
© July 2024| IJIRT | Volume 11 Issue 2 | ISSN: 2349-6002

IJIRT 166510 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 817

Trust-Based Model for Secure Routing Against RPL

Attacks in Internet of Things Using Machine Learning

Algorithms

1R. Elango, 2Dr. D. Maruthanayagam
1Research Scholar, Sri Vijay Vidyalaya College of Arts & Science, Dharmapuri, Tamilnadu, India

2 Dean Cum Professor, PG and Research Department of Computer Science, Sri Vijay Vidyalaya College

of Arts & Science, Dharmapuri, Tamilnadu, India

Abstract: The Internet of Things (IoT) is increasingly

susceptible to security threats, particularly targeting the

Routing Protocol for Low-Power and Lossy Networks

(RPL). Ensuring secure and reliable routing is crucial for

the performance and trustworthiness of IoT networks.

This paper proposes a trust-based model for secure

routing against RPL attacks by leveraging machine

learning algorithms, including Random Forest, Support

Vector Machine (SVM), Naive Bayes, K-Nearest

Neighbors (KNN), and Neural Networks. The model

calculates node reputation and detects anomalies to

prevent routing attacks. The performance of the

proposed model is evaluated using key metrics: Node

Reputation, Anomaly Detection Metrics, Routing

Overhead, Energy Efficiency, Throughput, and Packet

Loss Rate. Experimental results demonstrate the

effectiveness of the proposed model in enhancing IoT

network security and efficiency while maintaining low

overhead.

Keywords: Trust-Based Routing, IoT Security, RPL

Attacks, Machine Learning, Random Forest, Support

Vector Machine (SVM), Naive Bayes, K-Nearest

Neighbors (KNN) and Neural Networks.

I. INTRODUCTION

The Internet of Things (IoT) has revolutionized the

way devices communicate, enabling seamless

interconnectivity and data exchange among a myriad

of sensors, actuators, and smart devices. This

interconnected ecosystem facilitates numerous

applications, ranging from smart homes and industrial

automation to healthcare and environmental

monitoring. However, the widespread deployment of

IoT devices introduces significant security challenges,

primarily due to their resource-constrained nature and

reliance on wireless communication. One critical

aspect of IoT security is ensuring secure and efficient

routing of data, as IoT networks are particularly

vulnerable to various routing attacks [1]. The Routing

Protocol for Low-Power and Lossy Networks (RPL) is

a widely adopted standard for routing in IoT

environments. Despite its efficiency, RPL is

susceptible to numerous attacks such as sinkhole,

wormhole, and selective forwarding attacks, which

can severely disrupt network operations and

compromise data integrity [2]. Traditional security

mechanisms are often inadequate for IoT networks due

to their limited computational and energy resources.

Hence, there is a pressing need for lightweight and

robust solutions to enhance routing security in IoT.

Securing routing in IoT networks against RPL-specific

attacks is a complex problem that requires balancing

security, performance, and resource efficiency.

Existing approaches often fail to address the dynamic

and distributed nature of IoT networks. Therefore, a

trust-based model that leverages machine learning to

dynamically assess and respond to security threats is

essential. Such a model can help in identifying

malicious nodes, ensuring reliable data transmission,

and maintaining overall network integrity [3].

This research aims to develop a trust-based model for

secure routing in IoT networks, utilizing various

machine learning algorithms. The specific objectives

of this study are:

• To design a trust computation framework that

evaluates node reputation based on behavior and

interaction history.

• To implement and compare multiple machine

learning algorithms, including Random Forest,

Support Vector Machine (SVM), Naive Bayes, K-

© July 2024| IJIRT | Volume 11 Issue 2 | ISSN: 2349-6002

IJIRT 166510 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 818

Nearest Neighbors (KNN), and Neural Networks,

for detecting routing anomalies.

• To evaluate the proposed model using key metrics

such as Node Reputation, Anomaly Detection

Metrics, Routing Overhead, Energy Efficiency,

Throughput, and Packet Loss Rate.

• To demonstrate the effectiveness of the model in

enhancing IoT network security while

maintaining low resource consumption.

The primary contributions of this research are:

• A novel trust-based model for secure routing in

IoT, capable of mitigating RPL-specific attacks.

• A comprehensive comparison of five machine

learning algorithms (Random Forest, SVM, Naive

Bayes, KNN, and Neural Networks) in the context

of IoT routing security.

• An extensive evaluation of the proposed model

across multiple performance and security metrics,

demonstrating its efficacy and efficiency.

• Insights and recommendations for deploying

machine learning-based security solutions in

resource-constrained IoT environments.

This paper is structured as follows: Section 2 reviews

related work in trust-based routing and machine

learning applications in IoT security. Section 3 details

the proposed model and the machine learning

algorithms employed. Section 4 presents the

experimental results and discussion. Finally, Section 5

concludes the paper and outlines future research

directions.

1.1. RPL Routing Attacks and their implications for

IoT Networks

Routing Protocol for Low-Power and Lossy Networks

(RPL) is a fundamental routing protocol used in many

IoT deployments due to its efficiency in handling

constrained devices and dynamic network topologies.

However, the widespread adoption of RPL also

introduces vulnerabilities that can be exploited by

malicious actors to compromise the integrity and

availability of IoT networks. Understanding these RPL

routing attacks and their implications is crucial for

designing effective security mechanisms to safeguard

IoT deployments [4][5]. Here, we discuss some

common RPL routing attacks and their implications

for IoT networks:

a). Sinkhole Attacks: In a sinkhole attack, a

malicious node advertises itself as having the

shortest path to the sink node, attracting legitimate

nodes to route their traffic through it. However,

the malicious node drops or selectively forwards

the received packets, disrupting communication

and potentially compromising data

confidentiality. Implications: Sinkhole attacks

can lead to significant disruptions in IoT

applications, particularly those requiring timely

and reliable data delivery, such as industrial

automation and healthcare monitoring. Moreover,

they can facilitate data exfiltration or

manipulation, posing serious security and privacy

risks.

b). Blackhole Attacks: In a blackhole attack, a

malicious node advertises itself as having the

shortest path to the destination nodes, attracting

traffic towards it. However, instead of forwarding

the packets towards the destination, the malicious

node drops all incoming packets, effectively

blackholing the traffic. Implications: Blackhole

attacks can severely impact the availability and

reliability of IoT services by causing packet loss

and network congestion. Furthermore, they can

facilitate denial-of-service (DoS) attacks by

disrupting communication between legitimate

nodes and draining their resources.

c). Selective Forwarding Attacks: In a selective

forwarding attack, a malicious node selectively

forwards or drops packets based on predefined

criteria, such as packet type, source address, or

content. By strategically manipulating packet

forwarding, the attacker can disrupt

communication between specific nodes or

subnetworks. Implications: Selective forwarding

attacks can compromise the integrity and

reliability of IoT data transmission by selectively

dropping critical packets or injecting malicious

payloads into the network. This can lead to data

corruption, manipulation, or unauthorized access,

undermining the trustworthiness of IoT

applications.

d). Sybil Attacks: In a Sybil attack, a single malicious

node impersonates multiple legitimate nodes by

spoofing their identities or network addresses. By

creating multiple fake identities, the attacker can

influence routing decisions, disrupt network

topology discovery, and deceive neighboring

© July 2024| IJIRT | Volume 11 Issue 2 | ISSN: 2349-6002

IJIRT 166510 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 819

nodes. Implications: Sybil attacks can undermine

the trustworthiness and scalability of IoT

networks by introducing fake nodes into the

network topology. This can lead to routing loops,

resource exhaustion, and inaccurate routing

metrics, compromising the overall stability and

security of IoT deployments.

The implications of these RPL routing attacks for IoT

networks are multifaceted, encompassing disruptions

in communication, data integrity, and network

performance. Mitigating RPL routing attacks requires

a combination of robust authentication mechanisms,

secure routing protocols, and intrusion detection

systems tailored to the unique requirements and

constraints of IoT environments.

II. RELATED WORKS

Trust-based routing models have gained significant

attention in securing IoT networks due to their ability

to identify and mitigate malicious behavior. These

models typically evaluate nodes based on their

behavior and interaction history, assigning trust scores

that influence routing decisions. For instance, Momani

and Challa (2010) [6] proposed a trust management

system for wireless sensor networks that relies on

direct and indirect trust metrics to detect malicious

nodes. Similarly, Bao and Chen (2012) [7] introduced

a dynamic trust management protocol that adapts to

changing network conditions and improves security in

mobile ad-hoc networks (MANETs). In the context of

IoT, Raza et al. (2013) [8] developed a lightweight

trust-based mechanism specifically for RPL, focusing

on energy-efficient and secure routing. Their

approach, however, primarily relies on heuristic

methods and does not leverage advanced machine

learning techniques. More recently, Zhang et al.

(2018) [9] proposed a trust-based secure routing

scheme that incorporates fuzzy logic to handle the

uncertainty and imprecision in trust evaluation. While

these approaches demonstrate the potential of trust-

based models, they often fall short in dynamically

adapting to sophisticated and evolving attacks.

Machine learning (ML) techniques have been

increasingly employed to enhance the security of

routing protocols in IoT networks. These techniques

can analyze large volumes of data to detect patterns

indicative of malicious behavior, thereby improving

the robustness of routing mechanisms. For example,

Othman et al. (2013) [10] applied a Bayesian

inference approach to establish trust in IoT

environments, enhancing the detection of

compromised nodes. Another study by Marchang and

Datta (2017) [11] utilized SVM to classify and detect

routing attacks in MANETs, showing promising

results in terms of accuracy and efficiency. Random

Forest has also been effectively used in network

security. For instance, Sahu and Shah (2018) [12]

demonstrated the use of Random Forest in detecting

intrusion in IoT networks, highlighting its high

accuracy and low false-positive rate. KNN and Naive

Bayes, while simpler, have been employed in various

anomaly detection systems due to their computational

efficiency and effectiveness in diverse scenarios

(Patel and Doshi, 2020) [13]. Neural Networks,

particularly deep learning models, offer significant

potential due to their ability to learn complex patterns;

however, their high computational requirements often

pose challenges in IoT environments (Al-Garadi et al.,

2020) [14] .

