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Abstract: The Internet of Things (IoT) is increasingly 

susceptible to security threats, particularly targeting the 

Routing Protocol for Low-Power and Lossy Networks 

(RPL). Ensuring secure and reliable routing is crucial for 

the performance and trustworthiness of IoT networks. 

This paper proposes a trust-based model for secure 

routing against RPL attacks by leveraging machine 

learning algorithms, including Random Forest, Support 

Vector Machine (SVM), Naive Bayes, K-Nearest 

Neighbors (KNN), and Neural Networks. The model 

calculates node reputation and detects anomalies to 

prevent routing attacks. The performance of the 

proposed model is evaluated using key metrics: Node 

Reputation, Anomaly Detection Metrics, Routing 

Overhead, Energy Efficiency, Throughput, and Packet 

Loss Rate. Experimental results demonstrate the 

effectiveness of the proposed model in enhancing IoT 

network security and efficiency while maintaining low 

overhead. 
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I. INTRODUCTION 

 

The Internet of Things (IoT) has revolutionized the 

way devices communicate, enabling seamless 

interconnectivity and data exchange among a myriad 

of sensors, actuators, and smart devices. This 

interconnected ecosystem facilitates numerous 

applications, ranging from smart homes and industrial 

automation to healthcare and environmental 

monitoring. However, the widespread deployment of 

IoT devices introduces significant security challenges, 

primarily due to their resource-constrained nature and 

reliance on wireless communication. One critical 

aspect of IoT security is ensuring secure and efficient 

routing of data, as IoT networks are particularly 

vulnerable to various routing attacks [1]. The Routing 

Protocol for Low-Power and Lossy Networks (RPL) is 

a widely adopted standard for routing in IoT 

environments. Despite its efficiency, RPL is 

susceptible to numerous attacks such as sinkhole, 

wormhole, and selective forwarding attacks, which 

can severely disrupt network operations and 

compromise data integrity [2]. Traditional security 

mechanisms are often inadequate for IoT networks due 

to their limited computational and energy resources. 

Hence, there is a pressing need for lightweight and 

robust solutions to enhance routing security in IoT. 

Securing routing in IoT networks against RPL-specific 

attacks is a complex problem that requires balancing 

security, performance, and resource efficiency. 

Existing approaches often fail to address the dynamic 

and distributed nature of IoT networks. Therefore, a 

trust-based model that leverages machine learning to 

dynamically assess and respond to security threats is 

essential. Such a model can help in identifying 

malicious nodes, ensuring reliable data transmission, 

and maintaining overall network integrity [3]. 

 

This research aims to develop a trust-based model for 

secure routing in IoT networks, utilizing various 

machine learning algorithms. The specific objectives 

of this study are: 

• To design a trust computation framework that 

evaluates node reputation based on behavior and 

interaction history. 

• To implement and compare multiple machine 

learning algorithms, including Random Forest, 

Support Vector Machine (SVM), Naive Bayes, K-
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Nearest Neighbors (KNN), and Neural Networks, 

for detecting routing anomalies. 

• To evaluate the proposed model using key metrics 

such as Node Reputation, Anomaly Detection 

Metrics, Routing Overhead, Energy Efficiency, 

Throughput, and Packet Loss Rate. 

• To demonstrate the effectiveness of the model in 

enhancing IoT network security while 

maintaining low resource consumption. 

 

The primary contributions of this research are: 

• A novel trust-based model for secure routing in 

IoT, capable of mitigating RPL-specific attacks. 

• A comprehensive comparison of five machine 

learning algorithms (Random Forest, SVM, Naive 

Bayes, KNN, and Neural Networks) in the context 

of IoT routing security. 

• An extensive evaluation of the proposed model 

across multiple performance and security metrics, 

demonstrating its efficacy and efficiency. 

• Insights and recommendations for deploying 

machine learning-based security solutions in 

resource-constrained IoT environments. 

This paper is structured as follows: Section 2 reviews 

related work in trust-based routing and machine 

learning applications in IoT security. Section 3 details 

the proposed model and the machine learning 

algorithms employed. Section 4 presents the 

experimental results and discussion. Finally, Section 5 

concludes the paper and outlines future research 

directions. 

 

1.1. RPL Routing Attacks and their implications for 

IoT Networks 

Routing Protocol for Low-Power and Lossy Networks 

(RPL) is a fundamental routing protocol used in many 

IoT deployments due to its efficiency in handling 

constrained devices and dynamic network topologies. 

However, the widespread adoption of RPL also 

introduces vulnerabilities that can be exploited by 

malicious actors to compromise the integrity and 

availability of IoT networks. Understanding these RPL 

routing attacks and their implications is crucial for 

designing effective security mechanisms to safeguard 

IoT deployments [4][5]. Here, we discuss some 

common RPL routing attacks and their implications 

for IoT networks: 

a). Sinkhole Attacks: In a sinkhole attack, a 

malicious node advertises itself as having the 

shortest path to the sink node, attracting legitimate 

nodes to route their traffic through it. However, 

the malicious node drops or selectively forwards 

the received packets, disrupting communication 

and potentially compromising data 

confidentiality. Implications: Sinkhole attacks 

can lead to significant disruptions in IoT 

applications, particularly those requiring timely 

and reliable data delivery, such as industrial 

automation and healthcare monitoring. Moreover, 

they can facilitate data exfiltration or 

manipulation, posing serious security and privacy 

risks. 

b). Blackhole Attacks: In a blackhole attack, a 

malicious node advertises itself as having the 

shortest path to the destination nodes, attracting 

traffic towards it. However, instead of forwarding 

the packets towards the destination, the malicious 

node drops all incoming packets, effectively 

blackholing the traffic. Implications: Blackhole 

attacks can severely impact the availability and 

reliability of IoT services by causing packet loss 

and network congestion. Furthermore, they can 

facilitate denial-of-service (DoS) attacks by 

disrupting communication between legitimate 

nodes and draining their resources. 

c). Selective Forwarding Attacks:  In a selective 

forwarding attack, a malicious node selectively 

forwards or drops packets based on predefined 

criteria, such as packet type, source address, or 

content. By strategically manipulating packet 

forwarding, the attacker can disrupt 

communication between specific nodes or 

subnetworks. Implications: Selective forwarding 

attacks can compromise the integrity and 

reliability of IoT data transmission by selectively 

dropping critical packets or injecting malicious 

payloads into the network. This can lead to data 

corruption, manipulation, or unauthorized access, 

undermining the trustworthiness of IoT 

applications. 

d). Sybil Attacks: In a Sybil attack, a single malicious 

node impersonates multiple legitimate nodes by 

spoofing their identities or network addresses. By 

creating multiple fake identities, the attacker can 

influence routing decisions, disrupt network 

topology discovery, and deceive neighboring 
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nodes.  Implications: Sybil attacks can undermine 

the trustworthiness and scalability of IoT 

networks by introducing fake nodes into the 

network topology. This can lead to routing loops, 

resource exhaustion, and inaccurate routing 

metrics, compromising the overall stability and 

security of IoT deployments. 

The implications of these RPL routing attacks for IoT 

networks are multifaceted, encompassing disruptions 

in communication, data integrity, and network 

performance. Mitigating RPL routing attacks requires 

a combination of robust authentication mechanisms, 

secure routing protocols, and intrusion detection 

systems tailored to the unique requirements and 

constraints of IoT environments.  

 

II. RELATED WORKS 

 

Trust-based routing models have gained significant 

attention in securing IoT networks due to their ability 

to identify and mitigate malicious behavior. These 

models typically evaluate nodes based on their 

behavior and interaction history, assigning trust scores 

that influence routing decisions. For instance, Momani 

and Challa (2010) [6] proposed a trust management 

system for wireless sensor networks that relies on 

direct and indirect trust metrics to detect malicious 

nodes. Similarly, Bao and Chen (2012) [7] introduced 

a dynamic trust management protocol that adapts to 

changing network conditions and improves security in 

mobile ad-hoc networks (MANETs). In the context of 

IoT, Raza et al. (2013) [8] developed a lightweight 

trust-based mechanism specifically for RPL, focusing 

on energy-efficient and secure routing. Their 

approach, however, primarily relies on heuristic 

methods and does not leverage advanced machine 

learning techniques. More recently, Zhang et al. 

(2018) [9] proposed a trust-based secure routing 

scheme that incorporates fuzzy logic to handle the 

uncertainty and imprecision in trust evaluation. While 

these approaches demonstrate the potential of trust-

based models, they often fall short in dynamically 

adapting to sophisticated and evolving attacks. 

Machine learning (ML) techniques have been 

increasingly employed to enhance the security of 

routing protocols in IoT networks. These techniques 

can analyze large volumes of data to detect patterns 

indicative of malicious behavior, thereby improving 

the robustness of routing mechanisms. For example, 

Othman et al. (2013) [10] applied a Bayesian 

inference approach to establish trust in IoT 

environments, enhancing the detection of 

compromised nodes. Another study by Marchang and 

Datta (2017) [11] utilized SVM to classify and detect 

routing attacks in MANETs, showing promising 

results in terms of accuracy and efficiency. Random 

Forest has also been effectively used in network 

security. For instance, Sahu and Shah (2018) [12] 

demonstrated the use of Random Forest in detecting 

intrusion in IoT networks, highlighting its high 

accuracy and low false-positive rate. KNN and Naive 

Bayes, while simpler, have been employed in various 

anomaly detection systems due to their computational 

efficiency and effectiveness in diverse scenarios 

(Patel and Doshi, 2020) [13]. Neural Networks, 

particularly deep learning models, offer significant 

potential due to their ability to learn complex patterns; 

however, their high computational requirements often 

pose challenges in IoT environments (Al-Garadi et al., 

2020) [14] . 

