
© July 2024 | IJIRT | Volume 11 Issue 2 | ISSN: 2349-6002

IJIRT 166368 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 944

Intelligent Movie Recommendations System with

Collaborative Filtering and Machine Learning Techniques

S AISHWARYA RAO1, DR. GOLDI SONI2
1 Undergraduate Student, Amity School of Engineering and Technology, Amity University Chhattisgarh

2 Assistant Professor, Amity School of Engineering and Technology, Amity University Chhattisgarh

Abstract— Watching movies and TV shows has become

more convenient with the introduction of streaming

services. Over time, the film industry has experienced rapid

growth. It's difficult for users to decide what to watch these

days because there is so much content available. Systems

for recommending movies have been created to help

consumers choose movies according to their personal

tastes. This streamlines and entertains the selection

process. These systems use a number of techniques to

provide users with tailored recommendations. One of the

most popular techniques is collaborative filtering, which

suggests movies to users based on their viewing habits and

past selections. An additional technique is content-based

filtering, which makes use of movie characteristics such as

genre, stars, and directors to recommend other films that

share those characteristics. Hybrid methods that combine

the two approaches have also been developed to offer

recommendations that are more accurate. It highlights

how important personalization is to recommendation

systems because it increases user satisfaction and

engagement.

Index Terms- Collaborative Filtering, Cosine Similarity,

SVD, RMSE, Recommender system

I. INTRODUCTION

Movie recommendation engines are becoming a

common sight in the age of internet streaming

services. With so many movies to choose from on

services like Netflix, Hulu, and Amazon Prime Video,

it can be difficult to find one that suits your tastes and

mood. This is where movie recommendation systems

come into play; they analyze your viewing history

using sophisticated algorithms and offer tailored

recommendations for new films and TV series that you

will probably like.

The core elements of a movie recommendation system

consist of multiple filtering methods, such as

collaborative, content-based, and demographic

filtering. Collaborative filtering looks at the viewing

patterns and interests of similar users to make

recommendations based on their viewing histories. For

example, if you enjoy a movie, collaborative filtering

will recommend other movies that people who have

similar tastes in movies have also loved. Because there

is such a large selection of films available on different

platforms, users might have problems finding movies

that they like.

Fig.1. Recommender System

Users may encounter difficulties in discovering films

that resonate with them due to the vast array of films

that are accessible across various platforms.

Conventional movie recommendation systems might

not take into account each user's distinct interests and

preferences or offer personalized recommendations.

The use of collaborative filtering, which generates

movie recommendations based on user behavior and

preferences, is a drawback of traditional movie

recommendation systems. This approach might not

accurately represent the user's distinct preferences and

might result in suggestions that are insufficient or

irrelevant.

© July 2024 | IJIRT | Volume 11 Issue 2 | ISSN: 2349-6002

IJIRT 166368 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 945

Fig. 2. Comparison between collaborative and

content-based filtering

II. LITERATURE REVIEW

1. Utilizing natural language processing (NLP)

methods to analyze the textual components of

films

For instance, a study used natural language processing

(NLP) to analyze movie plot summaries and extract

information about the main characters, their actions

and emotions, and their locations. These features were

used to predict the movie genres, which were then used

to train a classifier to generate recommendations.

Another tactic is to use clustering techniques to

arrange movies according to their attributes and then

recommend movies based on those clusters. (Poria et

al. 's, 2014)

2. Content-Based Movie Recommendation

System Using Genre Correlation

For instance, a study classified movies based on their

genre, actors, and directors using clustering algorithms

and then suggested films from the same cluster as the

ones the user had chosen. (Bobadilla et al., 2013)

3. Collaborative Filtering vs. Content-Based

Filtering: differences and similarities

 Recommendation systems (SR) provide suggestions

for products that investigate user preferences, assisting

users in overcoming information overload. Two

methods of social media research have gained

increased attention: Content-Based Filtering and

Collaborative Filtering. Furthermore, few findings

objectively demonstrate their traits, parallels, and

distinctions, despite research pointing out their

benefits and drawbacks. This work proposes an

experimental methodology to compare

recommendation algorithms for various approaches

that go beyond the "precision of the predictions".

(Rafael Glauber, Angelo Loula)

4. A personalized movie recommendation system

based on collaborative filtering

The last ten years have seen an explosion in data

because of social media, e-commerce, and the general

digitization of businesses. The information is used to

forecast market trends, and customer preference

patterns, and make well- informed decisions. Since

internet services have become widely used,

recommendation systems have proliferated. The idea

is to suggest items that users might find interesting by

using clustering and filtering techniques. Users are

given suggestions for media commodities such as

movies by locating user profiles of people who share

similar interests. Users are first asked to rate the

movies they want, in order to determine their

preferences. (V. Subramaniyaswamy, R. Loges)

TABLE 1

Comparative study-related works and algorithms

TABLE 2

Different Machine Learning approaches

© July 2024 | IJIRT | Volume 11 Issue 2 | ISSN: 2349-6002

IJIRT 166368 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 946

III. RESEARCH “OBJECTIVES

• Examining a movie's material to find key elements

that may be utilized to produce suggestions.

