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Abstract— Watching movies and TV shows has become 

more convenient with the introduction of streaming 

services. Over time, the film industry has experienced rapid 

growth. It's difficult for users to decide what to watch these 

days because there is so much content available. Systems 

for recommending movies have been created to help 

consumers choose movies according to their personal 

tastes. This streamlines and entertains the selection 

process. These systems use a number of techniques to 

provide users with tailored recommendations. One of the 

most popular techniques is collaborative filtering, which 

suggests movies to users based on their viewing habits and 

past selections. An additional technique is content-based 

filtering, which makes use of movie characteristics such as 

genre, stars, and directors to recommend other films that 

share those characteristics. Hybrid methods that combine 

the two approaches have also been developed to offer 

recommendations that are more accurate. It highlights 

how important personalization is to recommendation 

systems because it increases user satisfaction and 

engagement. 

 

Index Terms- Collaborative Filtering, Cosine Similarity, 

SVD, RMSE, Recommender system 

 

I. INTRODUCTION 

 

Movie recommendation engines are becoming a 

common sight in the age of internet streaming 

services. With so many movies to choose from on 

services like Netflix, Hulu, and Amazon Prime Video, 

it can be difficult to find one that suits your tastes and 

mood. This is where movie recommendation systems 

come into play; they analyze your viewing history 

using sophisticated algorithms and offer tailored 

recommendations for new films and TV series that you 

will probably like. 

 

The core elements of a movie recommendation system 

consist of multiple filtering methods, such as 

collaborative, content-based, and demographic 

filtering. Collaborative filtering looks at the viewing 

patterns and interests of similar users to make 

recommendations based on their viewing histories. For 

example, if you enjoy a movie, collaborative filtering 

will recommend other movies that people who have 

similar tastes in movies have also loved. Because there 

is such a large selection of films available on different 

platforms, users might have problems finding movies 

that they like. 

 

 
Fig.1. Recommender System 

 

Users may encounter difficulties in discovering films 

that resonate with them due to the vast array of films 

that are accessible across various platforms. 

  

Conventional movie recommendation systems might 

not take into account each user's distinct interests and 

preferences or offer personalized recommendations. 

The use of collaborative filtering, which generates 

movie recommendations based on user behavior and 

preferences, is a drawback of traditional movie 

recommendation systems. This approach might not 

accurately represent the user's distinct preferences and 

might result in suggestions that are insufficient or 

irrelevant. 
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Fig. 2. Comparison between collaborative and 

content-based filtering 

 

II. LITERATURE REVIEW 

 

1. Utilizing natural language processing (NLP) 

methods to analyze the textual components of 

films 

For instance, a study used natural language processing 

(NLP) to analyze movie plot summaries and extract 

information about the main characters, their actions 

and emotions, and their locations. These features were 

used to predict the movie genres, which were then used 

to train a classifier to generate recommendations. 

 

Another tactic is to use clustering techniques to 

arrange movies according to their attributes and then 

recommend movies based on those clusters. (Poria et 

al. 's, 2014) 

 

2. Content-Based Movie Recommendation 

System Using Genre Correlation 

For instance, a study classified movies based on their 

genre, actors, and directors using clustering algorithms 

and then suggested films from the same cluster as the 

ones the user had chosen. (Bobadilla et al., 2013) 

 

3. Collaborative Filtering vs. Content-Based 

Filtering: differences and similarities 

 Recommendation systems (SR) provide suggestions 

for products that investigate user preferences, assisting 

users in overcoming information overload. Two 

methods of social media research have gained 

increased attention: Content-Based Filtering and 

Collaborative Filtering. Furthermore, few findings 

objectively demonstrate their traits, parallels, and 

distinctions, despite research pointing out their 

benefits and drawbacks. This work proposes an 

experimental methodology to compare 

recommendation algorithms for various approaches 

that go beyond the "precision of the predictions". 

(Rafael Glauber, Angelo Loula) 

 

4. A personalized movie recommendation system 

based on collaborative filtering 

The last ten years have seen an explosion in data 

because of social media, e-commerce, and the general 

digitization of businesses. The information is used to 

forecast market trends, and customer preference 

patterns, and make well- informed decisions. Since 

internet services have become widely used, 

recommendation systems have proliferated. The idea 

is to suggest items that users might find interesting by 

using clustering and filtering techniques. Users are 

given suggestions for media commodities such as 

movies by locating user profiles of people who share 

similar interests. Users are first asked to rate the 

movies they want, in order to determine their 

preferences. (V. Subramaniyaswamy, R. Loges) 

 

TABLE 1 

Comparative study-related works and algorithms 

 
 

TABLE 2 

Different Machine Learning approaches 
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III. RESEARCH “OBJECTIVES 

 

• Examining a movie's material to find key elements 

that may be utilized to produce suggestions. 