RPL, as a widely used routing protocol in IoT, is 

vulnerable to various attacks that can compromise the 

network's security and performance. Sinkhole attacks, 

where malicious nodes attract traffic by advertising 

high-quality routes, are particularly damaging. 

Krontiris et al. (2013) [15] analyzed the impact of 

sinkhole attacks on RPL and proposed 

countermeasures based on consistency checks of 

routing information. Wormhole attacks, involving 

colluding nodes that create a low-latency link to 

capture and relay traffic, were studied by Choi et al. 

(2014) [16], who proposed a detection mechanism 

leveraging temporal and spatial correlation of packet 

arrivals. Selective forwarding attacks, where 

malicious nodes selectively drop packets, pose another 

significant threat. Mayzaud et al. (2016) [17] provided 

a comprehensive survey of RPL attacks and 

highlighted the need for integrated detection and 

mitigation strategies. These studies underscore the 

importance of robust security mechanisms to 

safeguard RPL-based IoT networks from various 

attack vectors. 

III. PROPOSED MODEL 

 

The increasing deployment of Internet of Things (IoT) 

devices in various applications, from smart homes to 

industrial automation, has brought significant 

attention to the need for secure and reliable 
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communication protocols. One of the primary 

challenges in IoT networks is ensuring secure routing 

of data, particularly in the face of attacks targeting the 

Routing Protocol for Low-Power and Lossy Networks 

(RPL). Traditional security mechanisms often fall 

short due to the constrained resources of IoT devices, 

necessitating innovative approaches that can provide 

robust security without imposing significant overhead.  

This paper presents a trust-based model for secure 

routing in IoT networks that leverages the capabilities 

of machine learning algorithms to detect and mitigate 

RPL-specific attacks. The proposed model integrates 

multiple machine learning techniques, including 

Random Forest, Support Vector Machine (SVM), 

Naive Bayes, K-Nearest Neighbors (KNN), and 

Neural Networks, to evaluate the trustworthiness of 

nodes and detect anomalies indicative of malicious 

activities. 

 
Figure 1: Proposed model architecture 

 

System Architecture 

The proposed trust-based model for secure routing 

against RPL attacks in IoT networks is composed of 

four main modules: Trust Computation, Anomaly 

Detection, Routing Decision, and Data Collection and 

Preprocessing. Figure 1 shows the proposed model 

architecture. Each module plays a crucial role in 

ensuring the security and efficiency of the IoT 

network. 

 

3.1 Trust Computation Module 

The Trust Computation Module is a crucial component 

of the proposed model, responsible for calculating the 

trust scores of nodes in the IoT network[18][19]. The 

trust scores are used to evaluate the reliability and 

behavior of each node, which in turn influence the 

routing decisions made by the Routing Decision 

Module. The trust computation process incorporates 

both direct and indirect trust metrics to provide a 

comprehensive assessment of node trustworthiness, 

Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Trust Computation Process 

 

Direct Trust Computation 

Direct trust is calculated based on the interaction 

history between nodes. This includes factors such as 

packet delivery ratio, acknowledgment reception and 

consistency in communication. Nodes that 

consistently deliver packets successfully and 

acknowledge communications are assigned higher 

direct trust scores. Direct trust is calculated based on 

the historical interactions between nodes. It considers 

various factors such as packet delivery success, 

acknowledgment reception, and consistency in 

communication. The formula for calculating direct 

trust DTij from node i to node j is as follows: 

𝐷𝑇𝑖𝑗 =
Number of Successful Interactions

Total Interactions
 

This metric reflects how reliably node j has performed 

in past interactions with node i. 

 

Indirect Trust Computation 

Indirect trust is derived from recommendations 

provided by neighboring nodes. Each 

recommendation is weighted by the trustworthiness of 

the recommending node, ensuring that only reliable 

recommendations influence the trust score. The 

formula for calculating indirect trust ITij from node i 

to node j is: 

𝐼𝑇𝑖𝑗 =
∑ 𝑇𝑖𝑘.𝐷𝑇𝑘𝑗𝑘∈𝑁𝑖

∑ 𝑇𝑖𝑘𝑘∈𝑁𝑖

 

Data Collection 

Trust Computation Module 

Calculate Direct Trust Calculate Indirect 

Trust 

Calculate Direct Trust 

Update Trust Scores 
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Where, Ni is the set of neighbors of node i. Tik is the 

trust score of node i towards neighbor k. DTkj is the 

direct trust of neighbor k towards node j. 

 

Combined Trust Score 

The overall trust score Tij of node i towards node j is a 

weighted combination of direct and indirect trust 

scores: 

𝑇𝑖𝑗 = 𝛼. 𝐷𝑇𝑖𝑗 + (1 − 𝛼). 𝐼𝑇𝑖𝑗  

Where α is a weighting factor that balances the 

influence of direct and indirect trust. 

By incorporating both direct and indirect trust metrics, 

the Trust Computation Module ensures a robust and 

comprehensive assessment of node trustworthiness, 

enhancing the overall security and reliability of the 

IoT network. 

 

3.2. Anomaly Detection Module 

The Anomaly Detection Module is a critical 

component of the proposed trust-based model, 

designed to identify suspicious activities and potential 

attacks within the IoT networks. By leveraging various 

machine learning algorithms, this module can detect 

anomalies in node behavior, which can indicate 

security threats such as RPL attacks. The detected 

anomalies are then used to update the trust scores and 

inform routing decisions. The Anomaly Detection 

Module employs a diverse set of machine learning 

algorithms to analyze network data and detect 

anomalies. Each algorithm has its strengths and is 

suited for different aspects of anomaly detection: 

 

3.2.1. Random Forest:  

The integration of Random Forest into the 

enhancement of trust-based secure routing in IoT 

networks aims to address the challenges of trust 

evaluation, anomaly detection, and adaptive routing in 

IoT environments. This integration enables the 

development of a robust and adaptive routing system 

capable of dynamically adjusting to changing network 

conditions and mitigating security threats. In this 

section, we present a comprehensive framework for 

integrating Random Forest into trust-based secure 

routing in IoT [20][21]. We discuss the technical 

details of each step, including feature selection, 

training data collection, model training, trust 

evaluation, adaptation, and integration with routing 

policies. Furthermore, we provide real-world 

examples and case studies to demonstrate the 

effectiveness and practicality of the proposed 

approach. This contributes to the advancement of 

trust-based secure routing systems in IoT by 

harnessing the power of machine learning techniques. 

By integrating Random Forest into IoT routing 

architectures, we aim to enhance the security, 

reliability, and resilience of IoT communication, 

thereby enabling the widespread adoption of IoT 

technologies across various application domains. 

 

Step 1: Feature Selection and Extraction 

This step involves selecting and extracting relevant 

features from the routing environment to serve as input 

to the Random Forest algorithm. These features may 

include node reputation, communication reliability, 

security posture and historical behavior. For example, 

suppose we're evaluating the trustworthiness of 

routing paths in an IoT network. Features could 

include node reputation (based on past interactions), 

communication reliability (e.g., packet loss rate), 

security posture (e.g., encryption protocols used), and 

historical behavior (e.g., routing patterns). 

X=[x1, x2,..., xn] 

In this step, relevant features are selected and extracted 

from the routing environment to serve as input to the 

Random Forest algorithm. Features may include node 

attributes (e.g., reputation, resource availability), 

communication metrics (e.g., latency, packet loss 

rate), and security indicators (e.g., encryption 

protocols used).  X represents the feature vector 

containing n features. 

 

Step 2: Training Data Collection 

Training data consists of labeled examples, where 

each example includes a feature vector and its 

corresponding label. Labels indicate the desired 

output, such as the correctness of routing decisions or 

the presence of security threats. For example, we 

collect training data by observing routing decisions in 

the IoT network over time. Each example includes 

features such as node reputation, communication 

reliability, and security posture, along with labels 

indicating whether the routing decision was successful 

or if a security threat was detected. 

 D={(X1,Y1),(X2,Y2),...,(Xm,Ym)} 

Training data D consists of labeled examples, where 

each example Xi, Yi consists of a feature vector Xi and 

its corresponding label Yi. Labels indicate the desired 
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output or classification, such as the correctness of 

routing decisions or the presence of security threats. 

 

Step 3: Model Training 

In this step, the Random Forest model is trained using 

the labeled training data. The model constructs an 

ensemble of decision trees based on random subsets of 

the training data. For example, we train the Random 

Forest model using the collected training data. The 

model learns to predict the trustworthiness of routing 

paths based on the observed features and labels. Each 

decision tree in the ensemble independently learns 

patterns in the data, contributing to the overall 

predictive power of the model. 

