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Abstract - The diagnosis and treatment of respiratory 

disorders are extremely difficult and time-consuming, 

necessitating accurate and prompt care. Using advanced 

signal processing techniques and machine learning 

algorithms, lung sound analysis presents a viable option 

for non-invasive illness classification. In this thesis, the 

effectiveness of multimodal feature fusion for robust 

respiratory disease classification is examined. 

Specifically, Mel-frequency cepstral coefficients 

(MFCCs), wavelet transform, mel-spectrogram (mSpec), 

and Chroma short-time Fourier transform (Chroma 

STFT) are combined with convolution neural networks 

(CNNs) and long short-term memory networks 

(LSTMs).The third greatest cause of death worldwide is 

respiratory disorders. When it comes to treating 

respiratory illnesses, early detection is essential since it 

increases the efficacy of interventions such as medication 

and stopping the disease's spread. This article's primary 

goal is to suggest a revolutionary lightweight inception 

network that uses lung sound data to classify a variety of 

respiratory disorders. There are three phases to the 

suggested framework: 1) Preprocessing; 2) extraction and 

conversion of the mel spectrogram into a three-channel 

image; and 3) applying the respiratory disease lightweight 

inception network (RDLINet), a proposed lightweight 

inception network, to classify the mel spectrogram images 

into distinct pathological groups. 

Index Terms—Lightweight inception network, lung 

auscultation, lung sounds, mel spectrogram, respiratory 

disease classification. 

 

I. INTRODUCTION 

Worldwide, respiratory disorders represent serious 

health risks that impact millions of people and 

heavily tax healthcare systems. For many illnesses to 

be effectively treated and managed, early and precise 

diagnosis is essential. Conventional diagnostic 

approaches frequently depend on costly imaging 

modalities or invasive procedures, which might not 

always be available, especially in environments with 

limited resources. 

New opportunities for non-invasive and affordable 

diagnostic methods have been created by recent 

developments in machine learning and signal 

processing techniques. Auscultation, the study of 

lung sounds, has drawn interest among these because 

of its potential to help in the identification and 

categorization of respiratory disorders. Capturing and 

examining the sound waves the respiratory system 

produces while breathing is known as lung sound 

analysis. 

we apply Long Short-Term Memory (LSTM) 

networks and Convolutional Neural Networks 

(CNNs) to multimodal feature fusion applied to lung 

sound analysis in order to offer a unique method for 

respiratory disease categorization. Whereas LSTMs 

are very good at identifying temporal connections in 

sequential data, CNNs are ideally suited for 

extracting spatial information from spectrograms or 

image representations of lung sound recordings. 

Our work's fundamental contribution is the 

combination of information from several 

modalities—such as spectrogram images, time-

domain features, and frequency-domain features—to 

create a comprehensive representation of lung sound 

data. Our objective is to enhance the precision and 

resilience of respiratory disease classification by 

utilizing the complementing abilities of CNNs and 

LSTMs through the integration of data from several 

modalities. 

The three primary phases of the suggested framework 

are feature extraction, classification, and 

preprocessing. Raw lung sound recordings are 

filtered and segmented to extract pertinent segments 
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that correspond to breathing cycles during the 

preprocessing stage. Then, a variety of features are 

retrieved from every segment: spectrogram images 

produced by the Short-Time Fourier Transform 

(STFT), frequency-domain features like spectral 

centroid and bandwidth, and time-domain features 

like amplitude and duration. 

Then, in order to capture spatial and temporal 

patterns, respectively, the collected features are fed 

into separate CNN and LSTM networks. The CNN 

uses spectrogram images to extract spatial features, 

and the LSTM uses sequential data processing to 

capture temporal dependencies in the feature space. 

In order to classify diseases, the outputs of the CNN 

and LSTM are finally combined and fed into a fully 

connected neural network.  

Figure 1 CNN-LSTM Model for the X-Ray Image-

Based Detection 

Lung, tracheal, and bronchial cancer is listed sixth, 

asthma is ranked third, lower respiratory tract 

infection is ranked fourth, and asthma is placed 

twenty-eighth [1]. TB is ranked twelfth. Worldwide, 

over a billion people suffer from either acute or 

chronic respiratory conditions. The alarming reality is 

that each year, chronic respiratory disorders are 

blamed for 4 million premature deaths globally [2]. 

Infants and young children are especially at risk. 

Pneumonia is the leading cause of mortality 

worldwide for children under five years old, with 9 

million fatalities in this age range annually [1]. 

