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Abstract- Throughout the years, there has been a constant 

rise in the need for power. A strong predictive model is 

necessary to comprehend future consumption. The 

planning of power production and the determination of 

resources required to run the plants, such as fuels, depend 

heavily on the forecasting of energy demand. It also aids in 

the planning of future electricity requirements, which 

leads to the establishment of additional networks and 

plants. There are about 10 million people living in the city 

of London, which also contains 3.6 million homes, 

numerous businesses, and an industrial sector. Every year, 

energy bills in London's homes and offices cost upwards of 

£7.9 billion; this money does not stay in the city's economy. 
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I. INTRODUCTION 

 

Forecasting electricity demand is an important matter 

for the public sector, which includes the government 

and energy generation. Predictions that are accurate 

can result in major cost savings, better preparedness, 

better maintenance plans, and better fuel management. 

Furthermore, by employing improved demand 

projections, a distribution grid operator can preserve 

stability amongst power grids with a high distribution 

of renewable energy. This can lead to smart decision-

making, increased power supply and distribution 

system dependability, and significant operational and 

maintenance cost reductions. Using a sizable dataset 

of daily mean energy consumption records gathered 

from UK power networks, this study focuses on the 

city of London. As forecasting instruments, the 

SARIMAX and MLP models are contrasted. 

The UK government wants to produce 40% of its 

electricity with low carbon content and 30% from 

renewable sources. 

In this research, we are interest in time series analysis with 

the most popular method, that is, the Box and Jenkins 

method [3]. The result model of this method is quite accurate 

compared to other methods and can be applied to all types of 

data movement. There were two forecasting techniques that 

were used in this study; Autoregressive Integrated Moving 

Average (ARIMA) and Autoregressive Moving Average 

(ARMA). We applied these methods for detecting patterns 

and trends of the electric power consumption in the 

household with real time series period in daily, weekly, 

monthly, and quarterly [14]. We used program R and 

Rstudio [4], [5], for constructing the model [6], [7], [8]. The 

most suitable forecasting method and the best choice of 

period were chosen by considering the smallest value of AIC 

(Akaike Information Criterion) and RMSE (Root Mean 

Square Error), respectively. 

 

II. LITERATURE SURVEY 
 

Numerous research studies on the forecasting of 

electricity consumption have been published in recent 

decades. This could be because energy economy 

research is seeing an increase in the prediction of 

electricity consumption. For this study, we have 

examined and evaluated eight international research 

articles that have been published in the recent 20 years 

(2000–2020). Research on FOREX market 

anticipating exchange rates using deep learning and 

machine learning algorithms has been conducted by 

Iwona Ajumi and Abhishek Kaushik [1]. The primary 

goal was utilizing a deep learning method and a single 

hidden layer feed forward network to forecast the time 

series using a multi-layer perceptron (MLP). They 

employed exponential smoothing, RBF, MLP, SVM, 

ARMA, ARIMA, and the Box-Jenkins technique in 

addition to the Naive model. 
 

III. METHODOLOGY 
 

During the Requirements Gathering phase, 

stakeholders provide information regarding data 

sources, target variables, and desired accuracy levels 

for the electricity demand forecasting model. 
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Figure3.1: SDLCMODEL Created by Brandon 

Walker published on Towards Data Science 

Design: During this stage, the structure and layout of 

the model are developed according to the 

specifications collected in the prior phase. This 

involves identifying the right data preprocessing 

methods, choosing suitable features, and creating 

SARIMAX and LSTM models. 

 

Execution: During this stage, the model is put into 

practice utilizing the programming language and 

machine learning libraries that were chosen. This 

involves programming the data preprocessing, 

creating features, training models, and building 

forecasting algorithms. 

 

Validation: During this stage, the model undergoes 

testing to confirm that it satisfies the requirements and 

specifications outlined during the requirements 

gathering phase. This involves verifying the model's 

prediction precision and ensuring its ability to handle 

big datasets and real-time data with scalability and 

robustness. 