RF=Train (D)  

The Random Forest model (RF) is trained using the 

training data D. The training process constructs an 

ensemble of decision trees based on random subsets of 

the training data. Each decision tree independently 

makes predictions, and the final output is determined 

by aggregating the predictions of all trees. 

 

Step 4: Trust Evaluation and Routing Decision 

Given a feature vector representing the current routing 

environment, the trained Random Forest model 

predicts the trustworthiness of routing paths or the 

likelihood of security threats. The prediction is based 

on the learned patterns in the training data and the 

input features. For example, suppose we want to 

evaluate the trustworthiness of a routing path in real-

time. We input the relevant features (e.g., node 

reputation, communication reliability) into the trained 

Random Forest model. The model predicts whether 

the routing path is trustworthy or if there's a potential 

security threat. 

Y^=RF(X)  

Given a feature vector X representing the current 

routing environment, the trained Random Forest 

model (RF) predicts the output Y^, which may 

indicate the trustworthiness of routing paths or the 

likelihood of security threats. The prediction is based 

on the learned patterns in the training data and the 

input features. 

 

Step 5: Adaptation and Learning 

To adapt to changing network conditions and new 

data, the Random Forest model is periodically 

retrained using updated training data. This allows the 

model to learn from recent experiences and improve 

its predictive performance over time. For example, as 

new routing decisions and security events occur in the 

IoT network, we collect updated training data. We 

then retrain the Random Forest model using this new 

data, incorporating the latest observations and labels. 

This allows the model to adapt to evolving network 

dynamics and improve its accuracy. 

RFupdated=Retrain (D′) 

To adapt the Random Forest model to changing 

network conditions and new data, the model is 

periodically retrained using updated training data \( D' 

\). This retraining process incorporates new 

observations and labels, allowing the model to learn 

from recent experiences and improve its predictive 

performance over time. 

 

Step 6: Integration with Trust-Based Routing Policies 

The output from the Random Forest model is 

integrated with trust-based routing policies through a 

decision function. This function maps the model 

predictions to routing decisions, prioritizing trusted 

routes or avoiding untrustworthy nodes based on the 

predicted trustworthiness or security risk levels. For 

example, based on the prediction from the Random 

Forest model, we apply trust-based routing policies to 

make routing decisions. For example, if the model 

predicts a high level of trust for a routing path, we 

prioritize using that path for data transmission. 

Conversely, if a potential security threat is detected, 

we avoid using routes associated with that threat. 

Routing Decision=g(Y^) 

The output Y^ from the Random Forest model is 

integrated with trust-based routing policies through a 

decision function g . This function maps the model 

predictions to routing decisions, prioritizing trusted 

routes or avoiding untrustworthy nodes based on the 

predicted trustworthiness or security risk levels. 

Anomaly Detection in RPL Attacks Using Random 

Forest 

In the context of trust-based secure routing, Random 

Forest can also be leveraged to detect anomalies 

indicative of RPL attacks. Here's how the anomaly 

detection process integrates with the overall secure 

routing framework: 

 

Feature Extraction: Features specific to RPL 

anomalies (e.g., sudden changes in route paths, 

increased packet loss) are extracted and included in the 

feature vector X. 
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• Correlation Matrix: Calculate the correlation 

matrix to select relevant features. 

✓ R= cov(X) / σxσy 

Where cov(X) is the covariance matrix, σx  and σy 

are the standard deviations of the variables. 

• Feature Importance (from Random Forest): 

Use feature importance scores from Random 

Forest. 

 
o Where Δit  is the importance of feature j 

in tree t, and NT is the number of trees. 

• Training Data Collection: Collect labeled data 

that includes both normal and anomalous RPL 

behavior to train the model. 

• Model Training: Train the Random Forest model 

on this comprehensive dataset to distinguish 

between normal and anomalous behaviors. 

• Anomaly Detection: During real-time routing, use 

the trained model to predict the likelihood of an 

RPL attack based on the input features.If an 

anomaly is detected, adjust the routing decision 

accordingly. 

Anomaly Score=RFanomaly(X) 

If the anomaly score exceeds a certain 

threshold, it indicates a potential RPL attack, 

prompting the routing algorithm to avoid the 

suspicious route. 

By integrating Random Forest for both trust evaluation 

and anomaly detection, the IoT network can achieve 

robust security against RPL attacks while ensuring 

efficient and trustworthy routing decisions. 

 

3.2.2. Support Vector Machine (SVM) 

 Support Vector Machine (SVM) [22][23], a powerful 

classification algorithm, offers a promising approach 

to enhancing trust-based routing by leveraging its 

ability to classify data into different categories based 

on learned patterns. By integrating SVM into the 

routing architecture, IoT networks can benefit from 

sophisticated trust evaluation mechanisms that adapt 

to changing network dynamics and security threats. 

This integration aims to address the challenges of trust 

evaluation, anomaly detection, and adaptive routing in 

IoT environments, enabling the development of a 

robust and adaptive routing system capable of 

dynamically adjusting to changing network conditions 

and mitigating security threats.  In this paper, we 

present a comprehensive framework for integrating 

SVM into trust-based secure routing in IoT. We 

discuss the technical details of each step, including 

feature selection, training data collection, model 

training, trust evaluation, adaptation, and integration 

with routing policies. By leveraging SVM's 

classification capabilities, our proposed approach aims 

to enhance the security, reliability, and resilience of 

IoT communication, ultimately contributing to the 

advancement of trust-based secure routing systems in 

IoT networks. Steps of Integrating Support Vector 

Machine (SVM) into Enhancing Trust-Based Secure 

Routing in IoT 

 

Step 1: Feature Selection and Extraction 

This step involves selecting and extracting relevant 

features from the routing environment to serve as input 

to the SVM algorithm. These features may include 

node reputation, communication reliability, security 

posture, and historical behavior. For example, features 

could include the number of successful data 

transmissions, the frequency of routing table updates, 

the response time of neighboring nodes, and the level 

of encryption used for communication. 

X=[x1, x2,..., xn] 

Similar to the Random Forest integration, this step 

involves selecting and extracting relevant features 

from the routing environment to serve as input to the 

SVM algorithm. Features may include node 

reputation, communication reliability, security 

posture, and historical behavior. 

 

Step 2: Training Data Collection 

Training data consists of labeled examples, where 

each example includes a feature vector and its 

corresponding label. Labels indicate the desired 

output, such as whether a routing path is trustworthy 

or if a security threat is present. For example, 

collecting training data involves observing routing 

decisions in the IoT network over time. Each example 

includes features such as node reputation, 

communication reliability and security posture, along 

with labels indicating whether the routing decision 

was successful or if a security threat was detected. 

D={(X1,Y1),(X2,Y2),...,(Xm,Ym)} 

Training data consists of labeled examples, where 

each example includes a feature vector and its 

corresponding label. Labels indicate the desired 
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output, such as the correctness of routing decisions or 

the presence of security threats. 

Step 3: Model Training 

In this step, the SVM model is trained using the 

labeled training data. The model learns to classify the 

feature vectors into different classes (e.g., trustworthy 

vs. untrustworthy routes) by finding the hyper plane 

that maximally separates the classes.  

SVM=Train (D) 

For example, Training the SVM model involves 

feeding the labeled training examples into the SVM 

algorithm. The algorithm learns to classify the feature 

vectors into different classes based on the observed 

patterns in the training data. 

 

Step 4: Trust Evaluation and Routing Decision 

Given a feature vector representing the current routing 

environment, the trained SVM model predicts the 

class label for the input. The prediction is based on the 

learned patterns in the training data and the input 

features. For example, suppose we want to evaluate 

the trustworthiness of a routing path in real-time. We 

input the relevant features (e.g., node reputation, 

communication reliability) into the trained SVM 

model. The model predicts whether the routing path is 

trustworthy or if there's a potential security threat. 

Y^=SVM(X) 

Given a feature vector representing the current routing 

environment, the trained SVM model predicts the 

class label Y^ for the input. The prediction is based on 

the learned patterns in the training data and the input 

features. 

Step 5: Adaptation and Learning 

Similar to Random Forest, the SVM model can be 

periodically retrained using updated training data to 

adapt to changing network conditions and improve its 

predictive performance over time. For example, as 

new routing decisions and security events occur in the 

IoT network, we collect updated training data. We 

then retrain the SVM model using this new data, 

incorporating the latest observations and labels. This 

allows the model to adapt to evolving network 

dynamics and improve its accuracy. 

SVMupdated=Retrain (D′) 

Similar to Random Forest, the SVM model can be 

periodically retrained using updated training data to 

adapt to changing network conditions and improve its 

predictive performance over time. 

 

Step 6: Integration with Trust-Based Routing Policies 

The output from the SVM model is integrated with 

trust-based routing policies through a decision 

function. This function maps the model predictions to 

routing decisions, prioritizing trusted routes or 

avoiding untrustworthy nodes based on the predicted 

class labels. For example, based on the prediction from 

the SVM model, we apply trust-based routing policies 

to make routing decisions. For example, if the model 

predicts a high level of trust for a routing path, we 

prioritize using that path for data transmission. 

Conversely, if a potential security threat is detected, 

we avoid using routes associated with that threat. 

Routing Decision=g(Y^) 

The output from the SVM model is integrated with 

trust-based routing policies through a decision 

function. This function maps the model predictions to 

routing decisions, prioritizing trusted routes or 

avoiding untrustworthy nodes based on the predicted 

class labels. 