Sometimes people take their respiratory system's 

health and capacity to breathe for granted, yet the 

lung is a sensitive organ that can be affected by 

airborne illnesses. Respiratory illnesses have a big 

influence on people's social, financial, and physical 

well-being. Social deprivation was the most 

important factor determining death and disability 

rates, and the world's poorest regions had the highest 

rates. Lower death rates are a sign of improved 

access to healthcare and advances in medical research 

in wealthier countries. 

Hence, lung illness therapy is crucial in the medical 

sector because it is the leading cause of death 

worldwide. These factors have prompted a great deal 

of research into the early detection and treatment of 

respiratory disorders. It takes time and experience to 

correctly identify health problems based on this 

information, but according to World Health 

Organization (WHO) figures [3], 45% of WHO 

Member States report having less than one physician 

per 1000 people, which is below the recommended 

WHO ratio. When taking these numbers into 

consideration, errors can occur when a health 

professional who is already overbooked studies and 

diagnoses each patient individually.  

That's why it's critical to find innovative solutions to 

assist physicians save time. Therefore, automated and 

dependable instruments can aid in the diagnosis of a 

greater number of patients and also assist specialists 

in reducing errors that may arise from overwork 

 
Figure 2 Fusion-Based Disease Classification 

Architecture. 

 

II. LITERATURE REVIEW  

The ability to detect sounds above the chest wall aids 

in the diagnosis of pulmonary conditions. The last 

forty years have seen the emergence of modern lung 

sound analysis, which is centered on digital sound 

processing and graphic signal representation [7]. 

Researchers in this subject are primarily interested in 

computerized lung sound analysis and diagnosis, thus 

they are constantly evaluating a number of different 

ways to aid medical professionals. Nonetheless, the 

fact that previous studies concentrated on identifying 

lung sounds and very few on creating diagnostic tools 

for lung disorders means that lung sound analysis 
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continues to draw attention from researchers. As a 

result, this field of study seems to be finished, which 

is why it has drawn a lot of scholars recently. The 

goal is to develop an accurate and objective 

diagnostic tool for the identification of lung illnesses. 

Three important databases were employed by earlier 

researchers: the R.A.L.E. repository [10], the 

Marburg European project CORSA [8], and 

Respiratory Sounds (MARS) [9].Nonetheless, the 

R.A.L.E. repository was formerly a database that was 

sold commercially. Commercially accessible lung 

sound CDs are used to train physicians and nurses to 

recognize lung sounds, and these CDs were used in 

the compilation of the Marburg Respiratory Sounds 

(MARS) database [9]. The goal of the European 

project CORSA was to standardize the procedure for 

recording respiratory sounds [8]. But in 2017, the 

biggest respiratory sound database was assembled for 

public use, which prompted the creation of 

algorithms that can recognize frequent aberrant 

breath sounds from both clinical and non-clinical 

contexts, such as wheezes and crackles. 

These days, machine learning algorithms are widely 

utilized in artificial intelligence applications that use 

their prior experiences to learn and improve the 

accuracy of the tools [11, 12]. Moreover, prior 

studies on computer-based lung sound analysis have 

employed machine learning methods, including 

genetic algorithms (GAs), artificial neural networks 

(ANNs), the hidden Markov model (HMM), the k-

nearest neighbor (k-NN) algorithm, and Gaussian 

mixture models (GMM).  

 
Figure 3 Decision tree for anomaly detection 

ANN and k-NN algorithms are the most widely used 

machine learning approaches at beginning. Support 

vector machines (SVMs) were found to be incredibly 

underutilized in the literature. The most popular 

machine learning methods for analyzing lung sounds 

are ANN and k-NN. Artificial neural networks 

(ANN) were used to classify normal, wheeze, 

crackle, squawk, stridor, and rhinous respiratory 

sounds with 100% training accuracy and 94.02% 

testing accuracy, according to Kandaswamy et al. 

[13]. This illustrates how accurately lung sounds are 

classified by ANN. The ANN with excellent 

adaptability can classify complex non-linear data 

accurately and efficiently [14].  The k-NN classifier 

is another machine learning technique that has piqued 

researchers' curiosity for use in lung sound 

classification. The benefits of k-NN are its robustness 

and simplicity [15]. Alsmadi and Kahya's work 

produced a 96% real-time classification accuracy 

using a k-NN classifier [16]. Their system was 

trained on a large dataset of 42 persons, and it is 

capable of differentiating between normal and 

pathological lung sounds. ANNs and k-NNs have 

advantages, but they also have certain disadvantages. 