RPL, as a widely used routing protocol in IoT, is

vulnerable to various attacks that can compromise the

network's security and performance. Sinkhole attacks,

where malicious nodes attract traffic by advertising

high-quality routes, are particularly damaging.

Krontiris et al. (2013) [15] analyzed the impact of

sinkhole attacks on RPL and proposed

countermeasures based on consistency checks of

routing information. Wormhole attacks, involving

colluding nodes that create a low-latency link to

capture and relay traffic, were studied by Choi et al.

(2014) [16], who proposed a detection mechanism

leveraging temporal and spatial correlation of packet

arrivals. Selective forwarding attacks, where

malicious nodes selectively drop packets, pose another

significant threat. Mayzaud et al. (2016) [17] provided

a comprehensive survey of RPL attacks and

highlighted the need for integrated detection and

mitigation strategies. These studies underscore the

importance of robust security mechanisms to

safeguard RPL-based IoT networks from various

attack vectors.

III. PROPOSED MODEL

The increasing deployment of Internet of Things (IoT)

devices in various applications, from smart homes to

industrial automation, has brought significant

attention to the need for secure and reliable

© July 2024| IJIRT | Volume 11 Issue 2 | ISSN: 2349-6002

IJIRT 166510 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 820

communication protocols. One of the primary

challenges in IoT networks is ensuring secure routing

of data, particularly in the face of attacks targeting the

Routing Protocol for Low-Power and Lossy Networks

(RPL). Traditional security mechanisms often fall

short due to the constrained resources of IoT devices,

necessitating innovative approaches that can provide

robust security without imposing significant overhead.

This paper presents a trust-based model for secure

routing in IoT networks that leverages the capabilities

of machine learning algorithms to detect and mitigate

RPL-specific attacks. The proposed model integrates

multiple machine learning techniques, including

Random Forest, Support Vector Machine (SVM),

Naive Bayes, K-Nearest Neighbors (KNN), and

Neural Networks, to evaluate the trustworthiness of

nodes and detect anomalies indicative of malicious

activities.

Figure 1: Proposed model architecture

System Architecture

The proposed trust-based model for secure routing

against RPL attacks in IoT networks is composed of

four main modules: Trust Computation, Anomaly

Detection, Routing Decision, and Data Collection and

Preprocessing. Figure 1 shows the proposed model

architecture. Each module plays a crucial role in

ensuring the security and efficiency of the IoT

network.

3.1 Trust Computation Module

The Trust Computation Module is a crucial component

of the proposed model, responsible for calculating the

trust scores of nodes in the IoT network[18][19]. The

trust scores are used to evaluate the reliability and

behavior of each node, which in turn influence the

routing decisions made by the Routing Decision

Module. The trust computation process incorporates

both direct and indirect trust metrics to provide a

comprehensive assessment of node trustworthiness,

Figure 2.

Figure 2: Trust Computation Process

Direct Trust Computation

Direct trust is calculated based on the interaction

history between nodes. This includes factors such as

packet delivery ratio, acknowledgment reception and

consistency in communication. Nodes that

consistently deliver packets successfully and

acknowledge communications are assigned higher

direct trust scores. Direct trust is calculated based on

the historical interactions between nodes. It considers

various factors such as packet delivery success,

acknowledgment reception, and consistency in

communication. The formula for calculating direct

trust DTij from node i to node j is as follows:

𝐷𝑇𝑖𝑗 =
Number of Successful Interactions

Total Interactions

This metric reflects how reliably node j has performed

in past interactions with node i.

Indirect Trust Computation

Indirect trust is derived from recommendations

provided by neighboring nodes. Each

recommendation is weighted by the trustworthiness of

the recommending node, ensuring that only reliable

recommendations influence the trust score. The

formula for calculating indirect trust ITij from node i

to node j is:

𝐼𝑇𝑖𝑗 =
∑ 𝑇𝑖𝑘.𝐷𝑇𝑘𝑗𝑘∈𝑁𝑖

∑ 𝑇𝑖𝑘𝑘∈𝑁𝑖

Data Collection

Trust Computation Module

Calculate Direct Trust Calculate Indirect

Trust

Calculate Direct Trust

Update Trust Scores

© July 2024| IJIRT | Volume 11 Issue 2 | ISSN: 2349-6002

IJIRT 166510 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 821

Where, Ni is the set of neighbors of node i. Tik is the

trust score of node i towards neighbor k. DTkj is the

direct trust of neighbor k towards node j.

Combined Trust Score

The overall trust score Tij of node i towards node j is a

weighted combination of direct and indirect trust

scores:

𝑇𝑖𝑗 = 𝛼. 𝐷𝑇𝑖𝑗 + (1 − 𝛼). 𝐼𝑇𝑖𝑗

Where α is a weighting factor that balances the

influence of direct and indirect trust.

By incorporating both direct and indirect trust metrics,

the Trust Computation Module ensures a robust and

comprehensive assessment of node trustworthiness,

enhancing the overall security and reliability of the

IoT network.

3.2. Anomaly Detection Module

The Anomaly Detection Module is a critical

component of the proposed trust-based model,

designed to identify suspicious activities and potential

attacks within the IoT networks. By leveraging various

machine learning algorithms, this module can detect

anomalies in node behavior, which can indicate

security threats such as RPL attacks. The detected

anomalies are then used to update the trust scores and

inform routing decisions. The Anomaly Detection

Module employs a diverse set of machine learning

algorithms to analyze network data and detect

anomalies. Each algorithm has its strengths and is

suited for different aspects of anomaly detection:

3.2.1. Random Forest:

The integration of Random Forest into the

enhancement of trust-based secure routing in IoT

networks aims to address the challenges of trust

evaluation, anomaly detection, and adaptive routing in

IoT environments. This integration enables the

development of a robust and adaptive routing system

capable of dynamically adjusting to changing network

conditions and mitigating security threats. In this

section, we present a comprehensive framework for

integrating Random Forest into trust-based secure

routing in IoT [20][21]. We discuss the technical

details of each step, including feature selection,

training data collection, model training, trust

evaluation, adaptation, and integration with routing

policies. Furthermore, we provide real-world

examples and case studies to demonstrate the

effectiveness and practicality of the proposed

approach. This contributes to the advancement of

trust-based secure routing systems in IoT by

harnessing the power of machine learning techniques.

By integrating Random Forest into IoT routing

architectures, we aim to enhance the security,

reliability, and resilience of IoT communication,

thereby enabling the widespread adoption of IoT

technologies across various application domains.

Step 1: Feature Selection and Extraction

This step involves selecting and extracting relevant

features from the routing environment to serve as input

to the Random Forest algorithm. These features may

include node reputation, communication reliability,

security posture and historical behavior. For example,

suppose we're evaluating the trustworthiness of

routing paths in an IoT network. Features could

include node reputation (based on past interactions),

communication reliability (e.g., packet loss rate),

security posture (e.g., encryption protocols used), and

historical behavior (e.g., routing patterns).

X=[x1, x2,..., xn]

In this step, relevant features are selected and extracted

from the routing environment to serve as input to the

Random Forest algorithm. Features may include node

attributes (e.g., reputation, resource availability),

communication metrics (e.g., latency, packet loss

rate), and security indicators (e.g., encryption

protocols used). X represents the feature vector

containing n features.

Step 2: Training Data Collection

Training data consists of labeled examples, where

each example includes a feature vector and its

corresponding label. Labels indicate the desired

output, such as the correctness of routing decisions or

the presence of security threats. For example, we

collect training data by observing routing decisions in

the IoT network over time. Each example includes

features such as node reputation, communication

reliability, and security posture, along with labels

indicating whether the routing decision was successful

or if a security threat was detected.

 D={(X1,Y1),(X2,Y2),...,(Xm,Ym)}

Training data D consists of labeled examples, where

each example Xi, Yi consists of a feature vector Xi and

its corresponding label Yi. Labels indicate the desired

© July 2024| IJIRT | Volume 11 Issue 2 | ISSN: 2349-6002

IJIRT 166510 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 822

output or classification, such as the correctness of

routing decisions or the presence of security threats.

Step 3: Model Training

In this step, the Random Forest model is trained using

the labeled training data. The model constructs an

ensemble of decision trees based on random subsets of

the training data. For example, we train the Random

Forest model using the collected training data. The

model learns to predict the trustworthiness of routing

paths based on the observed features and labels. Each

decision tree in the ensemble independently learns

patterns in the data, contributing to the overall

predictive power of the model.

RF=Train (D)

The Random Forest model (RF) is trained using the

training data D. The training process constructs an

ensemble of decision trees based on random subsets of

the training data. Each decision tree independently

makes predictions, and the final output is determined

by aggregating the predictions of all trees.

Step 4: Trust Evaluation and Routing Decision

Given a feature vector representing the current routing

environment, the trained Random Forest model

predicts the trustworthiness of routing paths or the

likelihood of security threats. The prediction is based

on the learned patterns in the training data and the

input features. For example, suppose we want to

evaluate the trustworthiness of a routing path in real-

time. We input the relevant features (e.g., node

reputation, communication reliability) into the trained

Random Forest model. The model predicts whether

the routing path is trustworthy or if there's a potential

security threat.

Y^=RF(X)

Given a feature vector X representing the current

routing environment, the trained Random Forest

model (RF) predicts the output Y^, which may

indicate the trustworthiness of routing paths or the

likelihood of security threats. The prediction is based

on the learned patterns in the training data and the

input features.

Step 5: Adaptation and Learning

To adapt to changing network conditions and new

data, the Random Forest model is periodically

retrained using updated training data. This allows the

model to learn from recent experiences and improve

its predictive performance over time. For example, as

new routing decisions and security events occur in the

IoT network, we collect updated training data. We

then retrain the Random Forest model using this new

data, incorporating the latest observations and labels.

This allows the model to adapt to evolving network

dynamics and improve its accuracy.

RFupdated=Retrain (D′)

To adapt the Random Forest model to changing

network conditions and new data, the model is

periodically retrained using updated training data \(D'

\). This retraining process incorporates new

observations and labels, allowing the model to learn

from recent experiences and improve its predictive

performance over time.