 

Anomaly Detection in RPL Attacks Using SVM 

Feature Selection and Extraction for Anomaly 

Detection: Relevant features specific to RPL 

anomalies (e.g., sudden changes in route paths, 

increased packet loss) are extracted and included in the 

feature vector X. 

Training Data Collection for Anomaly Detection: 

Collect labeled data that includes both normal and 

anomalous RPL behavior to train the model. 

Model Training for Anomaly Detection: Train the 

SVM model on this comprehensive dataset to 

distinguish between normal and anomalous behaviors. 

Anomaly Detection: During real-time routing, use the 

trained model to predict the likelihood of an RPL 

attack based on the input features. If an anomaly is 

detected, adjust the routing decision accordingly. 

Anomaly Score = SVManomaly(X) 

If the anomaly score exceeds a certain threshold, it 

indicates a potential RPL attack, prompting the routing 

algorithm to avoid the suspicious route. 

By integrating Support Vector Machine (SVM) for 

both trust evaluation and anomaly detection, the IoT 

network can achieve robust security against RPL 

attacks while ensuring efficient and trustworthy 

routing decisions. This approach leverages SVM's 

classification capabilities to assess trustworthiness and 

make informed routing decisions in dynamic IoT 

environments. 
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3.2.3. Naive Bayes 

The integration of machine learning techniques, such 

as the Naive Bayes classification algorithm, into trust-

based secure routing systems represents a promising 

approach to fortify the security of Internet of Things 

(IoT) networks. Traditional routing protocols like RPL 

often struggle to adequately address security concerns 

due to evolving threats and vulnerabilities. By 

leveraging probabilistic reasoning and historical data, 

Naive Bayes classifiers [24][25] offer a means to 

assess the trustworthiness of neighboring nodes and 

make informed routing decisions. This paper explores 

the integration of Naive Bayes algorithms into trust-

based routing mechanisms, aiming to enhance the 

resilience and security of IoT networks against 

malicious attacks and unauthorized access. Through a 

combination of technical analysis and practical 

examples, we demonstrate the potential of this 

approach to mitigate security risks and ensure the 

reliable operation of IoT deployments. 

Step 1. Trustworthiness Estimation:  

This step involves estimating the trustworthiness of 

neighboring nodes based on observed features such as 

communication history, packet delivery ratio, and 

energy consumption. Naive Bayes is used to calculate 

the posterior probability of each node being trusted or 

untrusted given its observed features. Example: 

Suppose we have a set of features for each neighboring 

node, including the number of packets successfully 

delivered, the number of packets dropped, and the 

energy level of the node. By analyzing historical data, 

we can calculate the conditional probabilities of these 

features given the class labels (trusted or untrusted). 

Naive Bayes then combines these probabilities to 

estimate the trustworthiness of each node. 

▪ Define a set of features that capture the behavior 

and characteristics of neighboring nodes relevant 

to trustworthiness, such as communication 

history, packet delivery ratio, energy 

consumption, and proximity. 

▪ For each feature Xi, calculate the conditional 

probability P(Xi | Cj), where Cj represents the 

class label (trusted or untrusted) of the node. 

▪ Apply Bayes' theorem to estimate the posterior 

probability P(Cj | X1,X2,...,Xn) of each 

neighboring node being trusted or untrusted based 

on the observed features. 

P(Cj|X1,X2,...,Xn)= P(X1|Cj)×P(X2|Cj)×...×P(Xn|Cj

)×P(Cj)/ P(X1)×P(X2)×...×P(Xn) 

Step 2. Trust-based Routing Decision:  

In this step, the trustworthiness estimation is 

integrated into the routing decision process to select 

trusted routes for data transmission. A routing metric 

is defined that combines traditional metrics (e.g., hop 

count) with the estimated trustworthiness of 

neighboring nodes. The route with the highest 

trustworthiness score is chosen for data forwarding. 

Example: Let's say we have two candidate routes for 

transmitting data: Route A has a lower hop count but 

traverses nodes with lower trustworthiness scores, 

while Route B has a slightly higher hop count but 

traverses nodes with higher trustworthiness scores. By 

applying the trust-based routing metric formula, we 

can weigh the importance of hop count against the 

trustworthiness of nodes to make an informed routing 

decision. 

▪ Incorporate the trustworthiness estimation into 

the routing decision process to select trusted 

routes for data transmission. 

▪ Define a routing metric that combines traditional 

routing metrics (e.g., hop count, link quality) with 

the estimated trustworthiness of neighboring 

nodes. 

▪ Calculate the trust-based routing metric for each 

candidate route and select the route with the 

highest trustworthiness score for data forwarding. 

Trust based Routing Metric= α × 

Traditional Routing Metric + (1− α) × 

Trustworthiness score   

Where α is a weighting factor balancing the 

importance of traditional metrics and trustworthiness. 

 

Step 3. Naive Bayes Training and Classification:  

Historical data collected from IoT network operations 

is used to train the Naive Bayes classifier. This data is 

split into training and testing sets, and the classifier 

learns the conditional probability distributions of 

features given the class labels (trusted or untrusted). 

During classification, the trained classifier estimates 

the trustworthiness of neighboring nodes based on 

observed features. Example: Consider a dataset 

containing information about past interactions 

between nodes in the IoT network, including features 

such as packet delivery ratio, energy consumption, and 

communication patterns. By training the Naive Bayes 

classifier on this dataset, it learns to distinguish 

between trusted and untrusted nodes based on their 

observed behavior. During classification, the classifier 
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applies this knowledge to assign trustworthiness labels 

to new instances based on their features. 

▪ Utilize historical data collected from IoT network 

operations to train the Naive Bayes classifier. 

▪ Split the dataset into training and testing sets, 

ensuring representative samples of trusted and 

untrusted nodes. 

▪ Train the Naive Bayes classifier using the training 

data to learn the conditional probability 

distributions of features given the class labels. 

▪ During classification, apply the trained classifier 

to estimate the trustworthiness of neighboring 

nodes based on observed features and assign them 

appropriate class labels (trusted or untrusted). 

P(Cj|X1,X2,...,Xn)=P(X1|Cj)×P(X2|Cj)×...×P(Xn|Cj

)×P(Cj) / P(X1)×P(X2)×...×P(Xn) 

 

Step 4. Adaptive Learning and Updating:  

This step involves continuously monitoring the 

performance of the trust-based routing system and 

updating the Naive Bayes classifier to adapt to 

changing network conditions and emerging threats. 

Feedback mechanisms are integrated to incorporate 

real-time observations and user feedback into the 

training process, enhancing the accuracy and 

robustness of the trustworthiness estimation model 

over time. Example: As the IoT network evolves and 

new nodes join or leave the network, the 

trustworthiness of nodes may change dynamically. By 

periodically updating the Naive Bayes classifier with 

fresh data and feedback from network operations, we 

can ensure that the trustworthiness estimation model 

remains accurate and reflective of the current network 

state. This adaptive learning process allows the routing 

system to adapt to evolving threats and maintain the 

security and reliability of the IoT network. 

▪ Continuously monitor the performance of the 

trust-based routing system and update the Naive 

Bayes classifier periodically to adapt to changing 

network conditions and emerging threats. 

▪ Integrate feedback mechanisms to incorporate 

real-time observations and user feedback into the 

training process, enhancing the accuracy and 

robustness of the trustworthiness estimation 

model over time. 

 

3.2.4. K-Nearest Neighbors (KNN) 

Integrating K-Nearest Neighbors (KNN) [26][27] into 

trust-based secure routing in IoT represents a strategic 

fusion of machine learning with network security 

principles. In the dynamic landscape of IoT, where 

nodes communicate across diverse environments, 

ensuring the trustworthiness of data routing becomes 

paramount. By leveraging KNN, we can assess the 

reliability of neighboring nodes based on historical 

behavior patterns, thus fortifying the network against 

potential threats and vulnerabilities [17] [18]. This 

explores how KNN algorithms can be seamlessly 

integrated into trust-based routing systems, offering a 

robust framework to enhance the security and 

resilience of IoT networks. Through a concise yet 

comprehensive analysis, we uncover the potential of 

KNN in bolster (boost) trust-based routing 

mechanisms, ultimately paving the way for more 

secure and efficient IoT deployments. 

Here's an explanation and example for each step: 

Step 1. Trustworthiness Estimation using KNN: 

KNN can be used to estimate the trustworthiness of 

neighboring nodes based on observed features such as 

communication history, packet delivery ratio, and 

energy consumption. By analyzing the features of the 

nearest neighbors, we can infer the trustworthiness of 

a node in the network.  Example: Suppose we have 

historical data on node behavior in the IoT network, 

including features such as packet delivery ratio, 

uptime and communication frequency. Using KNN, 

we can find the K nearest neighbors of a node based 

on these features. If the majority of the nearest 

neighbors are known to be trustworthy, we can infer 

that the node in question is also likely to be 

trustworthy. 

▪ Use KNN to estimate the trustworthiness of 

neighboring nodes based on observed features 

such as communication history, packet delivery 

ratio, and energy consumption. The 

trustworthiness of a node is determined by the 

class label assigned to it, where a "trusted" node 

is one that is likely to behave reliably and 

responsibly. 

