural selection by employing mechanisms like 

mutation, crossover, and selection to evolve solutions 

for optimization problems. Particle Swarm 

Optimization (PSO) manages a population of 

candidate solutions (particles) that navigate the search 

space based on their individual best positions and the 

swarm's best-known position.  

Constraint-based methods in machine learning and 

optimization seek optimal solutions while adhering to 

specific constraints. These techniques enforce 

predefined boundaries or conditions to ensure that 

solutions meet criteria essential to the problem's 

domain. Many real-world problems, like resource 

allocation or scheduling, impose constraints related to 
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time, capacity, or resource availability. Constraint-

based methods guarantee that solutions are both 

optimal and feasible within these constraints. Certain 

optimization problems, particularly in engineering 

design, involve multiple constraints related to 

materials, safety, and cost. Constraint-based methods 

enable the identification of optimal solutions that 

satisfy all specified constraints, balancing optimality 

with practical implementation in real-world scenarios. 

Integrating constraints helps mitigate risks associated 

with decisions by ensuring solutions adhere to safety, 

operational, or regulatory requirements. In complex 

optimization scenarios with multiple objectives, 

constraints provide clear guidelines that structure 

decision-making, ensuring coherent and aligned 

solutions with the problem's overarching goals. 

6. BAYESIAN OPTIMIZATION 

Bayesian Optimization is a technique for optimizing 

expensive and black-box functions using probabilistic 

models. Unlike traditional methods that rely on 

derivatives or gradients, Bayesian Optimization 

constructs a probabilistic model of the objective 

function. This model guides the selection of the next 

point to evaluate [16]. 

Fundamentally, Bayesian Optimisation describes the 

behaviour of the goal function using probabilistic 

models, most commonly Gaussian Processes. These 

models calculate the function's value at as-yet-

undiscovered places and express the degree of 

uncertainty in those estimates. Iteratively choosing 

points based on the existing model, evaluating the 

objective function, updating the model with new 

observations, and repeating the process until 

convergence or a stopping requirement is satisfied are 

all part of the sequential character of Bayesian 

Optimisation. A key strength of Bayesian 

Optimization lies in its ability to balance exploration 

and exploitation. It efficiently explores uncertain 

regions of the parameter space while exploiting 

promising regions to avoid getting trapped in local 

optima. 

In practical applications, evaluating the objective 

function such as assessing the performance of machine 

learning models or conducting physical experiments—

can be time-consuming or costly. Bayesian 

Optimization aims to minimize the number of 

evaluations needed to find the optimal solution, 

making it particularly suitable for scenarios where 

function evaluations are expensive. 

When the mathematical form of the objective function 

is unknown or too complex for analytical methods, 

Bayesian Optimization provides a robust framework. 

Traditional optimization methods like gradient descent 

may struggle with non-convex or multimodal 

functions, often converging to local optima. Bayesian 

Optimization's strategy of balancing exploration and 

exploitation enables efficient navigation of complex 

landscapes to seek the global optimum. In machine 

learning and deep learning, where model performance 

hinges on hyperparameters (e.g., learning rate, 

regularization parameters), Bayesian Optimization 

offers an efficient approach to tuning these parameters. 

This method enhances model performance without 

resorting to exhaustive grid or random search methods. 

7. ADVANTAGES AND DRAWBACKS OF 

OPTIMIZATION TECHNIQUES 

Gradient descent variants are widely favoured for their 

simplicity in implementation, applicability across 

diverse problem domains, and computational 

efficiency. Despite these advantages, they can 

converge slowly, especially in high-dimensional 

spaces, and are susceptible to local minima. Adam 

serves as an example of adaptive learning rate 

techniques, which dynamically modify learning rates 

for each parameter to promote quicker convergence 

and better results in deep learning tasks. But they could 

be unstable and hyperparameter-sensitive, so careful 

adjustment is required. Second-order optimization 

methods like Newton's Method utilize curvature 

information to achieve rapid convergence, particularly 

in regions with pronounced curvature. Yet, they are 

computationally demanding due to the need for 

computing and inverting the Hessian matrix, and they 

may encounter numerical instability issues. 

Constraint-based approaches are invaluable in a 

variety of applications because they impose limits on 

parameter values to guarantee model stability and 

interpretability. But they could require specific 

optimisation methods and be computationally 

demanding, especially for complicated constraints. 

Bayesian optimization models the objective function 

using a probabilistic surrogate, effectively exploring 
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the parameter space to enhance sample efficiency. 

Nonetheless, its effectiveness can depend on prior 

knowledge or assumptions about the objective 

function and may diminish in high-dimensional 

spaces. 

8. CONCLUSION 

Optimization methods in machine learning offer a 

spectrum of strengths and limitations tailored to 

diverse problem scenarios and objectives. Gradient 

descent variants are favoured for their simplicity, wide 

applicability, and efficiency, yet they face challenges 

like slow convergence and susceptibility to local 

minima in high-dimensional spaces. Adaptive learning 

rate methods such as Adam promise quicker 

convergence and improved performance in deep 

learning but require meticulous hyperparameter tuning 

to manage instability. Second-order methods like 

Newton's Method leverage curvature insights for rapid 

convergence but at the cost of computational intensity 

and numerical stability concerns. Regularization 

methods effectively curb overfitting yet introduce bias 

and demand fine-tuning. Constraint-based approaches 

ensure stability and interpretability under defined 

constraints, though they may need specialized 

techniques for intricate rules. Bayesian optimization 

enhances efficiency through probabilistic modeling 

but hinges on accurate prior knowledge, posing 

limitations in high-dimensional contexts. Each method 

addresses specific challenges from parameter 

optimization to resilience against overfitting and 

navigation of complex landscapes empowering 

practitioners to tailor techniques according to data, 

model characteristics, and optimization goals, thereby 

enhancing the reliability and efficacy of machine 

learning applications. 
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