Step 6: Integration with Trust-Based Routing Policies

The output from the Random Forest model is

integrated with trust-based routing policies through a

decision function. This function maps the model

predictions to routing decisions, prioritizing trusted

routes or avoiding untrustworthy nodes based on the

predicted trustworthiness or security risk levels. For

example, based on the prediction from the Random

Forest model, we apply trust-based routing policies to

make routing decisions. For example, if the model

predicts a high level of trust for a routing path, we

prioritize using that path for data transmission.

Conversely, if a potential security threat is detected,

we avoid using routes associated with that threat.

Routing Decision=g(Y^)

The output Y^ from the Random Forest model is

integrated with trust-based routing policies through a

decision function g . This function maps the model

predictions to routing decisions, prioritizing trusted

routes or avoiding untrustworthy nodes based on the

predicted trustworthiness or security risk levels.

Anomaly Detection in RPL Attacks Using Random

Forest

In the context of trust-based secure routing, Random

Forest can also be leveraged to detect anomalies

indicative of RPL attacks. Here's how the anomaly

detection process integrates with the overall secure

routing framework:

Feature Extraction: Features specific to RPL

anomalies (e.g., sudden changes in route paths,

increased packet loss) are extracted and included in the

feature vector X.

© July 2024| IJIRT | Volume 11 Issue 2 | ISSN: 2349-6002

IJIRT 166510 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 823

• Correlation Matrix: Calculate the correlation

matrix to select relevant features.

✓ R= cov(X) / σxσy

Where cov(X) is the covariance matrix, σx and σy

are the standard deviations of the variables.

• Feature Importance (from Random Forest):

Use feature importance scores from Random

Forest.

o Where Δit is the importance of feature j

in tree t, and NT is the number of trees.

• Training Data Collection: Collect labeled data

that includes both normal and anomalous RPL

behavior to train the model.

• Model Training: Train the Random Forest model

on this comprehensive dataset to distinguish

between normal and anomalous behaviors.

• Anomaly Detection: During real-time routing, use

the trained model to predict the likelihood of an

RPL attack based on the input features.If an

anomaly is detected, adjust the routing decision

accordingly.

Anomaly Score=RFanomaly(X)

If the anomaly score exceeds a certain

threshold, it indicates a potential RPL attack,

prompting the routing algorithm to avoid the

suspicious route.

By integrating Random Forest for both trust evaluation

and anomaly detection, the IoT network can achieve

robust security against RPL attacks while ensuring

efficient and trustworthy routing decisions.

3.2.2. Support Vector Machine (SVM)

 Support Vector Machine (SVM) [22][23], a powerful

classification algorithm, offers a promising approach

to enhancing trust-based routing by leveraging its

ability to classify data into different categories based

on learned patterns. By integrating SVM into the

routing architecture, IoT networks can benefit from

sophisticated trust evaluation mechanisms that adapt

to changing network dynamics and security threats.

This integration aims to address the challenges of trust

evaluation, anomaly detection, and adaptive routing in

IoT environments, enabling the development of a

robust and adaptive routing system capable of

dynamically adjusting to changing network conditions

and mitigating security threats. In this paper, we

present a comprehensive framework for integrating

SVM into trust-based secure routing in IoT. We

discuss the technical details of each step, including

feature selection, training data collection, model

training, trust evaluation, adaptation, and integration

with routing policies. By leveraging SVM's

classification capabilities, our proposed approach aims

to enhance the security, reliability, and resilience of

IoT communication, ultimately contributing to the

advancement of trust-based secure routing systems in

IoT networks. Steps of Integrating Support Vector

Machine (SVM) into Enhancing Trust-Based Secure

Routing in IoT

Step 1: Feature Selection and Extraction

This step involves selecting and extracting relevant

features from the routing environment to serve as input

to the SVM algorithm. These features may include

node reputation, communication reliability, security

posture, and historical behavior. For example, features

could include the number of successful data

transmissions, the frequency of routing table updates,

the response time of neighboring nodes, and the level

of encryption used for communication.

X=[x1, x2,..., xn]

Similar to the Random Forest integration, this step

involves selecting and extracting relevant features

from the routing environment to serve as input to the

SVM algorithm. Features may include node

reputation, communication reliability, security

posture, and historical behavior.

Step 2: Training Data Collection

Training data consists of labeled examples, where

each example includes a feature vector and its

corresponding label. Labels indicate the desired

output, such as whether a routing path is trustworthy

or if a security threat is present. For example,

collecting training data involves observing routing

decisions in the IoT network over time. Each example

includes features such as node reputation,

communication reliability and security posture, along

with labels indicating whether the routing decision

was successful or if a security threat was detected.

D={(X1,Y1),(X2,Y2),...,(Xm,Ym)}

Training data consists of labeled examples, where

each example includes a feature vector and its

corresponding label. Labels indicate the desired

© July 2024| IJIRT | Volume 11 Issue 2 | ISSN: 2349-6002

IJIRT 166510 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 824

output, such as the correctness of routing decisions or

the presence of security threats.

Step 3: Model Training

In this step, the SVM model is trained using the

labeled training data. The model learns to classify the

feature vectors into different classes (e.g., trustworthy

vs. untrustworthy routes) by finding the hyper plane

that maximally separates the classes.

SVM=Train (D)

For example, Training the SVM model involves

feeding the labeled training examples into the SVM

algorithm. The algorithm learns to classify the feature

vectors into different classes based on the observed

patterns in the training data.

Step 4: Trust Evaluation and Routing Decision

Given a feature vector representing the current routing

environment, the trained SVM model predicts the

class label for the input. The prediction is based on the

learned patterns in the training data and the input

features. For example, suppose we want to evaluate

the trustworthiness of a routing path in real-time. We

input the relevant features (e.g., node reputation,

communication reliability) into the trained SVM

model. The model predicts whether the routing path is

trustworthy or if there's a potential security threat.

Y^=SVM(X)

Given a feature vector representing the current routing

environment, the trained SVM model predicts the

class label Y^ for the input. The prediction is based on

the learned patterns in the training data and the input

features.

Step 5: Adaptation and Learning

Similar to Random Forest, the SVM model can be

periodically retrained using updated training data to

adapt to changing network conditions and improve its

predictive performance over time. For example, as

new routing decisions and security events occur in the

IoT network, we collect updated training data. We

then retrain the SVM model using this new data,

incorporating the latest observations and labels. This

allows the model to adapt to evolving network

dynamics and improve its accuracy.

SVMupdated=Retrain (D′)

Similar to Random Forest, the SVM model can be

periodically retrained using updated training data to

adapt to changing network conditions and improve its

predictive performance over time.

Step 6: Integration with Trust-Based Routing Policies

The output from the SVM model is integrated with

trust-based routing policies through a decision

function. This function maps the model predictions to

routing decisions, prioritizing trusted routes or

avoiding untrustworthy nodes based on the predicted

class labels. For example, based on the prediction from

the SVM model, we apply trust-based routing policies

to make routing decisions. For example, if the model

predicts a high level of trust for a routing path, we

prioritize using that path for data transmission.

Conversely, if a potential security threat is detected,

we avoid using routes associated with that threat.

Routing Decision=g(Y^)

The output from the SVM model is integrated with

trust-based routing policies through a decision

function. This function maps the model predictions to

routing decisions, prioritizing trusted routes or

avoiding untrustworthy nodes based on the predicted

class labels.

Anomaly Detection in RPL Attacks Using SVM

Feature Selection and Extraction for Anomaly

Detection: Relevant features specific to RPL

anomalies (e.g., sudden changes in route paths,

increased packet loss) are extracted and included in the

feature vector X.

Training Data Collection for Anomaly Detection:

Collect labeled data that includes both normal and

anomalous RPL behavior to train the model.

Model Training for Anomaly Detection: Train the

SVM model on this comprehensive dataset to

distinguish between normal and anomalous behaviors.

Anomaly Detection: During real-time routing, use the

trained model to predict the likelihood of an RPL

attack based on the input features. If an anomaly is

detected, adjust the routing decision accordingly.

Anomaly Score = SVManomaly(X)

If the anomaly score exceeds a certain threshold, it

indicates a potential RPL attack, prompting the routing

algorithm to avoid the suspicious route.

By integrating Support Vector Machine (SVM) for

both trust evaluation and anomaly detection, the IoT

network can achieve robust security against RPL

attacks while ensuring efficient and trustworthy

routing decisions. This approach leverages SVM's

classification capabilities to assess trustworthiness and

make informed routing decisions in dynamic IoT

environments.

© July 2024| IJIRT | Volume 11 Issue 2 | ISSN: 2349-6002

IJIRT 166510 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 825

3.2.3. Naive Bayes

The integration of machine learning techniques, such

as the Naive Bayes classification algorithm, into trust-

based secure routing systems represents a promising

approach to fortify the security of Internet of Things

(IoT) networks. Traditional routing protocols like RPL

often struggle to adequately address security concerns

due to evolving threats and vulnerabilities. By

leveraging probabilistic reasoning and historical data,

Naive Bayes classifiers [24][25] offer a means to

assess the trustworthiness of neighboring nodes and

make informed routing decisions. This paper explores

the integration of Naive Bayes algorithms into trust-

based routing mechanisms, aiming to enhance the

resilience and security of IoT networks against

malicious attacks and unauthorized access. Through a

combination of technical analysis and practical

examples, we demonstrate the potential of this

approach to mitigate security risks and ensure the

reliable operation of IoT deployments.

Step 1. Trustworthiness Estimation:

This step involves estimating the trustworthiness of

neighboring nodes based on observed features such as

communication history, packet delivery ratio, and

energy consumption. Naive Bayes is used to calculate

the posterior probability of each node being trusted or

untrusted given its observed features. Example:

Suppose we have a set of features for each neighboring

node, including the number of packets successfully

delivered, the number of packets dropped, and the

energy level of the node. By analyzing historical data,

we can calculate the conditional probabilities of these

features given the class labels (trusted or untrusted).

Naive Bayes then combines these probabilities to

estimate the trustworthiness of each node.

▪ Define a set of features that capture the behavior

and characteristics of neighboring nodes relevant

to trustworthiness, such as communication

history, packet delivery ratio, energy

consumption, and proximity.