▪ D(xi,xj) represents the distance metric between 

nodes xi and xj. 

▪ yi represents the class label of node xi. 

▪ k is the number of nearest neighbors to consider. 

▪ For classification, assign the majority class label 

among the k nearest neighbors to the node being 

evaluated. 
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Step 2. Trust-based Routing Decision: 

In this step, the trustworthiness estimation obtained 

from KNN is integrated into the routing decision 

process. Routes through nodes with higher 

trustworthiness scores are prioritized for data 

transmission to enhance security and reliability. 

Example: Consider a scenario where a node in the 

IoT network needs to forward data packets to a 

destination node. Instead of blindly choosing the 

shortest path or the path with the fewest hops, the 

routing algorithm considers the trustworthiness 

scores of neighboring nodes obtained from KNN. It 

selects the route with the highest average 

trustworthiness score among its neighbors, thereby 

minimizing the risk of routing through potentially 

malicious nodes. 

▪ Integrate the trustworthiness estimation into the 

routing decision process. Consider the 

trustworthiness of neighboring nodes as a factor 

when selecting the optimal route for data 

transmission. Nodes with higher trustworthiness 

scores are prioritized in the routing process. 

• Define a trust-based routing metric that 

combines traditional routing metrics (e.g., hop 

count, link quality) with the estimated 

trustworthiness of neighboring nodes. 

• Assign weights to each metric based on their 

relative importance. 

• Calculate the trust-based routing metric for each 

candidate route and select the route with the 

highest trustworthiness score for data 

forwarding. 

 

Step 3. KNN Training and Classification:  

The KNN algorithm is trained using historical data to 

learn the relationship between features and 

trustworthiness labels (trusted or untrusted). During 

classification, the trained model is used to predict the 

trustworthiness of neighboring nodes based on their 

observed features.  Example: Suppose we have a 

dataset containing information about past 

interactions between nodes in the IoT network, 

including features such as communication patterns, 

packet delivery ratios, and energy consumption. We 

split this dataset into training and testing sets and 

train the KNN classifier using the training data. When 

a new node joins the network, its features are input 

into the trained KNN model to predict its 

trustworthiness label (trusted or untrusted) based on 

its similarity to past instances. 

▪ Train the KNN classifier using historical data 

collected from IoT network operations. The 

classifier learns the relationship between 

features and trustworthiness labels (trusted or 

untrusted). During classification, apply the 

trained classifier to estimate the trustworthiness 

of neighboring nodes based on observed 

features. 

a. Train the KNN classifier using the training 

dataset, where each instance represents a 

node with its observed features and 

corresponding trustworthiness label. 

b. Use the Euclidean distance metric or other 

appropriate distance metrics to calculate the 

similarity between nodes. 

c. During classification, query the KNN 

classifier with the features of a node to 

predict its trustworthiness label. 

 

Step 4. Adaptive Learning and Updating: 

To maintain the accuracy and relevance of the 

trustworthiness estimation model, it needs to be 

continuously updated based on real-time 

observations and user feedback. This involves 

periodically retraining the KNN classifier with new 

data and incorporating feedback mechanisms to adapt 

to changing network conditions. Example: As the IoT 

network evolves and new nodes join or leave the 

network, the trustworthiness of nodes may change 

dynamically. Therefore, the KNN model needs to be 

periodically retrained with fresh data to reflect the 

current state of the network. Additionally, feedback 

mechanisms can be implemented to incorporate real-

time observations and user feedback into the training 

process, enabling the model to adapt to emerging 

threats and maintain its accuracy over time. 

 

▪ Continuously monitor the performance of the 

trust-based routing system and update the KNN 

classifier to adapt to changing network conditions 

and emerging threats. Incorporate real-time 

observations and user feedback into the training 

process to improve the accuracy and robustness of 

trustworthiness estimation. 

✓ Periodically update the KNN classifier with new 

training data and feedback from network 

operations. 
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✓ Implement mechanisms to handle concept drift 

and maintain model freshness in dynamic IoT 

environments. 

✓ Use techniques such as online learning and 

incremental updates to adapt the KNN classifier 

to evolving network conditions over time. 

By integrating KNN into the trust-based secure routing 

system in IoT, we can leverage its ability to analyze 

past behavior and classify nodes based on their 

similarity to historical instances. This approach 

enhances the security and resilience of IoT networks 

by prioritizing routes through trustworthy nodes and 

mitigating the risk of routing attacks and unauthorized 

access. 

 

3.2.5. Neural Networks  

Neural Networks (NNs) are a powerful class of 

machine learning algorithms capable of capturing 

complex patterns in data. By integrating NNs into 

trust-based secure routing, IoT networks can achieve 

advanced trust evaluation, anomaly detection, and 

adaptive routing. This integration addresses the 

dynamic and heterogeneous nature of IoT 

environments, enhancing security and reliability 

against evolving threats. Steps for Integrating Neural 

Networks for Trust-Based Secure Routing in IoT, 

Step 1: Feature Selection and Extraction 

This step involves selecting and extracting relevant 

features from the routing environment to serve as input 

to the neural network. Features may include node 

reputation, communication reliability, security 

posture, and historical behavior. For example, features 

could include the number of successful data 

transmissions, the frequency of routing table updates, 

the response time of neighboring nodes, and the level 

of encryption used for communication. 

X = x1, x2, …. xn 

 

Step 2: Training Data Collection 

Training data consists of labeled examples, where 

each example includes a feature vector and its 

corresponding label. Labels indicate the desired 

output, such as whether a routing path is trustworthy 

or if a security threat is present. For example, 

collecting training data involves observing routing 

decisions in the IoT network over time. Each example 

includes features such as node reputation, 

communication reliability, and security posture, along 

with labels indicating whether the routing decision 

was successful or if a security threat was detected. 

D={(X1,Y1),(X2,Y2),...,(Xm,Ym)} 

 

Step 3: Model Training 

In this step, the neural network is trained using the 

labeled training data. The model learns to classify the 

feature vectors into different classes (e.g., trustworthy 

vs. untrustworthy routes) by adjusting the weights and 

biases of its neurons based on the training data. For 

example, Training the neural network involves feeding 

the labeled training examples into the network. The 

algorithm learns to classify the feature vectors into 

different classes based on the observed patterns in the 

training data. 

NN = Train (D) 

 

Step 4: Trust Evaluation and Routing Decision 

Given a feature vector representing the current routing 

environment, the trained neural network predicts the 

class label for the input. The prediction is based on the 

learned patterns in the training data and the input 

features. For example, suppose we want to evaluate 

the trustworthiness of a routing path in real-time. We 

input the relevant features (e.g., node reputation, 

communication reliability) into the trained neural 

network. The model predicts whether the routing path 

is trustworthy or if there's a potential security threat. 

Y^ = NN(X) 

 

Step 5: Adaptation and Learning 

The neural network can be periodically retrained using 

updated training data to adapt to changing network 

conditions and improve its predictive performance 

over time. For example, as new routing decisions and 

security events occur in the IoT network, we collect 

updated training data. We then retrain the neural 

network using this new data, incorporating the latest 

observations and labels. This allows the model to 

adapt to evolving network dynamics and improve its 

accuracy. 

NNupdated =  Retrain(D') 

 

Step 6: Integration with Trust-Based Routing Policies 

The output from the neural network is integrated with 

trust-based routing policies through a decision 

function. This function maps the model predictions to 

routing decisions, prioritizing trusted routes or 

avoiding untrustworthy nodes based on the predicted 
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class labels. For example, based on the prediction from 

the neural network, we apply trust-based routing 

policies to make routing decisions. For example, if the 

model predicts a high level of trust for a routing path, 

we prioritize using that path for data transmission. 

Conversely, if a potential security threat is detected, 

we avoid using routes associated with that threat. 

Routing Decision = g(Y) 

Anomaly Detection in RPL Attacks Using Neural 

Networks 

Feature Selection and Extraction for Anomaly 

Detection: Relevant features specific to RPL 

anomalies (e.g., sudden changes in route paths, 

increased packet loss) are extracted and included in the 

feature vector X. 

Training Data Collection for Anomaly Detection: 

Collect labeled data that includes both normal and 

anomalous RPL behavior to train the model. 

Model Training for Anomaly Detection: Train the 

neural network on this comprehensive dataset to 

distinguish between normal and anomalous behaviors. 

Anomaly Detection: During real-time routing, use the 

trained model to predict the likelihood of an RPL 

attack based on the input features. If an anomaly is 

detected, adjust the routing decision accordingly. 

Anomaly Score = NNanomaly(X) 

If the anomaly score exceeds a certain threshold, it 

indicates a potential RPL attack, prompting the routing 

algorithm to avoid the suspicious route. By integrating 

Neural Networks for both trust evaluation and 

anomaly detection, the IoT network can achieve robust 

security against RPL attacks while ensuring efficient 

and trustworthy routing decisions. This approach 

leverages neural networks' deep learning capabilities 

to assess trustworthiness and make informed routing 

decisions in dynamic IoT environments. 

