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Abstract- In this research works, Homotopy 

Perturbation Method (HPM) has been employed to 

analyze the conductive-radiative fin with temperature 

depended themo-physical parameter. The results 

obtained from HPM has been validated and compared 

with the other methods available in the literature. It has 

been found that the present methods perform well with 

the other methods available in the literature. The effects 

of various thermo-physical parameter are presented and 

discussed. 

 

Nomenclature 

rN  Radiation-conduction parameter 

C   Constant which represents the temperature  

k  Temperature dependent thermal conductivity, 

( )mKW  

ak  Thermal conductivity corresponding to ambient 

condition, ( )mKW
 

s  The surface emissivity corresponding to radiation 

sinks temperature, sT  

T   Temperature, K  

P   Fin perimeter, m  

bT   Fin’s base temperature, K  

aT   Sink temperature corresponding to ak , K  

sT   Sink temperature for radiation, K  

b   Length of the fin, m  
x   Axial co-ordinate of the entire fin, m  

cA   Cross-sectional area of the entire fin, 
2m  

X   Dimensionless axial co-ordinate 

A   Thermal conductivity parameters 

B   The surface emissivity parameters 

Greek symbols 

  Slope of the thermal conductivity-temperature curve, 

1−K  

   Slope of the surface emissivity-temperature curve, 

1−K  

   Dimensionless temperature of the fin, 

a  Dimensionless sink temperature of the fin 

corresponding to ak ,  

s   Dimensionless radiation sinks temperature,  

   Stefan-Boltzmann constant 

   Emissivity 

1. INTRODUCTION 

 

The fins are the extended surface which is used in 

thermal engineering applications in which energy 

transfer takes place from hot surface to the atmosphere 

[1]. In some of the thermal engineering applications 

such as heat pipe, space radiator, where heat transfer 

takes place solely by radiation only. The governing 

equation in conduction radiation heat transfer problem 

can be expressed in ordinary differential equations 

with relevant boundary conditions. The many analysis 

of radiation-conduction problem can be made based 

constant values of thermophysical parameter for 

reducing the mathematical complexity [2]. But in 

actual situation thermophysical parameter of the heat 

conducting material may vary with temperature and 

the governing equation became highy non-linear. In 

solving the non-linear problem, many analytical 

methods developed such as Variation Iteration Method 

(VIM), Homotopy Analysis Method (HAM), Lest 

Square Method (LSM), Adomian Decomposition 

Method (ADM) etc. The mathematical modeling of 
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circular convective-radiative porous extended surface 

with various geometries is analyzed using Lest Square 

Method (LSM) and fourth-order Runge-Kutta Method 

[3]. Similarly same methods are extended for 

longitudinal porous fin [4]. Kumar et al [5] 

investigated the annular fin with multiboiling heat 

transfer characteristics with two analytical methods. 

Internal heat generation of convective–conductive–

radiative annular porous fin with variable thermal 

parameters is presented by Venkitesh and Mallick [6].  

M.Hatami et.al [7] applied, three analytical methods 

such as Differential Transformation Method (DTM), 

Collocation Method (CM) and Least Square Method 

(LS) for the temperature distribution in porous fin 

materials such as 43 NSi , Al  with temperature 

dependent internal heat generation. Patel and Meher 

[8] investigated longitudinal porous fin using uniform 

magnetic field using ADM. Singla and Das [9] 

predicted the heat generation number and fin tip 

temperature using Adomian decomposition method 

and Genetic Algorithm. Roy et.al [10] presented the 

effect of sink temperature and internal heat generation 

number on the temperature distribution of a 

convective-radiative rectangular using decomposition 

method. Therefore the presents works aims at finding 

the effects of environmental temperature and surface 

emissivity parameters on the temperature distribution 

of a conductive radiative fin with variable thermal 

conductivity. 

 

2. MATHEMATICAL FORMULATIONS 

 

The construction of radiating space radiator is shown 

in Figure 1. The heat pipes are connected in series and 

for the analysis one heat transfer module is taken for 

the present analysis. The base temperature bT , is 

constant and the radiation mixing between the heat 

pipe fin is neglected. The fin has length b , thickness 

w  and the both surfaces of the fin can radiate heat to 

the surrounding temperature. The one dimensional 

energy equation is given by 

( ) ( ) ( ) 022
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The thermal conductivity as well as the surface emissitivity of the fin material is linear function of temperature. 
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The formulation of the fin problem reduces to the following equations: 
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Figure 1. The geometry of heat pipe/fin space radiator. 
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With the following boundary conditions: 

00 == Xat
dX

d

                      

( )6  

11 == Xat
 

3. HOMOTOPY PERTURBATION METHOD (HPM) 

 

Applying the homotopy perturbation method [21-25] to the fin equation (5) can be express as 
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Where 
2

2

dX

d
L =  is called the linear operator and embedding parameter,  1,0p  is known as homotopy parameter. 