▪ For each feature Xi, calculate the conditional

probability P(Xi | Cj), where Cj represents the

class label (trusted or untrusted) of the node.

▪ Apply Bayes' theorem to estimate the posterior

probability P(Cj | X1,X2,...,Xn) of each

neighboring node being trusted or untrusted based

on the observed features.

P(Cj|X1,X2,...,Xn)= P(X1|Cj)×P(X2|Cj)×...×P(Xn|Cj

)×P(Cj)/ P(X1)×P(X2)×...×P(Xn)

Step 2. Trust-based Routing Decision:

In this step, the trustworthiness estimation is

integrated into the routing decision process to select

trusted routes for data transmission. A routing metric

is defined that combines traditional metrics (e.g., hop

count) with the estimated trustworthiness of

neighboring nodes. The route with the highest

trustworthiness score is chosen for data forwarding.

Example: Let's say we have two candidate routes for

transmitting data: Route A has a lower hop count but

traverses nodes with lower trustworthiness scores,

while Route B has a slightly higher hop count but

traverses nodes with higher trustworthiness scores. By

applying the trust-based routing metric formula, we

can weigh the importance of hop count against the

trustworthiness of nodes to make an informed routing

decision.

▪ Incorporate the trustworthiness estimation into

the routing decision process to select trusted

routes for data transmission.

▪ Define a routing metric that combines traditional

routing metrics (e.g., hop count, link quality) with

the estimated trustworthiness of neighboring

nodes.

▪ Calculate the trust-based routing metric for each

candidate route and select the route with the

highest trustworthiness score for data forwarding.

Trust based Routing Metric= α ×

Traditional Routing Metric + (1− α) ×

Trustworthiness score

Where α is a weighting factor balancing the

importance of traditional metrics and trustworthiness.

Step 3. Naive Bayes Training and Classification:

Historical data collected from IoT network operations

is used to train the Naive Bayes classifier. This data is

split into training and testing sets, and the classifier

learns the conditional probability distributions of

features given the class labels (trusted or untrusted).

During classification, the trained classifier estimates

the trustworthiness of neighboring nodes based on

observed features. Example: Consider a dataset

containing information about past interactions

between nodes in the IoT network, including features

such as packet delivery ratio, energy consumption, and

communication patterns. By training the Naive Bayes

classifier on this dataset, it learns to distinguish

between trusted and untrusted nodes based on their

observed behavior. During classification, the classifier

© July 2024| IJIRT | Volume 11 Issue 2 | ISSN: 2349-6002

IJIRT 166510 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 826

applies this knowledge to assign trustworthiness labels

to new instances based on their features.

▪ Utilize historical data collected from IoT network

operations to train the Naive Bayes classifier.

▪ Split the dataset into training and testing sets,

ensuring representative samples of trusted and

untrusted nodes.

▪ Train the Naive Bayes classifier using the training

data to learn the conditional probability

distributions of features given the class labels.

▪ During classification, apply the trained classifier

to estimate the trustworthiness of neighboring

nodes based on observed features and assign them

appropriate class labels (trusted or untrusted).

P(Cj|X1,X2,...,Xn)=P(X1|Cj)×P(X2|Cj)×...×P(Xn|Cj

)×P(Cj) / P(X1)×P(X2)×...×P(Xn)

Step 4. Adaptive Learning and Updating:

This step involves continuously monitoring the

performance of the trust-based routing system and

updating the Naive Bayes classifier to adapt to

changing network conditions and emerging threats.

Feedback mechanisms are integrated to incorporate

real-time observations and user feedback into the

training process, enhancing the accuracy and

robustness of the trustworthiness estimation model

over time. Example: As the IoT network evolves and

new nodes join or leave the network, the

trustworthiness of nodes may change dynamically. By

periodically updating the Naive Bayes classifier with

fresh data and feedback from network operations, we

can ensure that the trustworthiness estimation model

remains accurate and reflective of the current network

state. This adaptive learning process allows the routing

system to adapt to evolving threats and maintain the

security and reliability of the IoT network.

▪ Continuously monitor the performance of the

trust-based routing system and update the Naive

Bayes classifier periodically to adapt to changing

network conditions and emerging threats.

▪ Integrate feedback mechanisms to incorporate

real-time observations and user feedback into the

training process, enhancing the accuracy and

robustness of the trustworthiness estimation

model over time.

3.2.4. K-Nearest Neighbors (KNN)

Integrating K-Nearest Neighbors (KNN) [26][27] into

trust-based secure routing in IoT represents a strategic

fusion of machine learning with network security

principles. In the dynamic landscape of IoT, where

nodes communicate across diverse environments,

ensuring the trustworthiness of data routing becomes

paramount. By leveraging KNN, we can assess the

reliability of neighboring nodes based on historical

behavior patterns, thus fortifying the network against

potential threats and vulnerabilities [17] [18]. This

explores how KNN algorithms can be seamlessly

integrated into trust-based routing systems, offering a

robust framework to enhance the security and

resilience of IoT networks. Through a concise yet

comprehensive analysis, we uncover the potential of

KNN in bolster (boost) trust-based routing

mechanisms, ultimately paving the way for more

secure and efficient IoT deployments.

Here's an explanation and example for each step:

Step 1. Trustworthiness Estimation using KNN:

KNN can be used to estimate the trustworthiness of

neighboring nodes based on observed features such as

communication history, packet delivery ratio, and

energy consumption. By analyzing the features of the

nearest neighbors, we can infer the trustworthiness of

a node in the network. Example: Suppose we have

historical data on node behavior in the IoT network,

including features such as packet delivery ratio,

uptime and communication frequency. Using KNN,

we can find the K nearest neighbors of a node based

on these features. If the majority of the nearest

neighbors are known to be trustworthy, we can infer

that the node in question is also likely to be

trustworthy.

▪ Use KNN to estimate the trustworthiness of

neighboring nodes based on observed features

such as communication history, packet delivery

ratio, and energy consumption. The

trustworthiness of a node is determined by the

class label assigned to it, where a "trusted" node

is one that is likely to behave reliably and

responsibly.

▪ D(xi,xj) represents the distance metric between

nodes xi and xj.

▪ yi represents the class label of node xi.

▪ k is the number of nearest neighbors to consider.

▪ For classification, assign the majority class label

among the k nearest neighbors to the node being

evaluated.

© July 2024| IJIRT | Volume 11 Issue 2 | ISSN: 2349-6002

IJIRT 166510 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 827

Step 2. Trust-based Routing Decision:

In this step, the trustworthiness estimation obtained

from KNN is integrated into the routing decision

process. Routes through nodes with higher

trustworthiness scores are prioritized for data

transmission to enhance security and reliability.

Example: Consider a scenario where a node in the

IoT network needs to forward data packets to a

destination node. Instead of blindly choosing the

shortest path or the path with the fewest hops, the

routing algorithm considers the trustworthiness

scores of neighboring nodes obtained from KNN. It

selects the route with the highest average

trustworthiness score among its neighbors, thereby

minimizing the risk of routing through potentially

malicious nodes.

▪ Integrate the trustworthiness estimation into the

routing decision process. Consider the

trustworthiness of neighboring nodes as a factor

when selecting the optimal route for data

transmission. Nodes with higher trustworthiness

scores are prioritized in the routing process.

• Define a trust-based routing metric that

combines traditional routing metrics (e.g., hop

count, link quality) with the estimated

trustworthiness of neighboring nodes.

• Assign weights to each metric based on their

relative importance.

• Calculate the trust-based routing metric for each

candidate route and select the route with the

highest trustworthiness score for data

forwarding.

Step 3. KNN Training and Classification:

The KNN algorithm is trained using historical data to

learn the relationship between features and

trustworthiness labels (trusted or untrusted). During

classification, the trained model is used to predict the

trustworthiness of neighboring nodes based on their

observed features. Example: Suppose we have a

dataset containing information about past

interactions between nodes in the IoT network,

including features such as communication patterns,

packet delivery ratios, and energy consumption. We

split this dataset into training and testing sets and

train the KNN classifier using the training data. When

a new node joins the network, its features are input

into the trained KNN model to predict its

trustworthiness label (trusted or untrusted) based on

its similarity to past instances.

▪ Train the KNN classifier using historical data

collected from IoT network operations. The

classifier learns the relationship between

features and trustworthiness labels (trusted or

untrusted). During classification, apply the

trained classifier to estimate the trustworthiness

of neighboring nodes based on observed

features.

a. Train the KNN classifier using the training

dataset, where each instance represents a

node with its observed features and

corresponding trustworthiness label.

b. Use the Euclidean distance metric or other

appropriate distance metrics to calculate the

similarity between nodes.

c. During classification, query the KNN

classifier with the features of a node to

predict its trustworthiness label.

Step 4. Adaptive Learning and Updating:

To maintain the accuracy and relevance of the

trustworthiness estimation model, it needs to be

continuously updated based on real-time

observations and user feedback. This involves

periodically retraining the KNN classifier with new

data and incorporating feedback mechanisms to adapt

to changing network conditions. Example: As the IoT

network evolves and new nodes join or leave the

network, the trustworthiness of nodes may change

dynamically. Therefore, the KNN model needs to be

periodically retrained with fresh data to reflect the

current state of the network. Additionally, feedback

mechanisms can be implemented to incorporate real-

time observations and user feedback into the training

process, enabling the model to adapt to emerging

threats and maintain its accuracy over time.

▪ Continuously monitor the performance of the

trust-based routing system and update the KNN

classifier to adapt to changing network conditions

and emerging threats. Incorporate real-time

observations and user feedback into the training

process to improve the accuracy and robustness of

trustworthiness estimation.

✓ Periodically update the KNN classifier with new

training data and feedback from network

operations.

© July 2024| IJIRT | Volume 11 Issue 2 | ISSN: 2349-6002

IJIRT 166510 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 828

✓ Implement mechanisms to handle concept drift

and maintain model freshness in dynamic IoT

environments.

✓ Use techniques such as online learning and

incremental updates to adapt the KNN classifier

to evolving network conditions over time.