• Creating a list of suggested movies by comparing

the movie features to the user's preferences.

• Giving viewers individualized suggestions based

on their unique watching interests and histories.

• Offering a satisfying and individualized

experience will increase user engagement and

retention” rates.

IV. RESEARCH METHODOLOGY

Step 1: Mounting Google Drive and Importing

Libraries

To manipulate data and perform numerical

computations, we import the necessary libraries, such

as pandas and numpy. Additionally, we import

warnings to suppress any warning messages during the

execution of our code.

Step 2: Data Collection

To build the movie recommender system, the first step

is to gather relevant data. We will use movie datasets

for this project, which include details about titles,

genres, keywords, cast members, and crew. These

datasets will serve as the foundation for our

recommendation engine.

Loading Datasets: Exploring Dataset Shapes:

Data Merging and Column Selection

Merging Datasets:

Step 3: Data Cleaning

To guarantee data integrity and dependability, we will

clean the data in this step by dealing with missing

values and getting rid of duplicates.

Checking for Null Values

Handling Null Values

Checking for Duplicate Rows

Step 4: Data Preprocessing

Formatting 'Genres' and 'Keywords' Columns

The 'genres' column contains data in the form of a

dictionary. We'll convert these entries into a list and

keep only the genre names such as 'Action',

'Adventure', 'Fantasy', etc.

We'll start by converting the 'genres' and 'keywords'

columns from strings of lists to actual lists, keeping

only the genre and keyword names.

Extracting Top Cast Members Extracting Director's

Name Creating New DataFrame

Fig. 3. Data Flow Diagram of recommender system

Step 5: Feature Engineering

Text Vectorization :

• Text vectorization is the process of converting text

data into numerical vectors or arrays that can be

processed by machine learning algorithms. Text

© July 2024 | IJIRT | Volume 11 Issue 2 | ISSN: 2349-6002

IJIRT 166368 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 947

data is usually unstructured and in a format that is

difficult for algorithms to interpret.

• Text can be made into a format that is simple to

understand and used for modeling by vectorizing

it. There are several machine-learning techniques

for text vectorization, including:

1. Bag-Of-Words

2. TF-IDF

3. Word Embeddings

Using CountVectorizer for Text Vectorization

To apply text vectorization using the Bag-of-Words

technique, we'll utilize the CountVectorizer class from

scikit-learn. This class allows us to convert text data

into numerical vectors by creating a vocabulary of

words and counting their frequencies in each

document.

Let's break down the steps involved

in using CountVectorizer for text vectorization:

1. Importing Required Libraries and

Initializing CountVectorizer

2. Applying Vectorization and Converting to Array

3. Obtaining Feature Names

4. Displaying Feature Names

Finally, we can loop through the feature names to

display the words one by one:

This loop prints each word in the vocabulary, which

represents a feature in the numerical vectors.

Applying Stemming to Reduce Redundancy

To address redundancy in our text data and reduce the

vocabulary size, we'll apply stemming using the Porter

Stemmer from the NLTK library.

Here's how we'll do it:

1. Importing NLTK and Initializing Porter Stemmer

 First, we need to install NLTK (Natural Language

Toolkit) if it's not already installed. Then, we import

NLTK and initialize the Porter Stemmer:

2. Defining the Stemming Function

Next, define a function called stemming that takes a

string of text as input, splits it into individual words,

utilizes the Porter Stemmer to apply stemming to each

word, and then reassembles the stemmed words into a

string:

3. Applying Stemming to 'tags' Column

Now, apply the stemming function to the 'tags' column

of our DataFrame:

This will transform each tag in the 'tags' column by

reducing words to their root forms using stemming.

The result is a DataFrame with reduced redundancy

and a more compact representation of the text data,

which is suitable for text vectorization.

4. Viewing the Transformed 'tags' Column

After applying stemming, we can examine the

transformed 'tags' column to see how the words have

been reduced to their root forms:

This column now contains the stemmed versions of the

original tags.

Calculating Cosine Similarity for Movie

Recommendation

To recommend movies based on similarity, we'll

calculate the cosine similarity between movie vectors.

Here's how we'll do it:

1. Importing Cosine Similarity

We will import the cosine_similarity function from the

sklearn.metrics.pairwise module. This function

computes the cosine similarity between two vector

pairs.