• Creating a list of suggested movies by comparing 

the movie features to the user's preferences. 

• Giving viewers individualized suggestions based 

on their unique watching interests and histories. 

• Offering a satisfying and individualized 

experience will increase user engagement and 

retention”      rates. 

 

IV. RESEARCH METHODOLOGY 

 

Step 1: Mounting Google Drive and Importing 

Libraries 

To manipulate data and perform numerical 

computations, we import the necessary libraries, such 

as pandas and numpy. Additionally, we import 

warnings to suppress any warning messages during the 

execution of our code. 

 

Step 2: Data Collection 

To build the movie recommender system, the first step 

is to gather relevant data. We will use movie datasets 

for this project, which include details about titles, 

genres, keywords, cast members, and crew. These 

datasets will serve as the foundation for our 

recommendation engine. 

 

Loading Datasets: Exploring Dataset Shapes: 

Data Merging and Column Selection 

  

Merging Datasets: 

 

Step 3: Data Cleaning 

To guarantee data integrity and dependability, we will 

clean the data in this step by dealing with missing 

values and getting rid of duplicates. 

 

Checking for Null Values 

Handling Null Values 

Checking for Duplicate Rows 

 

Step 4: Data Preprocessing 

Formatting 'Genres' and 'Keywords' Columns 

The 'genres' column contains data in the form of a 

dictionary. We'll convert these entries into a list and 

keep only the genre names such as 'Action', 

'Adventure', 'Fantasy', etc. 

 

We'll start by converting the 'genres' and 'keywords' 

columns from strings of lists to actual lists, keeping 

only the genre and keyword names. 

 

Extracting Top Cast Members Extracting Director's 

Name Creating New DataFrame 

 

 
Fig. 3. Data Flow Diagram of recommender system 

  

Step 5: Feature Engineering 

Text Vectorization : 

• Text vectorization is the process of converting text 

data into numerical vectors or arrays that can be 

processed by machine learning algorithms. Text 
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data is usually unstructured and in a format that is 

difficult for algorithms to interpret. 

• Text can be made into a format that is simple to 

understand and used for modeling by vectorizing 

it. There are several machine-learning techniques 

for text vectorization, including: 

 

1. Bag-Of-Words 

2. TF-IDF 

3. Word Embeddings 

Using CountVectorizer for Text Vectorization 

To apply text vectorization using the Bag-of-Words 

technique, we'll utilize the CountVectorizer class from 

scikit-learn. This class allows us to convert text data 

into numerical vectors by creating a vocabulary of 

words and counting their frequencies in each 

document. 

 

Let's break down the steps involved 

in using CountVectorizer for text vectorization: 

1. Importing Required Libraries and 

Initializing CountVectorizer 

2. Applying Vectorization and Converting to Array 

3. Obtaining Feature Names 

4. Displaying Feature Names 

 

Finally, we can loop through the feature names to 

display the words one by one: 

 

This loop prints each word in the vocabulary, which 

represents a feature in the numerical vectors. 

 

Applying Stemming to Reduce Redundancy 

 

To address redundancy in our text data and reduce the 

vocabulary size, we'll apply stemming using the Porter 

Stemmer from the NLTK library. 

 

Here's how we'll do it: 

1. Importing NLTK and Initializing Porter Stemmer 

 First, we need to install NLTK (Natural Language 

Toolkit) if it's not already installed. Then, we import 

NLTK and initialize the Porter Stemmer: 

 

2. Defining the Stemming Function 

Next, define a function called stemming that takes a 

string of text as input, splits it into individual words, 

utilizes the Porter Stemmer to apply stemming to each 

word, and then reassembles the stemmed words into a 

string: 

 

3. Applying Stemming to 'tags' Column 

Now, apply the stemming function to the 'tags' column 

of our DataFrame: 

 

This will transform each tag in the 'tags' column by 

reducing words to their root forms using stemming. 

The result is a DataFrame with reduced redundancy 

and a more compact representation of the text data, 

which is suitable for text vectorization. 

 

4. Viewing the Transformed 'tags' Column 

After applying stemming, we can examine the 

transformed 'tags' column to see how the words have 

been reduced to their root forms: 

 

This column now contains the stemmed versions of the 

original tags. 