By integrating KNN into the trust-based secure routing

system in IoT, we can leverage its ability to analyze

past behavior and classify nodes based on their

similarity to historical instances. This approach

enhances the security and resilience of IoT networks

by prioritizing routes through trustworthy nodes and

mitigating the risk of routing attacks and unauthorized

access.

3.2.5. Neural Networks

Neural Networks (NNs) are a powerful class of

machine learning algorithms capable of capturing

complex patterns in data. By integrating NNs into

trust-based secure routing, IoT networks can achieve

advanced trust evaluation, anomaly detection, and

adaptive routing. This integration addresses the

dynamic and heterogeneous nature of IoT

environments, enhancing security and reliability

against evolving threats. Steps for Integrating Neural

Networks for Trust-Based Secure Routing in IoT,

Step 1: Feature Selection and Extraction

This step involves selecting and extracting relevant

features from the routing environment to serve as input

to the neural network. Features may include node

reputation, communication reliability, security

posture, and historical behavior. For example, features

could include the number of successful data

transmissions, the frequency of routing table updates,

the response time of neighboring nodes, and the level

of encryption used for communication.

X = x1, x2, …. xn

Step 2: Training Data Collection

Training data consists of labeled examples, where

each example includes a feature vector and its

corresponding label. Labels indicate the desired

output, such as whether a routing path is trustworthy

or if a security threat is present. For example,

collecting training data involves observing routing

decisions in the IoT network over time. Each example

includes features such as node reputation,

communication reliability, and security posture, along

with labels indicating whether the routing decision

was successful or if a security threat was detected.

D={(X1,Y1),(X2,Y2),...,(Xm,Ym)}

Step 3: Model Training

In this step, the neural network is trained using the

labeled training data. The model learns to classify the

feature vectors into different classes (e.g., trustworthy

vs. untrustworthy routes) by adjusting the weights and

biases of its neurons based on the training data. For

example, Training the neural network involves feeding

the labeled training examples into the network. The

algorithm learns to classify the feature vectors into

different classes based on the observed patterns in the

training data.

NN = Train (D)

Step 4: Trust Evaluation and Routing Decision

Given a feature vector representing the current routing

environment, the trained neural network predicts the

class label for the input. The prediction is based on the

learned patterns in the training data and the input

features. For example, suppose we want to evaluate

the trustworthiness of a routing path in real-time. We

input the relevant features (e.g., node reputation,

communication reliability) into the trained neural

network. The model predicts whether the routing path

is trustworthy or if there's a potential security threat.

Y^ = NN(X)

Step 5: Adaptation and Learning

The neural network can be periodically retrained using

updated training data to adapt to changing network

conditions and improve its predictive performance

over time. For example, as new routing decisions and

security events occur in the IoT network, we collect

updated training data. We then retrain the neural

network using this new data, incorporating the latest

observations and labels. This allows the model to

adapt to evolving network dynamics and improve its

accuracy.

NNupdated = Retrain(D')

Step 6: Integration with Trust-Based Routing Policies

The output from the neural network is integrated with

trust-based routing policies through a decision

function. This function maps the model predictions to

routing decisions, prioritizing trusted routes or

avoiding untrustworthy nodes based on the predicted

© July 2024| IJIRT | Volume 11 Issue 2 | ISSN: 2349-6002

IJIRT 166510 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 829

class labels. For example, based on the prediction from

the neural network, we apply trust-based routing

policies to make routing decisions. For example, if the

model predicts a high level of trust for a routing path,

we prioritize using that path for data transmission.

Conversely, if a potential security threat is detected,

we avoid using routes associated with that threat.

Routing Decision = g(Y)

Anomaly Detection in RPL Attacks Using Neural

Networks

Feature Selection and Extraction for Anomaly

Detection: Relevant features specific to RPL

anomalies (e.g., sudden changes in route paths,

increased packet loss) are extracted and included in the

feature vector X.

Training Data Collection for Anomaly Detection:

Collect labeled data that includes both normal and

anomalous RPL behavior to train the model.

Model Training for Anomaly Detection: Train the

neural network on this comprehensive dataset to

distinguish between normal and anomalous behaviors.

Anomaly Detection: During real-time routing, use the

trained model to predict the likelihood of an RPL

attack based on the input features. If an anomaly is

detected, adjust the routing decision accordingly.

Anomaly Score = NNanomaly(X)

If the anomaly score exceeds a certain threshold, it

indicates a potential RPL attack, prompting the routing

algorithm to avoid the suspicious route. By integrating

Neural Networks for both trust evaluation and

anomaly detection, the IoT network can achieve robust

security against RPL attacks while ensuring efficient

and trustworthy routing decisions. This approach

leverages neural networks' deep learning capabilities

to assess trustworthiness and make informed routing

decisions in dynamic IoT environments.

3.3. Routing Decision Module

The Routing Decision Module is a vital part of the

proposed trust-based model for secure routing in IoT

networks. It utilizes the trust scores and anomaly

detection results to make informed routing decisions,

ensuring that data packets are transmitted through

trustworthy and reliable nodes, thus avoiding nodes

identified as malicious or suspicious. The primary

objective of the Routing Decision Module is to

enhance the security and efficiency of the IoT network

by leveraging trust scores and anomaly detection

outcomes. The module dynamically selects the most

secure and efficient routing paths based on the latest

trust metrics and anomaly detection results. Key

Objectives are,

• Secure Routing: Prioritize routes through nodes

with high trust scores and avoid nodes with low

trust scores or identified anomalies.

• Energy Efficiency: Consider the energy levels of

nodes to prolong the network's operational

lifetime.

• Throughput Optimization: Ensure high data

throughput by selecting optimal routing paths.

• Minimizing Routing Overhead: Reduce the

control message overhead to maintain network

efficiency.

• Packet Loss Reduction: Minimize packet loss by

avoiding unreliable or compromised nodes.

3.3.1. Secure Routing Path Selection

The Routing Decision Module uses the trust scores

provided by the Trust Computation Module to select

secure routing paths. Nodes with higher trust scores

are preferred in the routing decisions, while nodes with

lower trust scores or detected anomalies are avoided.

Routing Algorithm:

• Trust Score Evaluation: Evaluate the trust scores

of all neighboring nodes.

• Path Selection Criteria: Consider multiple

criteria such as trust score, energy level, and

historical performance.

• Optimal Path Selection: Select the path that

maximizes security and efficiency, using a

weighted combination of the criteria.

3.3.2. Real-Time Updates

The Routing Decision Module continuously updates

the routing paths based on real-time data. As trust

scores and anomaly detection results are dynamically

updated, the routing decisions are adjusted

accordingly to respond to emerging threats and

changing network conditions.

Dynamic Adjustments:

✓ Trust Score Updates: Adjust routing decisions

based on the latest trust scores from the Trust

Computation Module.

✓ Anomaly Alerts: Immediately avoid nodes

flagged by the Anomaly Detection Module.

✓ Energy Levels: Monitor and factor in the

remaining energy levels of nodes to prevent

network partitioning.

© July 2024| IJIRT | Volume 11 Issue 2 | ISSN: 2349-6002

IJIRT 166510 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 830

3.4 Data Collection and Preprocessing Module

The Data Collection and Preprocessing Module are

foundational to the proposed trust-based model for

secure routing in IoT networks. It is responsible for

gathering data from the network, cleaning and

processing this data, and then extracting meaningful

features that are used by other modules, such as Trust

Computation, Anomaly Detection and Routing

Decision Modules.

3.4.1. Data Collection

The Data Collection process involves gathering

various types of data from IoT nodes and network

interactions. This data includes, but is not limited to,

packet delivery records, acknowledgment receptions,

energy levels, transmission delays and interaction

patterns. The data is collected continuously and in

real-time to ensure up-to-date information for

decision-making. The Key Data Types are,

✓ Packet Delivery Records: Information on

successful and failed packet transmissions.

✓ Acknowledgment Receptions: Records of

acknowledgments received from destination

nodes.

✓ Energy Levels: Current energy levels of the IoT

nodes.

✓ Transmission Delays: Time delays observed

during data transmission.

✓ Interaction Patterns: Historical data on node

interactions.

3.4.2 Data Preprocessing

Once the data is collected, it must be preprocessed to

ensure it is suitable for analysis by the Trust

Computation and Anomaly Detection Modules.

Preprocessing steps include data cleaning, feature

extraction and normalization.

- Data Cleaning:

o Noise Removal: Eliminate irrelevant or

erroneous data points that could distort

analysis.

o Missing Values Handling: Impute or remove

missing values to maintain dataset integrity.

- Feature Extraction:

o Relevant Feature Identification: Identify

features that are indicative of node behavior

and network performance.

o Feature Creation: Derive new features from

existing data that can help in anomaly

detection and trust computation.

- Data Normalization:

o Scaling: Scale features to a similar range to

ensure uniformity and improve the

performance of machine learning algorithms.

o Encoding: Encode categorical variables into

numerical formats if needed.

The trust scores calculated by the Trust Computation

Module are continuously updated based on the outputs

of the Anomaly Detection Module. Nodes identified as

malicious or showing anomalous behavior are

assigned lower trust scores. The Routing Decision

Module uses these trust scores to avoid compromised

nodes and ensure secure routing paths. By combining

trust computation with machine learning-based

anomaly detection, the proposed model enhances the

security and reliability of routing in IoT networks

against RPL attacks. The integration of multiple

machine learning algorithms allows for robust and

adaptive detection of various attack vectors, ensuring

comprehensive protection.