2. Calculating Cosine Similarity

The cosine similarity between each pair of movie

vectors in our dataset will be computed.

3. Viewing the Shape of Similarity Matrix

Each element (i, j) in the similarity matrix, which has

dimensions (4806, 4806), represents the cosine

similarity between movie vectors i and j.

Step 6: Model Building

Creating Recommendation Function

To recommend movies based on similarity to a given

movie, we'll create a recommendation function. Here's

how it works:

© July 2024 | IJIRT | Volume 11 Issue 2 | ISSN: 2349-6002

IJIRT 166368 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 948

Explanation:

• Input for the recommendation function is a movie

title.

• It locates the DataFrame's input movie index.

• It obtains the cosine distances, or similarity values,

between the input movie and every other movie.

• The enumerate function associates each similarity

value with its index position.

• The sorted function sorts the list of similarity

values while maintaining the original index

positions.

• The list is sorted in descending order by using the

reverse=True argument.

• The argument key=lambda x: x[1] indicates that

the similarity value, which is the second element

of each tuple, should be the basis for sorting.

• The [1:6] slice returns the top five similar movies,

excluding the input movie itself.

• Finally, it prints the titles and details of the

recommended movies.

Step 7: Creating the User Interface

Streamlit Library :

Streamlit is a Python library that simplifies the

creation of data-focused web applications. Without

requiring knowledge of web development languages

like HTML, CSS, or JavaScript, it enables developers

to create interactive web apps straight from Python

scripts. With Streamlit, developers can focus on

writing Python code to analyze data and create

visualizations, while Streamlit takes care of rendering

the user interface and managing user interactions.

Creating UI for a Content-Based Movie

Recommendation System using Streamlit

Ensure that you have the necessary packages installed

and the pickle files (moviesDict.pkl and similarity.pkl)

available in your directory. Also, replace the API key

'Your API Key' with your own if needed.

Step 8: Deploying the Application

1. Prepare Application Files: Ensure all necessary

files, including app.py containing Streamlit code,

and data files (`moviesDict.pkl`, similarity.pkl),

are up-to-date and ready for deployment.

2. Dependencies: Document dependencies in a

requirements.txt file listing all required Python

packages and their versions. This includes

Streamlit and any other libraries used in the

application.

3. Hosting Platform: Streamlit Sharing serves as the

hosting platform, facilitating easy deployment of

Streamlit applications without additional setup.

4. Create Account (if necessary): If required, sign up

for a Streamlit Sharing account to proceed with the

deployment process.

5. Deployment Method: Connect the GitHub

repository containing the application code to the

Streamlit Sharing account. This enables a seamless

deployment process directly from GitHub.

6. Environment Setup: Streamlit Sharing

automatically configures the deployment

environment based on the dependencies specified

in the requirements.txt file, eliminating the need

for manual setup.

7. Deploy Application: Initiate the deployment

process either by triggering a deployment from the

Streamlit Sharing dashboard or with a single click,

leveraging the connected GitHub repository.

8. Testing: After deployment, thoroughly test the

application on Streamlit Sharing to ensure proper

functionality. Explore various features, user

interactions, and edge cases to identify any errors

or bugs.

9. Monitoring and Maintenance: Regularly monitor

the deployed application on Streamlit Sharing for

performance, reliability, and security. Update

dependencies as needed and address any reported

issues promptly to maintain a smooth user

experience.

10. Scale (if necessary): Streamlit Sharing

automatically manages scaling based on

application demand. As the application gains users

and traffic, Streamlit adjusts resources to ensure

optimal performance without manual intervention.

© July 2024 | IJIRT | Volume 11 Issue 2 | ISSN: 2349-6002

IJIRT 166368 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 949

Fig. 4. Steps of recommendation system

V. FINDINGS

Collaborative filtering typically operates in two

“ways:

1. User-based collaborative filtering: Using this

method, the computer finds people who have

similar tastes in movies to the target user and

suggests movies that the target user might like. The

algorithm might suggest an action film that User B

has already seen and highly rated, for instance if

User A and User B enjoy watching action movies

together and User A is looking for a new movie to

watch”.

2. Item-based collaborative filtering: With this

method, the system finds films that the intended

user has already seen and recommends those that

are comparable. For instance, the system may

suggest other romantic comedies with comparable

themes, plots, and characters to a user who has

enjoyed watching romantic comedies in the past.

One advantage of collaborative filtering over

demographic data is that it can offer highly

personalized recommendations to customers based on

their preferences. One limitation of collaborative

filtering is that its effectiveness depends heavily on

user data. Furthermore, it might not work well for new

or niche films with little to no user feedback. Lastly, a

useful technique for movie recommendation systems

that may provide users with personalized

recommendations based on their preferences and

actions is collaborative filtering. It should be

combined with other tactics, like demographic and

content-based filtering, to provide more detailed and

accurate recommendations.