 

Calculating Cosine Similarity for Movie 

Recommendation 

 

To recommend movies based on similarity, we'll 

calculate the cosine similarity between movie vectors.  

Here's how we'll do it: 

1. Importing Cosine Similarity 

We will import the cosine_similarity function from the 

sklearn.metrics.pairwise module. This function 

computes the cosine similarity between two vector 

pairs. 

2. Calculating Cosine Similarity 

The cosine similarity between each pair of movie 

vectors in our dataset will be computed. 

3. Viewing the Shape of Similarity Matrix 

Each element (i, j) in the similarity matrix, which has 

dimensions (4806, 4806), represents the cosine 

similarity between movie vectors i and j. 

 

Step 6: Model Building 

Creating Recommendation Function 

  

To recommend movies based on similarity to a given 

movie, we'll create a recommendation function. Here's 

how it works: 

 

 

 



© July 2024 | IJIRT | Volume 11 Issue 2 | ISSN: 2349-6002 

IJIRT 166368 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 948 

Explanation: 

• Input for the recommendation function is a movie 

title. 

• It locates the DataFrame's input movie index. 

• It obtains the cosine distances, or similarity values, 

between the input movie and every other movie. 

• The enumerate function associates each similarity 

value with its index position. 

• The sorted function sorts the list of similarity 

values while maintaining the original index 

positions. 

• The list is sorted in descending order by using the 

reverse=True argument. 

• The argument key=lambda x: x[1] indicates that 

the similarity value, which is the second element 

of each tuple, should be the basis for sorting. 

• The [1:6] slice returns the top five similar movies, 

excluding the input movie itself. 

• Finally, it prints the titles and details of the 

recommended movies. 

 

Step 7: Creating the User Interface 

Streamlit Library : 

Streamlit is a Python library that simplifies the 

creation of data-focused web applications. Without 

requiring knowledge of web development languages 

like HTML, CSS, or JavaScript, it enables developers 

to create interactive web apps straight from Python 

scripts. With Streamlit, developers can focus on 

writing Python code to analyze data and create 

visualizations, while Streamlit takes care of rendering 

the user interface and managing user interactions. 

 

Creating UI for a Content-Based Movie 

Recommendation System using Streamlit 

 

Ensure that you have the necessary packages installed 

and the pickle files (moviesDict.pkl and similarity.pkl) 

available in your directory. Also, replace the API key 

'Your API Key' with your own if needed. 

 

Step 8: Deploying the Application 

  

1. Prepare Application Files: Ensure all necessary 

files, including app.py containing Streamlit code, 

and data files (`moviesDict.pkl`, similarity.pkl), 

are up-to-date and ready for deployment. 

2. Dependencies: Document dependencies in a 

requirements.txt file listing all required Python 

packages and their versions. This includes 

Streamlit and any other libraries used in the 

application. 

3. Hosting Platform: Streamlit Sharing serves as the 

hosting platform, facilitating easy deployment of 

Streamlit applications without additional setup. 

4. Create Account (if necessary): If required, sign up 

for a Streamlit Sharing account to proceed with the 

deployment process. 

5. Deployment Method: Connect the GitHub 

repository containing the application code to the 

Streamlit Sharing account. This enables a seamless 

deployment process directly from GitHub. 

6. Environment Setup: Streamlit Sharing 

automatically configures the deployment 

environment based on the dependencies specified 

in the requirements.txt file, eliminating the need 

for manual setup. 

7. Deploy Application: Initiate the deployment 

process either by triggering a deployment from the 

Streamlit Sharing dashboard or with a single click, 

leveraging the connected GitHub repository. 

8. Testing: After deployment, thoroughly test the 

application on Streamlit Sharing to ensure proper 

functionality. Explore various features, user 

interactions, and edge cases to identify any errors 

or bugs. 

9. Monitoring and Maintenance: Regularly monitor 

the deployed application on Streamlit Sharing for 

performance, reliability, and security. Update 

dependencies as needed and address any reported 

issues promptly to maintain a smooth user 

experience. 

10. Scale (if necessary): Streamlit Sharing 

automatically manages scaling based on 

application demand. As the application gains users 

and traffic, Streamlit adjusts resources to ensure 

optimal performance without manual intervention. 
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Fig. 4. Steps of recommendation system 

 

V. FINDINGS 

 

Collaborative filtering typically operates in two 

“ways: 

1. User-based collaborative filtering: Using this 

method, the computer finds people who have 

similar tastes in movies to the target user and 

suggests movies that the target user might like. The 

algorithm might suggest an action film that User B 

has already seen and highly rated, for instance if 

User A and User B enjoy watching action movies 

together and User A is looking for a new movie to 

watch”. 