 

3.3. Routing Decision Module 

The Routing Decision Module is a vital part of the 

proposed trust-based model for secure routing in IoT 

networks. It utilizes the trust scores and anomaly 

detection results to make informed routing decisions, 

ensuring that data packets are transmitted through 

trustworthy and reliable nodes, thus avoiding nodes 

identified as malicious or suspicious. The primary 

objective of the Routing Decision Module is to 

enhance the security and efficiency of the IoT network 

by leveraging trust scores and anomaly detection 

outcomes. The module dynamically selects the most 

secure and efficient routing paths based on the latest 

trust metrics and anomaly detection results. Key 

Objectives are, 

• Secure Routing: Prioritize routes through nodes 

with high trust scores and avoid nodes with low 

trust scores or identified anomalies. 

• Energy Efficiency: Consider the energy levels of 

nodes to prolong the network's operational 

lifetime. 

• Throughput Optimization: Ensure high data 

throughput by selecting optimal routing paths. 

• Minimizing Routing Overhead: Reduce the 

control message overhead to maintain network 

efficiency. 

• Packet Loss Reduction: Minimize packet loss by 

avoiding unreliable or compromised nodes. 

 

3.3.1. Secure Routing Path Selection 

The Routing Decision Module uses the trust scores 

provided by the Trust Computation Module to select 

secure routing paths. Nodes with higher trust scores 

are preferred in the routing decisions, while nodes with 

lower trust scores or detected anomalies are avoided. 

Routing Algorithm: 

• Trust Score Evaluation: Evaluate the trust scores 

of all neighboring nodes. 

• Path Selection Criteria: Consider multiple 

criteria such as trust score, energy level, and 

historical performance. 

• Optimal Path Selection: Select the path that 

maximizes security and efficiency, using a 

weighted combination of the criteria. 
 

3.3.2. Real-Time Updates 

The Routing Decision Module continuously updates 

the routing paths based on real-time data. As trust 

scores and anomaly detection results are dynamically 

updated, the routing decisions are adjusted 

accordingly to respond to emerging threats and 

changing network conditions. 

Dynamic Adjustments: 

✓ Trust Score Updates: Adjust routing decisions 

based on the latest trust scores from the Trust 

Computation Module. 

✓ Anomaly Alerts: Immediately avoid nodes 

flagged by the Anomaly Detection Module. 

✓ Energy Levels: Monitor and factor in the 

remaining energy levels of nodes to prevent 

network partitioning. 
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3.4 Data Collection and Preprocessing Module 

The Data Collection and Preprocessing Module are 

foundational to the proposed trust-based model for 

secure routing in IoT networks. It is responsible for 

gathering data from the network, cleaning and 

processing this data, and then extracting meaningful 

features that are used by other modules, such as Trust 

Computation, Anomaly Detection and Routing 

Decision Modules. 
 

3.4.1. Data Collection 

The Data Collection process involves gathering 

various types of data from IoT nodes and network 

interactions. This data includes, but is not limited to, 

packet delivery records, acknowledgment receptions, 

energy levels, transmission delays and interaction 

patterns. The data is collected continuously and in 

real-time to ensure up-to-date information for 

decision-making. The Key Data Types are, 

✓ Packet Delivery Records: Information on 

successful and failed packet transmissions. 

✓ Acknowledgment Receptions: Records of 

acknowledgments received from destination 

nodes. 

✓ Energy Levels: Current energy levels of the IoT 

nodes. 

✓ Transmission Delays: Time delays observed 

during data transmission. 

✓ Interaction Patterns: Historical data on node 

interactions. 
 

3.4.2 Data Preprocessing 

Once the data is collected, it must be preprocessed to 

ensure it is suitable for analysis by the Trust 

Computation and Anomaly Detection Modules. 

Preprocessing steps include data cleaning, feature 

extraction and normalization. 

- Data Cleaning: 

o Noise Removal: Eliminate irrelevant or 

erroneous data points that could distort 

analysis. 

o Missing Values Handling: Impute or remove 

missing values to maintain dataset integrity. 

- Feature Extraction: 

o Relevant Feature Identification: Identify 

features that are indicative of node behavior 

and network performance. 

o Feature Creation: Derive new features from 

existing data that can help in anomaly 

detection and trust computation. 

- Data Normalization: 

o Scaling: Scale features to a similar range to 

ensure uniformity and improve the 

performance of machine learning algorithms. 

o Encoding: Encode categorical variables into 

numerical formats if needed. 

The trust scores calculated by the Trust Computation 

Module are continuously updated based on the outputs 

of the Anomaly Detection Module. Nodes identified as 

malicious or showing anomalous behavior are 

assigned lower trust scores. The Routing Decision 

Module uses these trust scores to avoid compromised 

nodes and ensure secure routing paths. By combining 

trust computation with machine learning-based 

anomaly detection, the proposed model enhances the 

security and reliability of routing in IoT networks 

against RPL attacks. The integration of multiple 

machine learning algorithms allows for robust and 

adaptive detection of various attack vectors, ensuring 

comprehensive protection. 
 

IV.RESULTS AND DISCUSSIONS 
 

4.1. Experimental Setup 

The simulation experiments for evaluating the 

proposed trust-based secure routing model in IoT were 

conducted using the Network Simulator 3 (NS3). NS3 

is a discrete-event network simulator highly suitable 

for simulating complex network behaviors and 

performance metrics in IoT environments. The 

simulation setup includes a variety of parameters to 

model the IoT network and evaluate the performance 

of the proposed model under different conditions. The 

parameters used in the simulation are detailed in the 

table 1 below: 

Table 1: Simulation Environment 

Parameter Values 

Coverage area 800m × 800m 

Simulation time 450 sec 

Number of nodes 50, 100,150,200 and 250 

Traffic type UDP-CBR 

Transmission range 400m 

Packet size 2KB 

Maximum speed 25 m/s 

Mobility model Random Waypoint 
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The simulated network covers an area of 800 meters 

by 800 meters, providing ample(plenty) space to 

model the movement and interactions of nodes within 

a typical IoT deployment. Each simulation run lasts for 

500 seconds, ensuring sufficient time to observe the 

network's performance and the routing protocol's 

effectiveness under various conditions. The 

experiments were conducted with three different 

scenarios, varying the number of nodes to 50, 100, 

150,200 and 250. This helps in understanding the 

scalability and performance of the proposed routing 

model across different network densities. The traffic 

type used in the simulations is UDP with Constant Bit 

Rate (CBR) to model continuous data transmission, 

which is common in many IoT applications. Each node 

has a transmission range of 400 meters, ensuring that 

nodes can communicate with multiple neighbors and 

form a robust network topology. The packet size for 

data transmission is set to 2KB, representing typical 

data packets in IoT communications. Nodes in the 

simulation can move at a maximum speed of 25 meters 

per second, simulating the mobility scenarios that 

might be encountered in dynamic IoT environments. 

The Random Waypoint mobility model is used to 

simulate the movement of nodes within the network. 

This model helps in creating realistic scenarios where 

nodes move randomly, pause for a while, and then 

continue to move to another random location, thereby 

simulating typical IoT node mobility patterns. 

 

4.2 Experimental Results 

Node Reputation 

Node reputation is a metric used to evaluate the 

trustworthiness of nodes within the IoT networks. 

Each node is assigned a reputation score based on its 

past behavior, such as successful packet deliveries, 

adherence to routing protocols, and participation in 

network maintenance. Higher scores indicate more 

trustworthy nodes, while lower scores suggest 

potential malicious or unreliable behavior. 

𝑅𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑖 =
∑ 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑖,𝑡 𝑋 𝑊𝑒𝑖𝑔ℎ𝑡𝑡

𝑇
𝑡=1

∑  𝑊𝑒𝑖𝑔ℎ𝑡𝑡
𝑇
𝑡=1

 

Where, Reputationi is the Reputation Score of node i.  

Behaviori,t is the observed behavior metric of node i at 

time t.  Weightt is the weight assigned to the behavior 

at time t.  T is the total number of observations. 

 

 
Figure 3: Comparison of Node Reputation Vs 

Number of Nodes 

Random Forest can effectively leverage multiple trust 

metrics to predict node reputation accurately. Its 

ensemble nature allows it to capture complex patterns 

in the data. Computationally intensive, less 

interpretable compared to simpler models. SVM is 

effective for binary classification tasks. For node 

reputation, it can classify nodes into trusted and 

untrusted categories based on their features, but may 

struggle with multiclass scenarios. It requires careful 

tuning of hyper parameters, computationally 

expensive for large datasets and also not very 

interpretable. Naive Bayes can quickly estimate node 

reputation based on probabilistic inference, but its 

assumptions may limit its accuracy compared to more 

complex models. Assumes independence among 

features, which is often not the case in real-world data. 

KNN can classify node reputation based on the 

similarity to known examples, but its performance 

degrades with large or high-dimensional datasets. 

Computationally expensive during prediction, 

sensitive to the choice of k and distance metric, can 

struggle with high-dimensional data.  

Figure 3 shown, Neural Networks produce more 

trustworthy nodes compare with other algorithms.  