The 0  is initial approximation that satisfies the boundary condition (6). When the value of p  changes from 0 to 1 

the homotopy equation (7) also changes, this is called the deformation. The perturbation solution for   in the form of 

power series in p as under: 
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Substituting equation (8) into equation (7) and rearranging based on the power of p 
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By increasing number of terms in the solution higher accuracy will be obtained. Solving (9a), (10a), (11a), (12a) and 

(13a) results ( )X . When 0→p ,we have the solution for the first five in the series as follows. 

Summing these terms, the final temperature filed , is calculated as follows
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Now the temperature field,  can be evaluated if the fin tip temperature C is known whose value lies in the interval 

(0, 1). Using an arbitrary initial guess value for C, for the temperature field   computed from the above equation (16) 

and applying Newton-Rapson method satisfying the boundary conditions (6) the actual temperature field can be 

obtained.  

4. RESULTS AND DISCUSSION 

 

The governing equation (5) is validated in the limiting conditions and results are compared with the previous results 

available in literature Table 1. The present works consider five terms in the solutions and the presents results are 

compared with the previous work available in literature.  

 

Table 1   Comparison of present results with the results available in literature  
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              0.8129                   0.8122               0.8133                 0.8145                  0.8133  
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The variation of temperature,  of the fin material is 

affected by environmental temperature, s  with 

different values of surface emissivity parameters B. 

For the constant emissivity B=0, the temperature is 

independent of radiation sink temperature up to 

3.0=s  and then increases. Figure 2 shows variation 

of temperature along the length of the fin with two 

values of conduction radiation parameter Nr=0.75 & 

0.25, while surface emissivity parameter B 

maintaining at three values at -0.2, 0 and +0.2 

respectively while thermal conductivity parameter A 

and sink temperature kept at constant values. It has 

been observed that with the lower value of Nr, the tip 

temperature is higher and therefore rate of heat 

conduction will be higher. 

 
Figure 2. The temperature distribution obtained by 

HPM with respect to the radiation sink temperature 

and for various values of surface emissivity parameter. 

Figure 3. The temperature distribution obtained by 

HPM with respect to the radiation sink temperature 

and for various values of surface emissivity parameter. 

Figure 3 shows variation of tip temperature for two 

values of sink temperature while surface emissivity 

parameter B maintaining at three values at -0.2, 0 and 

+0.2 respectively for thermal conductivity, radiation 

conduction parameter and convection sink 

temperature kept at constant values. The higher the 

sink temperature, high is the tip temperature and 

therefore higher is the heat transfer rate of radiative 

fin. 

 
Figure 4. The temperature distribution obtained by 

HPM for various values conduction radiation 

parameter and thermal conductivity parameter. 

Figure 4 shows variation of conductive-radiative 

parameter for three values of thermal conductivity 

parameter while the surface emissivity parameter and 

sink temperature kept at constant values. The lower the 

radiation-conduction parameter, higher is the tip 

temperature and therefore better is the rate of heat 

transfer. Again the negative values of thermal 

conductivity parameter provides the higher heat 

transfer rates. 

 
Figure 5. The temperature distribution obtained by 

HPM for various values convection sink temperature 

and for thermal conductivity parameter. 

Figure 4 demonstrate the variation of convection sink 

temperature for three different values of thermal 

conductivity parameter while radiation sink 

temperature, surface emissivity parameter and 

radiation conduction parameter remains at constant 

values. The higher the convective sink temperature, 

higher is the tip temperature and rate of heat transfer 

is higher. 
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CONCLUSION 

 

In this work, the HPM has employed the closed form 

solution of conductive-radiative fin with temperature 

dependent thermal conductivity and surface 

emissivity. The results of HPM is validated in the 

limiting condition with the results other methods 

validated in the literature such as ADM, DTM, VIM 

and NM. The effects of various thermo-physical 

parameters are discussed and presented. 
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