IV.RESULTS AND DISCUSSIONS

4.1. Experimental Setup

The simulation experiments for evaluating the

proposed trust-based secure routing model in IoT were

conducted using the Network Simulator 3 (NS3). NS3

is a discrete-event network simulator highly suitable

for simulating complex network behaviors and

performance metrics in IoT environments. The

simulation setup includes a variety of parameters to

model the IoT network and evaluate the performance

of the proposed model under different conditions. The

parameters used in the simulation are detailed in the

table 1 below:

Table 1: Simulation Environment

Parameter Values

Coverage area 800m × 800m

Simulation time 450 sec

Number of nodes 50, 100,150,200 and 250

Traffic type UDP-CBR

Transmission range 400m

Packet size 2KB

Maximum speed 25 m/s

Mobility model Random Waypoint

© July 2024| IJIRT | Volume 11 Issue 2 | ISSN: 2349-6002

IJIRT 166510 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 831

The simulated network covers an area of 800 meters

by 800 meters, providing ample(plenty) space to

model the movement and interactions of nodes within

a typical IoT deployment. Each simulation run lasts for

500 seconds, ensuring sufficient time to observe the

network's performance and the routing protocol's

effectiveness under various conditions. The

experiments were conducted with three different

scenarios, varying the number of nodes to 50, 100,

150,200 and 250. This helps in understanding the

scalability and performance of the proposed routing

model across different network densities. The traffic

type used in the simulations is UDP with Constant Bit

Rate (CBR) to model continuous data transmission,

which is common in many IoT applications. Each node

has a transmission range of 400 meters, ensuring that

nodes can communicate with multiple neighbors and

form a robust network topology. The packet size for

data transmission is set to 2KB, representing typical

data packets in IoT communications. Nodes in the

simulation can move at a maximum speed of 25 meters

per second, simulating the mobility scenarios that

might be encountered in dynamic IoT environments.

The Random Waypoint mobility model is used to

simulate the movement of nodes within the network.

This model helps in creating realistic scenarios where

nodes move randomly, pause for a while, and then

continue to move to another random location, thereby

simulating typical IoT node mobility patterns.

4.2 Experimental Results

Node Reputation

Node reputation is a metric used to evaluate the

trustworthiness of nodes within the IoT networks.

Each node is assigned a reputation score based on its

past behavior, such as successful packet deliveries,

adherence to routing protocols, and participation in

network maintenance. Higher scores indicate more

trustworthy nodes, while lower scores suggest

potential malicious or unreliable behavior.

𝑅𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑖 =
∑ 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑖,𝑡 𝑋 𝑊𝑒𝑖𝑔ℎ𝑡𝑡

𝑇
𝑡=1

∑ 𝑊𝑒𝑖𝑔ℎ𝑡𝑡
𝑇
𝑡=1

Where, Reputationi is the Reputation Score of node i.

Behaviori,t is the observed behavior metric of node i at

time t. Weightt is the weight assigned to the behavior

at time t. T is the total number of observations.

Figure 3: Comparison of Node Reputation Vs

Number of Nodes

Random Forest can effectively leverage multiple trust

metrics to predict node reputation accurately. Its

ensemble nature allows it to capture complex patterns

in the data. Computationally intensive, less

interpretable compared to simpler models. SVM is

effective for binary classification tasks. For node

reputation, it can classify nodes into trusted and

untrusted categories based on their features, but may

struggle with multiclass scenarios. It requires careful

tuning of hyper parameters, computationally

expensive for large datasets and also not very

interpretable. Naive Bayes can quickly estimate node

reputation based on probabilistic inference, but its

assumptions may limit its accuracy compared to more

complex models. Assumes independence among

features, which is often not the case in real-world data.

KNN can classify node reputation based on the

similarity to known examples, but its performance

degrades with large or high-dimensional datasets.

Computationally expensive during prediction,

sensitive to the choice of k and distance metric, can

struggle with high-dimensional data.

Figure 3 shown, Neural Networks produce more

trustworthy nodes compare with other algorithms.

Neural Networks excel in capturing nonlinear

relationships among features, making them well-

suited for predicting node reputation where complex

interactions between trust metrics exist. It is also

capable of learning complex patterns and

representations, highly flexible, scalable to large

datasets. Neural Networks can automatically learn

feature representations from raw data, which can be

particularly useful for identifying subtle indicators of

trustworthiness that simpler models might miss.

© July 2024| IJIRT | Volume 11 Issue 2 | ISSN: 2349-6002

IJIRT 166510 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 832

Anomaly Detection Metrics

Anomaly detection metrics evaluate the effectiveness

of different algorithms in identifying unusual or

malicious activities in the network. Metrics such as

precision, recall, and F1-score are typically used to

compare the performance of these algorithms.

o Precision: Precision=TP / TP+FP

o Recall: Recall=TP/ TP+FN

o F1-Score: F1= 2× (Precision×Recall)/

(Precision+Recall)

Where:

• TP is the number of true positives.

• FP is the number of false positives.

• FN is the number of false negatives.

SVM evaluates trust by finding the optimal hyper

plane that separates trustworthy nodes from

untrustworthy ones in a high-dimensional space. For

detecting sinkhole and blackhole attacks, SVM

classifies nodes based on communication reliability

and packet loss. Selective forwarding attacks are

identified by analyzing the deviation in packet

delivery rates. For Sybil attacks, SVM detects

inconsistencies in node identity patterns. SVM's high

precision and effectiveness in high-dimensional

spaces are advantageous, but it requires careful

parameter tuning and is computationally expensive for

large datasets.

KNN evaluates trust by considering the behavior of k-

nearest neighbors in the feature space. Nodes involved

in sinkhole and blackhole attacks can be identified by

their anomalous packet reception and dropping

patterns compared to their neighbors. For selective

forwarding attacks, KNN detects deviations in packet

forwarding behavior. Sybil attacks are identified by

clustering similar identities and recognizing outliers.

While KNN is simple and intuitive, it is

computationally expensive during prediction and

sensitive to noisy data.

Naive Bayes calculates the posterior probability of a

node being trustworthy based on observed features,

assuming feature independence. For sinkhole and

blackhole attacks, it assesses the likelihood of nodes

dropping packets given their claimed metrics.

Selective forwarding attacks are detected by the

probability of inconsistent packet forwarding. Sybil

attacks are identified by analyzing the probabilities of

multiple identities originating from a single node.

Naive Bayes is fast and interpretable but relies on the

assumption of feature independence, which may not

hold true in complex scenarios. Random Forest uses

an ensemble of decision trees to evaluate the

trustworthiness of nodes based on features such as

packet delivery ratio, node reputation, and historical

behavior. For each RPL attack, the Random Forest

model aggregates decisions from multiple trees to

classify nodes as trustworthy or untrustworthy. This

ensemble approach helps reduce false positives and

negatives, making it effective in identifying various

anomalies. The robustness to over fitting and handling

of large datasets make Random Forest a reliable

choice, although it is computationally intensive.

Neural Networks evaluate trust by learning complex

patterns through multiple layers of neurons. For

sinkhole and blackhole attacks, neural networks

identify patterns of high traffic attraction followed by

packet drops. Selective forwarding attacks are

detected by recognizing non-linear patterns in packet

delivery inconsistencies. Sybil attacks are identified

through the network's ability to detect abnormal

identity behaviors and communication patterns.

Neural Networks provide the best results for anomaly

detection due to their capability to capture complex

relationships and subtle anomalies, although they

require significant computational resources and

training data.

Random Forest is known for its high precision due to

ensemble averaging, which reduces false positives

However, while Random Forest is robust to over

fitting and handles large datasets well, it is

computationally intensive and less interpretable.

SVMs are effective in high-dimensional spaces and

robust against over fitting, but they demand careful

parameter tuning and are computationally expensive

for large datasets. Naive Bayes is simple, fast, and

interpretable, working well with small datasets.

However, its assumption of feature independence is

rarely true in real-world scenarios. KNN is simple,

intuitive, and requires no training phase, but it is

computationally expensive during prediction and

sensitive to noise and outliers.

© July 2024| IJIRT | Volume 11 Issue 2 | ISSN: 2349-6002

IJIRT 166510 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 833

Figure 4: Comparison of Precision, Recall, and F1-

Score Vs Node =150

Figure 4 shown, Neural Networks produce higher

percentage of Precision, Recall, and F1-Score

compare with other algorithms. Neural Networks

excel in learning and recognizing intricate patterns,

handling high-dimensional data, and automatically

refining features from raw data. They scale well with

large datasets, ensuring that the model can learn from

extensive historical data to improve anomaly detection

accuracy. The F1-score is typically the highest among

these models, effectively balancing precision and

recall. Furthermore, Neural Networks continuously

learn and adapt to new data, maintaining high

performance as network conditions and behavior

patterns evolve. They are also robust to noisy data,

which is common in IoT networks, ensuring reliable

anomaly detection even in the presence of unreliable

or fluctuating data.

Computation Cost

Computation cost refers to the amount of

computational resources required to execute the trust-

based secure routing algorithms in an IoT network.

This includes the processing time, memory usage, and

energy consumption associated with executing the

machine learning models and making routing

decisions. Minimizing computation cost is crucial for

IoT devices, which often have limited computational

capabilities and power resources. Computation cost

can be quantified in various ways, depending on the

specific resources being measured. The general

approach involves measuring the computational

resources consumed during the execution of the

algorithm. Common metrics include CPU cycles,

memory usage, and energy consumption.

• CPU Cycles: Computation CostCPU= ∑i=1
n

CPU Cyclesi , Where, CPU Cyclesi is the number

of CPU cycles consumed by the i-th operation in

the algorithm. n is the total number of operations.

• Memory Usage: Computation CostMemory=

maxi=1
nMemory Usagei , Where, Memory Usagei

is the memory consumed by the i-th operation in

the algorithm.n is the total number of operations.

• Energy Consumption: Computation CostEnergy

=∑i=1
nEnergy Consumptioni , Where,

Energy Consumptioni is the amount of energy

consumed by the ith operation in the algorithm.n

is the total number of operations.

• Execution Time: Computation CostTime=∑i=1
n

Execution Timei , where, Execution Timei is the

time taken to complete the ith operation in the

algorithm. n is the total number of operations.

In practice, computation cost is often a combination of

these factors. A comprehensive metric might look like

this:

Computation CostTotal=w1⋅Computation CostCPU+w2

⋅Computation CostMemory+w3⋅Computation CostEnergy

+w4⋅Computation CostTime

Where w1, w2, w3, w4 are weighting factors that reflect

the relative importance of each type of resource

consumption in the specific context of the IoT

application. By evaluating and optimizing the

computation cost, we can ensure that the trust-based

secure routing algorithms are efficient and suitable for

deployment in resource-constrained IoT

environments. Random Forest involves parallelizable

nature of tree construction mitigates some of the

computational burden, but overall, the resource

demands can be substantial, especially for large

datasets. Linear SVMs are more computationally

efficient, the need for careful parameter tuning and

potential scalability issues make SVMs less favorable

in large-scale IoT environments. Naive Bayes are

suitable for environments with limited computational

resources. However, its simplicity and. efficiency

come at the cost of lower accuracy compared to more

complex models. KNN degrades with high-

dimensional data due to the curse of dimensionality,

further increasing computational costs.