Neural Networks excel in capturing nonlinear 

relationships among features, making them well-

suited for predicting node reputation where complex 

interactions between trust metrics exist. It is also 

capable of learning complex patterns and 

representations, highly flexible, scalable to large 

datasets. Neural Networks can automatically learn 

feature representations from raw data, which can be 

particularly useful for identifying subtle indicators of 

trustworthiness that simpler models might miss. 
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Anomaly Detection Metrics 

Anomaly detection metrics evaluate the effectiveness 

of different algorithms in identifying unusual or 

malicious activities in the network. Metrics such as 

precision, recall, and F1-score are typically used to 

compare the performance of these algorithms. 

o Precision: Precision=TP / TP+FP 

o Recall: Recall=TP/ TP+FN 

o F1-Score: F1= 2× (Precision×Recall)/ 

(Precision+Recall) 

Where: 

• TP is the number of true positives. 

• FP is the number of false positives. 

• FN is the number of false negatives. 

 

SVM evaluates trust by finding the optimal hyper 

plane that separates trustworthy nodes from 

untrustworthy ones in a high-dimensional space. For 

detecting sinkhole and blackhole attacks, SVM 

classifies nodes based on communication reliability 

and packet loss. Selective forwarding attacks are 

identified by analyzing the deviation in packet 

delivery rates. For Sybil attacks, SVM detects 

inconsistencies in node identity patterns. SVM's high 

precision and effectiveness in high-dimensional 

spaces are advantageous, but it requires careful 

parameter tuning and is computationally expensive for 

large datasets. 

 

KNN evaluates trust by considering the behavior of k-

nearest neighbors in the feature space. Nodes involved 

in sinkhole and blackhole attacks can be identified by 

their anomalous packet reception and dropping 

patterns compared to their neighbors. For selective 

forwarding attacks, KNN detects deviations in packet 

forwarding behavior. Sybil attacks are identified by 

clustering similar identities and recognizing outliers. 

While KNN is simple and intuitive, it is 

computationally expensive during prediction and 

sensitive to noisy data. 

 

Naive Bayes calculates the posterior probability of a 

node being trustworthy based on observed features, 

assuming feature independence. For sinkhole and 

blackhole attacks, it assesses the likelihood of nodes 

dropping packets given their claimed metrics. 

Selective forwarding attacks are detected by the 

probability of inconsistent packet forwarding. Sybil 

attacks are identified by analyzing the probabilities of 

multiple identities originating from a single node. 

Naive Bayes is fast and interpretable but relies on the 

assumption of feature independence, which may not 

hold true in complex scenarios. Random Forest uses 

an ensemble of decision trees to evaluate the 

trustworthiness of nodes based on features such as 

packet delivery ratio, node reputation, and historical 

behavior. For each RPL attack, the Random Forest 

model aggregates decisions from multiple trees to 

classify nodes as trustworthy or untrustworthy. This 

ensemble approach helps reduce false positives and 

negatives, making it effective in identifying various 

anomalies. The robustness to over fitting and handling 

of large datasets make Random Forest a reliable 

choice, although it is computationally intensive. 

Neural Networks evaluate trust by learning complex 

patterns through multiple layers of neurons. For 

sinkhole and blackhole attacks, neural networks 

identify patterns of high traffic attraction followed by 

packet drops. Selective forwarding attacks are 

detected by recognizing non-linear patterns in packet 

delivery inconsistencies. Sybil attacks are identified 

through the network's ability to detect abnormal 

identity behaviors and communication patterns. 

Neural Networks provide the best results for anomaly 

detection due to their capability to capture complex 

relationships and subtle anomalies, although they 

require significant computational resources and 

training data. 

 

Random Forest is known for its high precision due to 

ensemble averaging, which reduces false positives 

However, while Random Forest is robust to over 

fitting and handles large datasets well, it is 

computationally intensive and less interpretable. 

SVMs are effective in high-dimensional spaces and 

robust against over fitting, but they demand careful 

parameter tuning and are computationally expensive 

for large datasets. Naive Bayes is simple, fast, and 

interpretable, working well with small datasets. 

However, its assumption of feature independence is 

rarely true in real-world scenarios. KNN is simple, 

intuitive, and requires no training phase, but it is 

computationally expensive during prediction and 

sensitive to noise and outliers.   
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Figure 4: Comparison of Precision, Recall, and F1-

Score Vs Node =150 

Figure 4 shown, Neural Networks produce higher 

percentage of Precision, Recall, and F1-Score 

compare with other algorithms. Neural Networks 

excel in learning and recognizing intricate patterns, 

handling high-dimensional data, and automatically 

refining features from raw data. They scale well with 

large datasets, ensuring that the model can learn from 

extensive historical data to improve anomaly detection 

accuracy. The F1-score is typically the highest among 

these models, effectively balancing precision and 

recall.  Furthermore, Neural Networks continuously 

learn and adapt to new data, maintaining high 

performance as network conditions and behavior 

patterns evolve. They are also robust to noisy data, 

which is common in IoT networks, ensuring reliable 

anomaly detection even in the presence of unreliable 

or fluctuating data. 

 

Computation Cost 

Computation cost refers to the amount of 

computational resources required to execute the trust-

based secure routing algorithms in an IoT network. 

This includes the processing time, memory usage, and 

energy consumption associated with executing the 

machine learning models and making routing 

decisions. Minimizing computation cost is crucial for 

IoT devices, which often have limited computational 

capabilities and power resources. Computation cost 

can be quantified in various ways, depending on the 

specific resources being measured. The general 

approach involves measuring the computational 

resources consumed during the execution of the 

algorithm. Common metrics include CPU cycles, 

memory usage, and energy consumption. 

• CPU Cycles:  Computation CostCPU= ∑i=1
n

CPU Cyclesi , Where, CPU Cyclesi is the number 

of CPU cycles consumed by the i-th operation in 

the algorithm. n is the total number of operations. 

• Memory Usage: Computation CostMemory= 

maxi=1
nMemory Usagei , Where,  Memory Usagei 

is the memory consumed by the i-th operation in 

the algorithm.n is the total number of operations. 

• Energy Consumption: Computation CostEnergy

=∑i=1
nEnergy Consumptioni , Where, 

Energy Consumptioni is the amount of energy 

consumed by the ith operation in the algorithm.n 

is the total number of operations. 

• Execution Time: Computation CostTime=∑i=1
n

Execution Timei , where, Execution Timei  is the 

time taken to complete the ith operation in the 

algorithm. n is the total number of operations. 

In practice, computation cost is often a combination of 

these factors. A comprehensive metric might look like 

this:  

Computation CostTotal=w1⋅Computation CostCPU+w2

⋅Computation CostMemory+w3⋅Computation CostEnergy

+w4⋅Computation CostTime 

Where w1, w2, w3, w4 are weighting factors that reflect 

the relative importance of each type of resource 

consumption in the specific context of the IoT 

application. By evaluating and optimizing the 

computation cost, we can ensure that the trust-based 

secure routing algorithms are efficient and suitable for 

deployment in resource-constrained IoT 

environments. Random Forest involves parallelizable 

nature of tree construction mitigates some of the 

computational burden, but overall, the resource 

demands can be substantial, especially for large 

datasets. Linear SVMs are more computationally 

efficient, the need for careful parameter tuning and 

potential scalability issues make SVMs less favorable 

in large-scale IoT environments.  Naive Bayes are 

suitable for environments with limited computational 

resources. However, its simplicity and. efficiency 

come at the cost of lower accuracy compared to more 

complex models. KNN degrades with high-

dimensional data due to the curse of dimensionality, 

further increasing computational costs.  
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Figure 5: Comparison of Computation Cost Vs 

Number of Nodes 

Figure 5 shown, Neural Networks produce lowest 

computational cost compare with other algorithms.  

Neural Networks traditionally require substantial 

computational resources for both training and 

inference due to their complex architectures and large 

parameter spaces. Training involves numerous matrix 

multiplications and nonlinear operations, often 

requiring specialized hardware such as GPUs. 

However, advances in deep learning frameworks and 

hardware acceleration have significantly optimized 

these processes. Despite high initial training costs, 

once trained, Neural Networks can perform 

predictions very efficiently. Techniques like model 

compression, pruning, and quantization further reduce 

the inference computational cost, making Neural 

Networks more viable for deployment in resource-

constrained IoT environments. 

 

Control Packet Transmission  

The number of control packets sent is a vital 

performance metric for evaluating the efficiency and 

bandwidth usage of a routing protocol in IoT 

networks. This metric measures the amount of data 

dedicated to control packets transmitted over the 

network in a given time period. Understanding this 

metric helps in optimizing the protocol to reduce 

overhead and improve network performance. Total 

Control Packet Transmission  metric measures the 

total size of all control packets transmitted during the 

simulation or operational period. 

Total Control Packet Data Sent (KB)  

= ∑
Size of Each Control Packet (Bytes)

1024
 

Control Packet Transmission Rate (KB/s) metric 

indicates the average rate at which control packet data 

is transmitted in the network. It is calculated by 

dividing the total control packet data sent by the total 

simulation time, providing insights into the bandwidth 

consumed by control messages. 

Control Packet Transmission Rate (KB/s) = Total 

Control Packet Data Sent (KB) / Total Simulation 

Time (s) 

The number of control packets Transmission in 

kilobytes per second is a vital metric for understanding 

the control traffic overhead in IoT networks. By 

monitoring this metric, network administrators can 

optimize the routing protocol to ensure efficient 

bandwidth usage, thereby enhancing the overall 

performance and reliability of the network. 