2. Item-based collaborative filtering: With this 

method, the system finds films that the intended 

user has already seen and recommends those that 

are comparable. For instance, the system may 

suggest other romantic comedies with comparable 

themes, plots, and characters to a user who has 

enjoyed watching romantic comedies in the past. 

 

One advantage of collaborative filtering over 

demographic data is that it can offer highly 

personalized recommendations to customers based on 

their preferences. One limitation of collaborative 

filtering is that its effectiveness depends heavily on 

user data. Furthermore, it might not work well for new 

or niche films with little to no user feedback. Lastly, a 

useful technique for movie recommendation systems 

that may provide users with personalized 

recommendations based on their preferences and 

actions is collaborative filtering. It should be 

combined with other tactics, like demographic and 

content-based filtering, to provide more detailed and 

accurate recommendations. 

  

As opposed to other distance metrics, why choose 

Cosine Similarity? 

A content-based movie recommendation system looks 

for patterns in user-submitted movie 

recommendations, comparing the features of the user's 

favorite films with those of other films in the system. 

Using distance metrics, like the Manhattan distance or 

the Euclidean distance, is a popular way to gauge 

similarity. Nonetheless, Cosine Similarity is 

frequently chosen above these techniques for a number 

of reasons: 

 

1. Resilience to Magnitude Differences 

2. Dimensionality Reduction 

3. Cosine Similarity is computationally efficient 

 

VI. FUTURE SCOPE 

 

The future of human-computer interaction and user 

experience design is poised for significant 

advancements, driven by cutting-edge technologies 

and innovative methodologies. As we progress, three 

critical areas promise to enhance the depth and quality 

of user engagement: 

1. Multimodal Sentiment Analysis: Integrating 

various data sources such as text, audio, and visual 

inputs will enable more accurate sentiment 

analysis. By capturing and interpreting emotions 

across multiple modalities, systems can respond 

more empathetically and effectively to user needs. 

2. Context-Aware Recommendations: Leveraging 

contextual data such as location, time, user 

activity, and historical behavior, recommendation 

systems will become more personalized and 

relevant. These context-aware recommendations 

will significantly improve user satisfaction and 

engagement by providing timely and pertinent 

suggestions. 

3. Integration with Virtual Reality (VR) and 

Augmented Reality (AR): The fusion of VR and 

AR with existing technologies will create 

immersive and interactive user experiences. This 

integration will not only enhance entertainment 

and gaming but also revolutionize fields like 
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education, healthcare, and remote work by 

providing realistic and context-rich environments. 

  

CONCLUSION 

 

In the digital age, the entertainment sector is using 

recommendation algorithms more and more to 

improve customer engagement and “ experience. 

Content-based movie recommendation systems are 

among the most widely used in the film industry. This 

system examines movie content to provide customers 

with personalized recommendations. 

 

With the use of complex algorithms, content-based 

movie recommendation systems examine a variety of 

cinematic components, such as genre, director, actors, 

and”        story. By identifying patterns in the 

similarities and differences between movies, the 

algorithm might offer users personalized 

recommendations based on their preferences and 

interests. By making it possible for people to locate 

new movies, it allows viewers to learn about new 

genres and directors by suggesting movies that are 

similar to ones they have already seen. 

 

Nevertheless, content-based movie recommendation 

systems also have certain disadvantages. They cannot 

account for external factors that could influence user 

choices, such as mood or social influence. Moreover, 

the recommendation system can only make 

suggestions for films that are comparable to those that 

users have already found enjoyable; it cannot make 

suggestions for films that are unrelated to the user's 

known preferences. 

 

Despite these drawbacks, companies and moviegoers 

can benefit from content-based movie 

recommendation systems. Businesses that provide 

users with personalized suggestions can increase user 

engagement and profitability. Content-based movie 

recommendation algorithms can lead movie buffs to 

new films they might not have looked into otherwise, 

making for a more interesting and varied viewing 

experience. 

 

In conclusion, content-based movie recommendation 

systems offer several advantages such as a greater 

variety of viewing options, ease of use, and 

personalized suggestions. Despite a few drawbacks, 

these systems are a vital resource for companies as 

well as movie buffs. As technology advances, 

successful content-based movie recommendation 

systems will become possible. 
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