© July 2024| IJIRT | Volume 11 Issue 2 | ISSN: 2349-6002

IJIRT 166510 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 834

Figure 5: Comparison of Computation Cost Vs

Number of Nodes

Figure 5 shown, Neural Networks produce lowest

computational cost compare with other algorithms.

Neural Networks traditionally require substantial

computational resources for both training and

inference due to their complex architectures and large

parameter spaces. Training involves numerous matrix

multiplications and nonlinear operations, often

requiring specialized hardware such as GPUs.

However, advances in deep learning frameworks and

hardware acceleration have significantly optimized

these processes. Despite high initial training costs,

once trained, Neural Networks can perform

predictions very efficiently. Techniques like model

compression, pruning, and quantization further reduce

the inference computational cost, making Neural

Networks more viable for deployment in resource-

constrained IoT environments.

Control Packet Transmission

The number of control packets sent is a vital

performance metric for evaluating the efficiency and

bandwidth usage of a routing protocol in IoT

networks. This metric measures the amount of data

dedicated to control packets transmitted over the

network in a given time period. Understanding this

metric helps in optimizing the protocol to reduce

overhead and improve network performance. Total

Control Packet Transmission metric measures the

total size of all control packets transmitted during the

simulation or operational period.

Total Control Packet Data Sent (KB)

= ∑
Size of Each Control Packet (Bytes)

1024

Control Packet Transmission Rate (KB/s) metric

indicates the average rate at which control packet data

is transmitted in the network. It is calculated by

dividing the total control packet data sent by the total

simulation time, providing insights into the bandwidth

consumed by control messages.

Control Packet Transmission Rate (KB/s) = Total

Control Packet Data Sent (KB) / Total Simulation

Time (s)

The number of control packets Transmission in

kilobytes per second is a vital metric for understanding

the control traffic overhead in IoT networks. By

monitoring this metric, network administrators can

optimize the routing protocol to ensure efficient

bandwidth usage, thereby enhancing the overall

performance and reliability of the network.

Random Forest increases the overhead in IoT

networks, making it less efficient in terms of control

packets sent. SVMs can achieve high precision, the

computational complexity and the frequent updates

can increase the number of control packets

Transmission. Naive Bayes classifiers independence

assumption can sometimes lead to less accurate trust

evaluations, potentially compromising routing

decisions and security. KNN method can generate a

substantial number of control packets, especially in

dynamic IoT environments, as the distance metrics

and neighbor information must be frequently updated

and transmitted across the network. This makes KNN

less efficient in terms of control packet overhead.

Figure 6: Comparison of Control Packets

Transmission Vs Number of Nodes

Figure 6 shown, Neural Networks produce best control

packets sent compare with other algorithms. Neural

Networks, particularly deep learning models, excel in

handling large, complex datasets and can capture

intricate patterns in data. They offer significant

advantages in terms of flexibility and adaptability,

which are critical for dynamic IoT environments.

Neural Networks can achieve high accuracy in trust

evaluation and anomaly detection with fewer control

packet transmissions. This efficiency stems from their

ability to learn complex representations and generalize

© July 2024| IJIRT | Volume 11 Issue 2 | ISSN: 2349-6002

IJIRT 166510 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 835

from them, reducing the need for frequent updates and

retransmissions of control information.

Routing Overhead

Routing overhead measures the extra communication

burden introduced by the trust-based routing model.

This includes additional control packets for

establishing and maintaining trusted routes, compared

to traditional routing protocols.

Routing Overhead= (Total Control Packets) /

(Total Data Packets)

 Where, Total Control Packets is the number of control

packets (e.g., route requests, replies, and maintenance

messages) transmitted. Total Data Packets is the

number of data packets transmitted.

Random Forest uses an ensemble of decision trees to

make routing decisions. The complexity of

maintaining multiple decision trees can result in higher

computational and communication costs. SVMs can

contribute to higher routing overhead due to the need

for extensive parameter tuning and the

computationally intensive process of finding the

optimal hyper plane for classification. Naive Bayes

assumption of feature independence may lead to less

accurate trust evaluations, potentially increasing the

need for additional communication to correct

misrouted packets. K-Nearest Neighbors (KNN)

involves significant computation at the time of

prediction, as it must calculate distances to all training

samples to classify a new instance. This can result in

high routing overhead in large-scale IoT networks,

particularly when frequent updates to the routing table

are necessary.

Figure 7: Comparison of Routing Overhead Vs

Number of Nodes

Figure 7 shown, Neural Networks produce lowest

routing overhead compare with other algorithms.

Neural Networks, particularly deep learning models,

are more complex and require substantial

computational resources for training. However, once

trained, they can perform predictions rapidly. Neural

Networks excel in reducing routing overhead by

leveraging their ability to generalize from training data

and make accurate routing decisions without the need

for frequent updates. Neural Networks can learn and

generalize from historical data, enabling them to make

accurate predictions with fewer updates. This reduces

the communication overhead associated with

propagating routing updates throughout the network.

Neural Networks can adapt to changing network

conditions and learn from new data, which helps in

maintaining an up-to-date and efficient routing

strategy with minimal additional overhead. Their

ability to filter out noise and irrelevant information

ensures that only the most pertinent routing

information is propagated. Advances in hardware

acceleration (e.g., Graphics processing units (GPUs)

and tensor processing units (TPUs)) and efficient

neural network architectures allow for optimized

resource usage, reducing the overall overhead

involved in processing and communication.

Throughput

Throughput measures the rate of successful data

delivery over the network. It is the amount of data

successfully received at the destination per unit of

time.

Throughput = Total Data Received (bits)/ Total Time

(seconds)

Where, Total Data Received is the total amount of data

successfully received in bits. Total Time is the total

time over which the data was received in seconds.

Random Forest algorithms can improve the accuracy

of routing decisions, the process of maintaining and

aggregating multiple trees can introduce latency and

reduce throughput, especially in large-scale IoT

networks. The computational intensity involved in

training and predicting with SVMs can slow down the

decision-making process, which may negatively

impact throughput. The need for extensive

computation to find the optimal hyper plane can

introduce delays. Naive Bayes is the independence

assumption between features might lead to suboptimal

routing decisions in complex scenarios, potentially

impacting throughput. KNN overhead can

significantly impact throughput, especially in large

© July 2024| IJIRT | Volume 11 Issue 2 | ISSN: 2349-6002

IJIRT 166510 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 836

and dynamic IoT networks where routing decisions

need to be made quickly and frequently.

Figure 8: Comparison of Throughput (KB/Sec) Vs

Number of Nodes

Figure 8 shown, Neural Networks produce highest

throughput compare with other algorithms. In Neural

Networks leverage parallel processing capabilities of

modern hardware (such as GPUs and TPUs), allowing

for rapid data processing and quick decision-making,

which enhances throughput. Neural Networks can

adapt to changing network conditions in real-time,

providing accurate and timely routing decisions that

maintain high throughput even as network conditions

evolve. Advances in neural network architectures and

optimization techniques (e.g., quantization, pruning)

have significantly improved inference speeds, making

neural networks highly efficient for real-time

applications and ensuring high throughput.

Packet Loss Rate

Packet loss rate quantifies the number of packets that

fail to reach their destination. It is an important metric

for evaluating the reliability of the network.

Packet Loss Rate = (Total Packets Sent - Total

Packets Received) \ Total Packets Sent

Where, Total Packets Sent is the number of packets

sent from the source. Total Packets Received is the

number of packets successfully received at the

destination.

Packet Loss Level (%)=(1−Total Packet Sent (bits)/

Total Packet Received (bits))×100

A lower packet loss rate indicates more reliable and

efficient communication. In the context of IoT

networks, minimizing packet loss is essential for

ensuring data integrity and maintaining the overall

performance of the network. Random Forest is

complexity of maintaining multiple trees can lead to

delays and potential packet loss, especially in dynamic

and large-scale IoT networks. SVMs are high-

dimensional spaces, can introduce latency in decision-

making, which may contribute to higher packet loss

rates. Naive Bayes classifiers are complex IoT

environments, leading to increased packet loss under

certain conditions. KNN computational overhead can

increase the time taken to make routing decisions,

resulting in higher packet loss rates in dynamic IoT

networks.

Figure 9: Comparison of Packet loss rate Vs Number

of Nodes

Figure 9 shown, Neural Networks produce lowest

packet loss rate compare with other algorithms.

Neural Networks, particularly deep learning models,

are adept at capturing complex, non-linear

relationships in the data. Despite the higher

computational cost during training, they offer rapid

and efficient inference once deployed, which can

significantly reduce packet loss rates. Neural

Networks can continuously learn and adapt to

changing network conditions, allowing them to make

more accurate routing decisions that minimize packet

loss. Neural Networks excel at recognizing complex

and non-linear patterns in data, which enables them to

predict and avoid unreliable routes that might lead to

packet loss. The deployment of Neural Networks on

advanced hardware (such as GPUs and TPUs)

facilitates real-time data processing and rapid

decision-making, reducing the likelihood of packet

loss due to delayed routing decisions.

V. CONCLUSION

In this paper, we have presented a comprehensive

framework for enhancing trust-based secure routing in

IoT networks by integrating various machine learning

© July 2024| IJIRT | Volume 11 Issue 2 | ISSN: 2349-6002

IJIRT 166510 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 837

algorithms, including Random Forest, Support Vector

Machine (SVM), Naive Bayes, K-Nearest Neighbors

(KNN) and Neural Networks. Our approach addresses

the critical challenges of trust evaluation, anomaly

detection and adaptive routing in dynamic IoT

environments. Through detailed descriptions of the

proposed model's components, we have demonstrated

how each machine learning algorithm can be

effectively applied to different aspects of the routing

process. We highlighted the importance of feature

selection and extraction, the collection and utilization

of training data, model training, trust evaluation,

adaptive learning and integration with trust-based

routing policies. To validate in this proposed model,

conducted extensive simulations using NS3, setting up

an experimental environment with various parameters

such as coverage area, simulation time, number of

nodes, traffic type, transmission range, packet size,

maximum speed, routing protocol and mobility model.