Random Forest increases the overhead in IoT 

networks, making it less efficient in terms of control 

packets sent. SVMs can achieve high precision, the 

computational complexity and the frequent updates 

can increase the number of control packets 

Transmission. Naive Bayes classifiers independence 

assumption can sometimes lead to less accurate trust 

evaluations, potentially compromising routing 

decisions and security. KNN method can generate a 

substantial number of control packets, especially in 

dynamic IoT environments, as the distance metrics 

and neighbor information must be frequently updated 

and transmitted across the network. This makes KNN 

less efficient in terms of control packet overhead.  

 
Figure 6: Comparison of Control Packets 

Transmission Vs Number of Nodes 

Figure 6 shown, Neural Networks produce best control 

packets sent compare with other algorithms.   Neural 

Networks, particularly deep learning models, excel in 

handling large, complex datasets and can capture 

intricate patterns in data. They offer significant 

advantages in terms of flexibility and adaptability, 

which are critical for dynamic IoT environments. 

Neural Networks can achieve high accuracy in trust 

evaluation and anomaly detection with fewer control 

packet transmissions. This efficiency stems from their 

ability to learn complex representations and generalize 
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from them, reducing the need for frequent updates and 

retransmissions of control information. 

 

Routing Overhead 

Routing overhead measures the extra communication 

burden introduced by the trust-based routing model. 

This includes additional control packets for 

establishing and maintaining trusted routes, compared 

to traditional routing protocols. 

Routing Overhead= (Total Control Packets) / 

(Total Data Packets) 

 Where, Total Control Packets is the number of control 

packets (e.g., route requests, replies, and maintenance 

messages) transmitted. Total Data Packets is the 

number of data packets transmitted. 

Random Forest uses an ensemble of decision trees to 

make routing decisions.  The complexity of 

maintaining multiple decision trees can result in higher 

computational and communication costs.  SVMs can 

contribute to higher routing overhead due to the need 

for extensive parameter tuning and the 

computationally intensive process of finding the 

optimal hyper plane for classification. Naive Bayes 

assumption of feature independence may lead to less 

accurate trust evaluations, potentially increasing the 

need for additional communication to correct 

misrouted packets. K-Nearest Neighbors (KNN) 

involves significant computation at the time of 

prediction, as it must calculate distances to all training 

samples to classify a new instance. This can result in 

high routing overhead in large-scale IoT networks, 

particularly when frequent updates to the routing table 

are necessary. 

 
Figure 7: Comparison of Routing Overhead Vs 

Number of Nodes 

Figure 7 shown, Neural Networks produce lowest 

routing overhead compare with other algorithms.  

Neural Networks, particularly deep learning models, 

are more complex and require substantial 

computational resources for training. However, once 

trained, they can perform predictions rapidly. Neural 

Networks excel in reducing routing overhead by 

leveraging their ability to generalize from training data 

and make accurate routing decisions without the need 

for frequent updates. Neural Networks can learn and 

generalize from historical data, enabling them to make 

accurate predictions with fewer updates. This reduces 

the communication overhead associated with 

propagating routing updates throughout the network. 

Neural Networks can adapt to changing network 

conditions and learn from new data, which helps in 

maintaining an up-to-date and efficient routing 

strategy with minimal additional overhead. Their 

ability to filter out noise and irrelevant information 

ensures that only the most pertinent routing 

information is propagated. Advances in hardware 

acceleration (e.g., Graphics processing units (GPUs) 

and tensor processing units (TPUs) ) and efficient 

neural network architectures allow for optimized 

resource usage, reducing the overall overhead 

involved in processing and communication. 

 

Throughput 

Throughput measures the rate of successful data 

delivery over the network. It is the amount of data 

successfully received at the destination per unit of 

time. 

Throughput = Total Data Received (bits)/ Total Time 

(seconds) 

Where, Total Data Received is the total amount of data 

successfully received in bits. Total Time is the total 

time over which the data was received in seconds. 

Random Forest algorithms can improve the accuracy 

of routing decisions, the process of maintaining and 

aggregating multiple trees can introduce latency and 

reduce throughput, especially in large-scale IoT 

networks. The computational intensity involved in 

training and predicting with SVMs can slow down the 

decision-making process, which may negatively 

impact throughput. The need for extensive 

computation to find the optimal hyper plane can 

introduce delays. Naive Bayes is the independence 

assumption between features might lead to suboptimal 

routing decisions in complex scenarios, potentially 

impacting throughput. KNN overhead can 

significantly impact throughput, especially in large 
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and dynamic IoT networks where routing decisions 

need to be made quickly and frequently. 

 
Figure 8: Comparison of Throughput (KB/Sec) Vs 

Number of Nodes 

Figure 8 shown, Neural Networks produce highest 

throughput compare with other algorithms. In Neural 

Networks leverage parallel processing capabilities of 

modern hardware (such as GPUs and TPUs), allowing 

for rapid data processing and quick decision-making, 

which enhances throughput. Neural Networks can 

adapt to changing network conditions in real-time, 

providing accurate and timely routing decisions that 

maintain high throughput even as network conditions 

evolve. Advances in neural network architectures and 

optimization techniques (e.g., quantization, pruning) 

have significantly improved inference speeds, making 

neural networks highly efficient for real-time 

applications and ensuring high throughput. 

 

Packet Loss Rate 

Packet loss rate quantifies the number of packets that 

fail to reach their destination. It is an important metric 

for evaluating the reliability of the network. 

Packet Loss Rate = (Total Packets Sent - Total 

Packets Received) \ Total Packets Sent 

Where, Total Packets Sent is the number of packets 

sent from the source. Total Packets Received is the 

number of packets successfully received at the 

destination. 

 

Packet Loss Level (%)=(1−Total Packet Sent (bits)/ 

Total Packet Received (bits))×100 

A lower packet loss rate indicates more reliable and 

efficient communication. In the context of IoT 

networks, minimizing packet loss is essential for 

ensuring data integrity and maintaining the overall 

performance of the network. Random Forest is 

complexity of maintaining multiple trees can lead to 

delays and potential packet loss, especially in dynamic 

and large-scale IoT networks. SVMs are high-

dimensional spaces, can introduce latency in decision-

making, which may contribute to higher packet loss 

rates. Naive Bayes classifiers are complex IoT 

environments, leading to increased packet loss under 

certain conditions. KNN computational overhead can 

increase the time taken to make routing decisions, 

resulting in higher packet loss rates in dynamic IoT 

networks.  

 
Figure 9: Comparison of Packet loss rate Vs Number 

of Nodes 

Figure 9 shown, Neural Networks produce lowest 

packet loss rate compare with other algorithms.  

Neural Networks, particularly deep learning models, 

are adept at capturing complex, non-linear 

relationships in the data. Despite the higher 

computational cost during training, they offer rapid 

and efficient inference once deployed, which can 

significantly reduce packet loss rates. Neural 

Networks can continuously learn and adapt to 

changing network conditions, allowing them to make 

more accurate routing decisions that minimize packet 

loss. Neural Networks excel at recognizing complex 

and non-linear patterns in data, which enables them to 

predict and avoid unreliable routes that might lead to 

packet loss. The deployment of Neural Networks on 

advanced hardware (such as GPUs and TPUs) 

facilitates real-time data processing and rapid 

decision-making, reducing the likelihood of packet 

loss due to delayed routing decisions. 

 

V. CONCLUSION 

 

In this paper, we have presented a comprehensive 

framework for enhancing trust-based secure routing in 

IoT networks by integrating various machine learning 
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algorithms, including Random Forest, Support Vector 

Machine (SVM), Naive Bayes, K-Nearest Neighbors 

(KNN) and Neural Networks. Our approach addresses 

the critical challenges of trust evaluation, anomaly 

detection and adaptive routing in dynamic IoT 

environments. Through detailed descriptions of the 

proposed model's components, we have demonstrated 

how each machine learning algorithm can be 

effectively applied to different aspects of the routing 

process. We highlighted the importance of feature 

selection and extraction, the collection and utilization 

of training data, model training, trust evaluation, 

adaptive learning and integration with trust-based 

routing policies. To validate in this proposed model, 

conducted extensive simulations using NS3, setting up 

an experimental environment with various parameters 

such as coverage area, simulation time, number of 

nodes, traffic type, transmission range, packet size, 

maximum speed, routing protocol and mobility model. 

Our performance evaluation included metrics such as 

node reputation, anomaly detection, routing overhead, 

control packets sent, throughput, packet loss rate and 

data loss level. The results of our simulations indicate 

that the integration of machine learning techniques 

significantly enhances the security, reliability, and 

efficiency of IoT networks. Each algorithm showed 

strengths in specific areas, contributing to a more 

robust and adaptive routing system capable of 

dynamically adjusting to changing network conditions 

and mitigating security threats. Overall, this work 

contributes to the advancement of trust-based secure 

routing systems in IoT by leveraging the power of 

machine learning. By integrating these advanced 

techniques into IoT routing architectures and also in 

this research work aim to foster (promote) the 

widespread adoption of IoT technologies across 

various application domains, ensuring secure and 

reliable communication in the face of evolving 

challenges and threats. Future work will focus on 

further optimizing these models and exploring their 

application in real-world IoT deployments to validate 

their effectiveness and scalability. 
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