The computational load associated with training the 

model and the need for a very big dataset to enable 

the model to correctly identify lung sounds are the 

drawbacks of employing ANN and k-NN in 

classification [14, 15]. Despite their drawbacks, ANN 

and k-NN are the most widely used machine learning 

algorithms in lung sound analysis because they can 

detect lung sounds more precisely and achieve higher 

classification accuracy than other techniques. 

Using a CNN-based approach, Shivakumar [30] 

classified respiratory noises. Crackles and wheezes 

were the two types of sounds used in the 

experiments. Following the audio file pre-processing, 

they created a neural network by modifying an 

already-existing CNN to produce the dataset's basic 

model. Later, they employed an Adam optimizer with 

a 64-batch batch size and a learning rate of 0.009. 

The author separated the dataset and ran the model on 

wheezes and crackles separately for an additional 10 

epochs after using both wheezes and crackles 

simultaneously for 10 epochs in the initial model. 

The outcomes for both the 90-10 and 80-20 train-test 

splits were the same. The author also demonstrated 

the many advantages of dividing the sounds into 

distinct models. This study's two models yielded test 

accuracies of 50% and 100%, respectively. 

III. PROPOSED WORK 

Foreword 

We go over the framing and windowing approach 

used in pre-processing in this chapter. After that, 
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standard deviation measurement and grading are 

carried out in conjunction with linear predictive 

analysis to extract fea.tures. Next, we distinguished 

between healthy and unhealthy respiratory noises 

using a multilayer perceptron 

 

Proposed Steps: 

Data Acquisition and Preprocessing: 

We go over the framing and windowing approach 

used in pre-processing in this chapter. After that, 

standard deviation measurement and grading are 

carried out in conjunction with linear predictive 

analysis to extract fea.assemble a varied dataset of 

lung sound recordings that includes both healthy 

controls and people with various respiratory diseases 

(such as COPD, pneumonia, andasthma).  Preprocess 

the lung sound recordings in order to get rid of 

baseline drift, artifacts, and noise. To improve the 

quality of the data, use methods like segmentation, 

standardization, and filtering. 

 

Feature Extraction: 

We go over the framing and windowing approach 

used in pre-processing in this chapter. After that, 

standard deviation measurement and grading are 

carried out in conjunction with linear predictive 

analysis to extract fea.From the preprocessed lung 

sound recordings, extract useful elements. Mel-

frequency cepstral coefficients (MFCCs), wavelet 

transform, mel-spectrogram (mSpec), and Chroma 

short-time Fourier transform (Chroma STFT) should 

all be used in combination.  

Calculate the spectrum envelope information using 

MFCCs, the tonal content using Chroma STFT, the 

spectral energy distribution using mSpec, and the 

time-frequency characteristics using wavelet 

transform. 

 

 Feature Fusion: 

Combine the extracted features from different 

modalities (MFCCs, Chroma STFT, mSpec, wavelet 

transform) into a single feature vector. This can be 

achieved by concatenating or averaging the feature 

vectors. 

 

Model Selection and Architecture Design: 

Select appropriate deep learning architectures, such 

as long short-term memory networks (LSTMs) and 

convolutional neural networks (CNNs), for the 

categorization of respiratory diseases.  

Create CNN architectures that can process aspects of 

lung sound that resemble spectrograms and detect 

spatial patterns.  

Construct LSTM architectures to represent the lung 

sound data's sequential patterns and temporal 

dependencies. 

 

Model Training and Validation: 

Make training, validation, and test sets out of the 

dataset. Utilizing the training set, train the CNN and 

LSTM models, optimizing model parameters and 

hyperparameters via gradient descent and 

backpropagation. Utilizing the validation set, validate 

the learned models while keeping an eye on 

performance indicators like F1 score, accuracy, 

precision, and recall. 

 

Model Evaluation: 

Analyze the performance of the trained CNN and 

LSTM models in classifying respiratory diseases 

using the independent test set.  

Examine how well the multimodal feature fusion 

strategy performs in comparison to baseline models 

and single-modal approaches.  

To comprehend the model's classification 

performance across various breathing situations, 

examine confusion matrices and ROC curves. 

 

Fine-tuning and Optimization 

Fine-tune the model architectures and 

hyperparameters based on the evaluation results to 

further improve classification accuracy. 

Explore techniques such as transfer learning and data 

augmentation to leverage additional labeled data or 

enhance model generalization. 

 

 Interpretation and Clinical Application: 

Interpret the learned representations from the CNN 

and LSTM models to gain insights into the 

discriminative features of different respiratory 

conditions. 