 

Implementation: During this stage, the model is put 

into operation in the production setting, where it is 

utilized to create predictions for electricity demand. 

This involves connecting the model to required 

infrastructure and giving stakeholders access to the 

model's outcomes. 

 

Maintenance involves updating and ensuring accuracy 

of the model to keep it current. This involves 

incorporating new data into the model, adjusting the 

model's settings, and resolving any bugs or problems 

that may occur. 

In this study, we examined how weather conditions 

relate to electricity usage by analyzing data from smart 

meters in London homes. The aim of the study was to 

achieve all of its primary goals. We reviewed existing 

studies on electricity consumption using machine 

learning methods to improve accuracy and created a 

user-friendly interface to fill in research gaps. We 

encountered challenges with incorporating additional 

weather and holiday information, but we managed to 

address certain issues. We evaluated the precision of 

the SARIMAX and LSTM models through the 

comparison using statistical measures. Both models 

had similar results, but LSTM slightly outperformed 

SARIMAX. Temperature, humidity, and windspeed 

were closely linked to electricity usage, and we used 

this correlation to identify the factors influencing 

demand. 

Figure 3.1 WATERFALL MODEL 

waterfall model by Dr.Winston W. Royce 

Moreover, the study found that there was a rise in 

electricity consumption in the initial and final months 

of the year, likely due to cooler temperatures and 

higher levels of humidity. We analyzed the current 

energy usage with LSTM and SARIMAX models, 

choosing the model with the least amount of error to 

predict electricity needs. After analyzing the statistical 

measurements, it was found that both models 

produced comparable results with few errors. The 

performance of the SARIMAX model was not as good 

as that of the LSTM model. A user-friendly interface 

dashboard was created to display visual 

representations of the results, aiming to enhance user 

comprehension. 
 

IV. TECHNOLOGY USED 

 

Computer programs : 

Google Chrome, Google Colab, Jupyter Notebook, 

and Tableau are all software applications that are 

frequently used. 

http://www-scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf
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anaconda and navigator remain the same. 

- Physical components 

- Equipment 

- Technology devices 

Hardware Utilized: Intel i5 10500K/AMD Ryzen 5 

4600h chip, 8GB RAM 

1 Terabyte of storage capacity, memory included. 

* Book repositories 

 

Utilized libraries include: numpy, pandas, matplotlib, 

sklearn, statsmodel, keras.seaborn library can be used 

for data visualization. 

 

V. RESULTS 

 

 
Figure 5.1: SARIMAX Predicted Vs Actual 

Figure 5.2: LSTM Predicted Vs Actual 

 

VI. CONCLUSION 

 

In this study, we examined how weather conditions 

relate to electricity usage by analyzing data from 

smart meters in London homes. The aim of the 

study was to achieve all of its primary goals. We 

reviewed existing studies on electricity 

consumption using machine learning methods to 

improve accuracy and created a user-friendly 

interface to fill in research gaps. We encountered 

challenges with incorporating additional weather 

and holiday information, but we managed to 

address certain issues. We evaluated the precision 

of the SARIMAX and LSTM models through the 

comparison using statistical measures. Both models 

had similar results, but LSTM slightly 

outperformed SARIMAX. Temperature, humidity, 

and windspeed were closely linked to electricity 

usage, and we used this correlation to identify the 

factors influencing demand. 

 

Moreover, the study found that there was a rise in 

electricity consumption in the initial and final 

months of the year, likely due to cooler 

temperatures and higher levels of humidity. We 

analyzed the current energy usage with LSTM and 

SARIMAX models, choosing the model with the 

least amount of error to predict electricity needs. 

After analyzing the statistical measurements, it was 

found that both models produced comparable 

results with few errors. The performance of the 

SARIMAX model was not as good as that of the 

LSTM model. A user-friendly interface dashboard 

was created to display visual representations of the 

results, aiming to enhance user comprehension. 

.  
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