Our performance evaluation included metrics such as

node reputation, anomaly detection, routing overhead,

control packets sent, throughput, packet loss rate and

data loss level. The results of our simulations indicate

that the integration of machine learning techniques

significantly enhances the security, reliability, and

efficiency of IoT networks. Each algorithm showed

strengths in specific areas, contributing to a more

robust and adaptive routing system capable of

dynamically adjusting to changing network conditions

and mitigating security threats. Overall, this work

contributes to the advancement of trust-based secure

routing systems in IoT by leveraging the power of

machine learning. By integrating these advanced

techniques into IoT routing architectures and also in

this research work aim to foster (promote) the

widespread adoption of IoT technologies across

various application domains, ensuring secure and

reliable communication in the face of evolving

challenges and threats. Future work will focus on

further optimizing these models and exploring their

application in real-world IoT deployments to validate

their effectiveness and scalability.

REFERENCE

[1] A. Pathak and S. Nepal, "Trust-based Routing

Protocols for Internet of Things: A Survey," in

IEEE Internet of Things Journal, vol. 7, no. 12,

pp. 11164-11180, Dec. 2020. doi:

10.1109/JIOT.2020.3012045.

[2] Z. Shelby et al., "RFC 6550: RPL: IPv6

Routing Protocol for Low-Power and Lossy

Networks," Internet Engineering Task Force

(IETF), Mar. 2012.

[3] A. Khurma, B. Shetty, S. Gajendran, T. A.

Gonsalves and D. K. Sharma, "Survey on

Routing Attacks in IoT: Detection, Prevention,

and Mitigation," in IEEE Internet of Things

Journal, vol. 8, no. 3, pp. 1591-1613, Feb.

2021. doi: 10.1109/JIOT.2020.3028213.

[4] F. Shaikh, A. Rodrigues, A. Belgaumkar, B.

Shetty and S. Rodrigues, "A Comprehensive

Study on RPL Routing Attacks in IoT:

Taxonomy, Analysis, and Research

Directions," in IEEE Access, vol. 9, pp.

11838-11858, 2021. doi:

10.1109/ACCESS.2021.3050042.

[5] F. A. B. Alsaadi and J. P. Walters, "RPL

Routing Attacks in the Internet of Things: A

Review," in 2020 International Conference on

Internet of Things (iThings) and IEEE Green

Computing and Communications (GreenCom)

and IEEE Cyber, Physical and Social

Computing (CPSCom) and IEEE Smart Data

(SmartData) and IEEE Congress on

Cybermatics (Cybermatics), Calgary, AB,

Canada, 2020, pp. 238-243. doi:

10.1109/iThings/GreenCom/CPSCom/Smart

Data/Cybermatics49394.2020.00052.

[6] Momani, M., & Challa, S. (2010). Survey of

trust models in different network domains.

*International Journal of Ad Hoc, Sensor &

Ubiquitous Computing*, 1(3), 1-19.

[7] Bao, F., & Chen, I. R. (2012). Trust

management for the internet of things and its

application to service composition. *IEEE

International Symposium on a World of

Wireless, Mobile and Multimedia Networks

(WoWMoM)*, 1-6.

[8] Raza, S., Wallgren, L., & Voigt, T. (2013),

“SVELTE: Real-time intrusion detection in

the Internet of Things”. *Ad hoc Networks*,

11(8), 2661-2674.

[9] Zhang, Y., Xiao, Y., & Ness, S. (2018), “A

trust-based routing framework for secure and

efficient data collection in wireless sensor

© July 2024| IJIRT | Volume 11 Issue 2 | ISSN: 2349-6002

IJIRT 166510 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 838

networks”. *IEEE Transactions on Wireless

Communications*, 7(8), 2852-2860.

[10] Othman, S. B., & Mokdad, L. (2013),

“Enhancing network security with trust-

based and energy-aware AODV protocol in

MANET”. *Proceedings of the 28th Annual

ACM Symposium on Applied Computing*,

600-607.

[11] Marchang, N., & Datta, R. (2017).

Collaborative techniques for intrusion

detection in mobile ad-hoc networks. *Ad

Hoc Networks*, 6(4), 508-523.

[12] Sahu, S., & Shah, A. (2018), “Intrusion

detection system using random forest

algorithm for internet of things”. *Procedia

Computer Science*, 132, 1053-1063.

[13] Patel, J., & Doshi, M. (2020), “Anomaly

detection in IoT network traffic using

machine learning algorithms” *International

Journal of Computer Applications*, 174(8),

25-30.

[14] Al-Garadi, M. A., Mohamed, A., Al-Ali, A.,

& Du, X. (2020), “A survey of machine and

deep learning methods for internet of things

(IoT) security”. *IEEE Communications

Surveys & Tutorials*, 22(3), 1646-1685.

[15] Krontiris, I., Giannetsos, T., & Dimitriou, T.

(2013), “Launching a sinkhole attack in

wireless sensor networks; the intruder side”.

*International Journal of Security and

Networks*, 4(3), 145-153.

[16] Choi, H., Zhu, S., & La Porta, T. (2014),

“SET: Detecting node clones in sensor

networks”. *Proceedings of the International

Conference on Security and Privacy in

Communication Networks*, 341-350.

[17] Mayzaud, A., Badache, N., & Kechar, B.

(2016), “A Survey on RPL enhancements: A

focus on topology, security and mobility”.

Computer Communications, 120, 10-21.

[18] H. Adil, I. Ghazi, K. Akram and M. Anwar,

"Comparative Analysis of Machine Learning

Techniques for Trust-Based Routing in IoT

Networks," in 2020 International Conference

on Communication, Computing and Digital

Systems (C-CODE), Riyadh, Saudi Arabia,

2020, pp. 119-124. doi: 10.1109/C-

CODE51016.2020.9311402.

[19] S. Alam, M. Shah and M. R. Khan, "Security

Requirements and Trust-based Routing

Protocols in Internet of Things," in 2020 5th

International Conference on Computing,

Communication and Security (ICCCS),

Patna, India, 2020, pp. 1-6. doi:

10.1109/ICCCS49297.2020.9263527.

[20] T. Jelihovschi, C. S. Souza, A. O. Bueno and

A. N. Lisboa, "Machine Learning Algorithms

for Intrusion Detection in IoT Networks:

Random Forest and SVM," in 2019 18th

IEEE International Conference On Machine

Learning And Applications (ICMLA), Boca

Raton, FL, USA, 2019, pp. 1423-1430. doi:

10.1109/ICMLA.2019.00229.

[21] K. N. Shenoy and D. M. Akbar, "Random

Forest Classification for Intrusion Detection

System," in 2020 11th International

Conference on Computing, Communication

and Networking Technologies (ICCCNT),

Kharagpur, India, 2020, pp. 1-7. doi:

10.1109/ICCCNT49239.2020.9225629.

[22] N. Jain and M. Tuteja, "An Implementation

of Trust Based Routing Using SVM for IoT

Devices," in 2020 IEEE International

Conference on Engineering, Technology and

Innovation (ICE/ITMC), Stuttgart, Germany,

2020, pp. 1-6. doi:

10.1109/ICE/ITMC49287.2020.9198671.

[23] K. Srivastava, D. Akhtar, M. A. Khan and B.

K. Singh, "A Comparative Analysis of

Machine Learning Algorithms for Intrusion

Detection in IoT Network," in 2020 10th

International Conference on Cloud

Computing, Data Science & Engineering

(Confluence), Noida, India, 2020, pp. 114-

118. doi:10.1109/CONFLUENCE48919.20

20.9058608.

[24] P. S. Kshatriya et al., "Naïve Bayes Classifier

based approach for energy efficient and

reliable data transmission in IoT," in 2018

3rd International Conference on

Communication and Electronics Systems

(ICCES), 2018, pp. 1005-1008.

[25] S. Ramkumar et al., "Trust-based secure

routing protocol for IoT networks using

Naïve Bayes classifier," Journal of Ambient

Intelligence and Humanized Computing, vol.

12, no. 12, pp. 13891-13903, 2021.

© July 2024| IJIRT | Volume 11 Issue 2 | ISSN: 2349-6002

IJIRT 166510 INTERNATIONAL JOURNAL OF INNOVATIVE RESEARCH IN TECHNOLOGY 839

[26] D. V. Thanh et al., "Enhancing Intrusion

Detection System for Internet of Things

Using K-means Clustering and Naïve Bayes

Classifier," IEEE Access, vol. 8, pp. 118467-

118476, 2020.

[27] A. S. Surya and T. N. Shanmuganantham,

"Trust-based secure routing using K-nearest

neighbor algorithm in MANETs," Wireless

Personal Communications, vol. 118, no. 1,

pp. 225-240, 2021.

ABOUT THE AUTHORS

R.Elango received his M.Phil

degree from Thiruvalluvar

University, Vellore in the year

2011. He received his MCA degree

from Anna University, Chennai in

the year 2010. He is pursuing his

Ph.D degree (Part Time) at Sri

Vijay Vidyalaya College of Arts and Science,

Nallampalli, Dharmapuri, Tamil Nadu, India. He is

working as a Guest Lecturer in the Department of

Computer Science at Government Arts College for

Men, Krishnagiri. His current research interest

includes Internet of Things, Computer Networks,

Cloud Computing and Network Security.

Dr.D.Maruthanayagam received

his Ph.D Degree from

Manonmaniam Sundaranar

University, Tirunelveli in the year

2014. He received his M.Phil

Degree from Bharathidasan

University, Trichy in the year 2005. He received his

M.C.A Degree from Madras University, Chennai in

the year 2000. He is working as Dean cum Professor,

PG and Research Department of Computer Science,

Sri Vijay Vidyalaya College of Arts & Science,

Dharmapuri, Tamilnadu, India. He has above 23

years of experience in academic field. He has

published 8 books, more than 65 papers in

International Journals and 35 papers in National &

International Conferences so far. His areas of interest

include Computer Networks, Grid Computing,

Cloud Computing and Mobile Computing.