Investigate the clinical relevance and potential 

applications of the developed model for respiratory 

disease diagnosis and management. 

Discuss the limitations and future directions of the 

proposed approach, including scalability, 

generalizability, and integration into clinical practice. 
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IV.  RESULTS AND ANALYSIS 

Compute Mel-frequency cepstral coefficients 

(MFCCs) for each frame to capture spectral 

characteristics. This involves: 

• Applying the Fourier transform to each frame.  

• Mapping the resulting spectrum onto the mel 

scale.  

• Calculating the logarithm of the mel-scaled 

power spectrum.  

• Computing the discrete cosine transform (DCT) 

to obtain the cepstral coefficients.  

• Compute Chroma short-time Fourier transform 

(chroma STFT) features to capturetonal content 

and harmonic structure. This involves:  

• Calculating the short-time Fourier transform 

(STFT) of each frame.  

• Mapping the resulting spectrum onto the 12 

different pitch classes.  

• Compute Mel-spectrogram (mSpec) features to 

visualize the spectral energy distribution. This 

involves: 

• Computing the power spectrum of each frame. 

• Dividing the spectrum into mel-scaled bins. 

• Calculating the logarithm of the power spectrum. 

 

4. Feature Fusion: 

Combine the MFCCs, chroma STFT, and mSpec 

features for each frame into a single feature vector. 

This can be done by concatenating or averaging the 

feature vectors. 

5. Model Training: 

Train a machine learning model (e.g., SVM, Random 

Forest, CNN) using the combined feature vectors and 

corresponding labels from the dataset. 

Utilize techniques like cross-validation to optimize 

model hyperparameters and prevent overfitting. 

6. Model Evaluation: 

Evaluate the trained model's performance on a 

separate test set using appropriate evaluation metrics 

such as accuracy, precision, recall, and F1 score. 

Analyze the model's confusion matrix to understand 

its performance across different respiratory 

conditions. 

7. Deployment: 

Deploy the trained model for real-world applications, 

such as automated diagnosis or decision support 

systems in healthcare settings. 

Continuously monitor and update the model as more 

data becomes available or as new respiratory 

conditions emerge. 

 

Figure 4 The sampling rate 

 

Figure 5 Hostogram 

 
Figure 6 Visualizing Mel-Frequency Cepstral 

Coefficients (MFCCS) 
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Figure 7 Training and Validation accuracy 

 
Figure 2 loss: 0.1727 - accuracy: 0.9490 

 
Figure 9 Individual Performance MFCC Model  

 
Figure 10 loss: 0.1727 - accuracy: 0.9490 

 
Figure 11 loss: 0.3469 - accuracy: 0.8655 

 
Figure 12 Individual Performance CHROMA Model 

 
Figure 13 loss: 0.4657 - accuracy: 0.8568 

 

V. CONCLUSION 

Our experimental results indicate that the proposed 

multimodal approach, leveraging both spatial and 

temporal information encoded by CNNs and 

LSTMs, outperforms single-modal approaches and 

baseline models in respiratory disease classification 

tasks. The combination of feature fusion and deep 

learning architectures has shown promising results 

in accurately identifying and classifying various 
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respiratory conditions, including asthma, chronic 

obstructive pulmonary disease (COPD), pneumonia, 

and healthy controls. 

Furthermore, our findings underscore the 

importance of robust feature extraction 

methodologies and model architectures in 

leveraging the rich information embedded in lung 

sound signals for diagnostic purposes. By advancing 

the understanding of lung sound analysis techniques 

and their application in respiratory disease 

diagnosis, this research contributes to the 

development of automated diagnostic tools and 

personalized healthcare interventions for individuals 

with respiratory ailments. 

 

Future Work: 

While our study provides valuable insights into 

multimodal feature fusion with CNNs and LSTMs 

for respiratory disease classification, several 

avenues for future research exist to further enhance 

the efficacy and applicability of the proposed 

approach: 

1. Exploration of Additional Feature Modalities: 

Investigate the integration of additional feature 

modalities, such as time-domain features and 

higher-order statistical features, to capture 

complementary information from lung sound 

signals. 

2. Enhancement of Model Interpretability: Develop 

methods to enhance the interpretability of the 

learned representations from CNNs and LSTMs, 

facilitating the identification of clinically relevant 

features and insights into the diagnostic process. 

3. Integration of Real-time Monitoring and Decision 

Support Systems: Explore the integration of the 

developed models into real-time monitoring devices 

and decision support systems, enabling continuous 

assessment of respiratory health and timely 

interventions in clinical settings. 
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