As opposed to other distance metrics, why choose

Cosine Similarity?

A content-based movie recommendation system looks

for patterns in user-submitted movie

recommendations, comparing the features of the user's

favorite films with those of other films in the system.

Using distance metrics, like the Manhattan distance or

the Euclidean distance, is a popular way to gauge

similarity. Nonetheless, Cosine Similarity is

frequently chosen above these techniques for a number

of reasons:

1. Resilience to Magnitude Differences

2. Dimensionality Reduction

3. Cosine Similarity is computationally efficient

VI. FUTURE SCOPE

The future of human-computer interaction and user

experience design is poised for significant

advancements, driven by cutting-edge technologies

and innovative methodologies. As we progress, three

critical areas promise to enhance the depth and quality

of user engagement:

1. Multimodal Sentiment Analysis: Integrating

various data sources such as text, audio, and visual

inputs will enable more accurate sentiment

analysis. By capturing and interpreting emotions

across multiple modalities, systems can respond

more empathetically and effectively to user needs.

2. Context-Aware Recommendations: Leveraging

contextual data such as location, time, user

activity, and historical behavior, recommendation

systems will become more personalized and

relevant. These context-aware recommendations

will significantly improve user satisfaction and

engagement by providing timely and pertinent

suggestions.

3. Integration with Virtual Reality (VR) and

Augmented Reality (AR): The fusion of VR and

AR with existing technologies will create

immersive and interactive user experiences. This

integration will not only enhance entertainment

and gaming but also revolutionize fields like

© July 2024 | IJIRT | Volume 11 Issue 2 | ISSN: 2349-6002

IJIRT 166368 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 950

education, healthcare, and remote work by

providing realistic and context-rich environments.

CONCLUSION

In the digital age, the entertainment sector is using

recommendation algorithms more and more to

improve customer engagement and “ experience.

Content-based movie recommendation systems are

among the most widely used in the film industry. This

system examines movie content to provide customers

with personalized recommendations.

With the use of complex algorithms, content-based

movie recommendation systems examine a variety of

cinematic components, such as genre, director, actors,

and” story. By identifying patterns in the

similarities and differences between movies, the

algorithm might offer users personalized

recommendations based on their preferences and

interests. By making it possible for people to locate

new movies, it allows viewers to learn about new

genres and directors by suggesting movies that are

similar to ones they have already seen.

Nevertheless, content-based movie recommendation

systems also have certain disadvantages. They cannot

account for external factors that could influence user

choices, such as mood or social influence. Moreover,

the recommendation system can only make

suggestions for films that are comparable to those that

users have already found enjoyable; it cannot make

suggestions for films that are unrelated to the user's

known preferences.

Despite these drawbacks, companies and moviegoers

can benefit from content-based movie

recommendation systems. Businesses that provide

users with personalized suggestions can increase user

engagement and profitability. Content-based movie

recommendation algorithms can lead movie buffs to

new films they might not have looked into otherwise,

making for a more interesting and varied viewing

experience.

In conclusion, content-based movie recommendation

systems offer several advantages such as a greater

variety of viewing options, ease of use, and

personalized suggestions. Despite a few drawbacks,

these systems are a vital resource for companies as

well as movie buffs. As technology advances,

successful content-based movie recommendation

systems will become possible.

REFERENCES

[1] Choi, Sang-Min, Sang-Ki Ko, and Yo-Sub Han.

"A movie recommendation algorithm based on

genre correlations." Expert Systems with

Applications 39.9 (2012): 8079-8085.

[2] S. S. K. Kumar, R. Srinivasan and Bobadilla et

al. “Recommendation system using content-

based filtering. In 2013 International Conference

on Computer Communication and Informatics

(ICCCI), pages 1–5, 2013”.

[3] Panniello et al., X. Liu, Y. Xu, and X. Li. A

hybrid recommendation algorithm based on

content-based filtering and collaborative

filtering. In 2014 IEEE 8th International

Conference on Communication Software and

Networks (ICCSN), pages 123–127, 2014.

[4] Sedhain et al., G. Adomavicius and A. Tuzhilin.

Toward the next generation of recommender

systems: A survey of the state-of-the-art and

possible extensions. IEEE Transactions on

Knowledge and Data Engineering, 17(6):734–

749, 2015

[5] R. M. El-Khoury, M. Khalil, and M. Shouman.

Survey of content-based recommender systems.

ACM Computing Surveys, 49(3):43:1–43:34,

2016.

[6] J. Lops, M. De Gemmis, and G. Semeraro.

Content-based recommender systems: State of

the art and trends. Recommender Systems

Handbook, pages 73–105. Springer, 2015.

