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Abstract - To supply reliable and secure power to the 

consumers in developing countries like India, where 

electrical power demand had grown up unexpectedly & 

unpredictably is a challenging task. Power loss 

minimization and voltage instability has become a major 

concern in many power distribution networks and many 

blackouts had been reported. In India, 13-18% of total 

power generated is lost in distribution system as 

losses.Also in the current scenario, considering the 

installation cost of 1MW generating capacity unit in 

India, the power loss minimization has gained huge 

importance, and have fascinated many researchers 

working in power systems. From past three decades, 

numerous researches had been carried out for power 

loss minimization and voltage profile enhancement in 

distribution systems.Therefore this research investigates 

the distribution system operations and aims to propose 

new techniques for improved power loss minimization 

and voltage profile enhancement. The objective of this 

study is to develop Sequential Learning Neural Network 

(SLNN) for solving the distributed generation placement 

problem, the distribution network reconfiguration 

problem, the capacitor placement problem, and the 

problem of a combination of the three. The simulated 

results are encouraging and demonstrate well the 

effectiveness of the proposed techniques. The simulated 

results are also compared with the results of other 

methods available in the literature. It is observed that the 

performance of proposed technique is better than the 

other classical techniques in terms of quality of solutions. 
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I. INTRODUCTION 

Radial distribution network (RDN) plays a crucial 

role in the power systems, responsible for power 

supply from the transmission systems to the 

customer. However, the continuously growing load 

has posed challenges for power companies to perate 

RDN efficiently and reliably. Power loss 

significantly affects the operating efficiency of 

RDNs. Hence, it is imperative to reduce power loss 

for RDNs to operate efficiently and economically. In 

this regard, many approaches have been 

implemented to minimize the power losses of RDNs. 

Network reconfiguration (NR) and distributed 

generation (DG) integration are two prominent 

techniques that attract much attention due to the 

development context of power sources and 

investment costs. NR is an effective method to 

minimize power loss in RDNs. RDNs are operated 

in the radial topology to decrease the fault level and 

protect coordination effectively. Tie-line switches 

(normally opened) and sectionalizing switches 

(normally closed) are two types of switches in RDNs. 

NR leads to a new network topology by altering the 

opened/closed status of switches while maintaining 

the radial topology of the system. NR is a vital grid 

strategy that decreases active power losses, 

improves voltage profile and system reliability [1].  

 Moreover, NR can transfer load from one 

branch to another to avoid overloading. Recently, 

distributed generations (DGs) have been swiftly 

integrated into RDNs due to electricity deregulation, 

fossil fuel depletion, and environmental concerns. 

Apart from NR implementation, the deployment of 

DG units is also a well-known grid strategy to 

decrease power losses and boost the voltage profile 

of RDNs. Therefore, the NR application in RDNs 

should be studied in the presence of DGs. Since the 

NR problem was firstly introduced by Merlin and 

Back [2], a large amount of research has also been 
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done on the NR problem using various approaches 

from heuristic approaches like branch-and-bound 

method [2], modified branch exchange method [3], 

and switch exchange method [4] to metaheuristic 

approaches like particle swarm optimization (PSO) 

[5], [6], genetic algorithm (GA) [7], biased random 

key GA (BRKGA) [8], harmony search algorithm 

(HSA) [9], heuristic rules-based fuzzy multiple 

objectives [10], fireworks algorithm (FWA) [11], 

GA with varying population (GAVP) [12], and 

cuckoo search algorithm (CSA) [13]. In general, 

heuristic methods are characterized by fast 

convergence, but they lack the ability to handle 

largescale systems with many constraints. 

Meanwhile, metaheuristic methods have robust 

searchability to discover optimal solutions or near-

optimal solutions, which are well suited for large-

scale networks. Hence, the applications of 

metaheuristic methods to NR problems are 

constantly evolving. Recently, many researchers 

have applied several artificial intelligence and 

analytical methods to solve the optimal DGs 

allocation problem in RDNs.  

 In [14], comprehensive analytical 

expressions were suggested to define the allocation 

of PV units for maximizing the technical benefits in 

RDN. The objective functions include active and 

reactive power losses, voltage stability index, line 

congestion margin and voltage deviations. 

Mahmoud and Lehtonen [15] proposed generic 

closed-form analytical expressions to determine 

optimal locations and sizes of multi-type DGs and 

capacitors for optimizing reactive power loss in 

RDNs. Moreover, the proposed method 

incorporated an optimal power flow (OPF) 

algorithm to consider the constraints of systems. In 

[16], the authors utilized an efficient analytical (EA) 

method to obtain an optimal mix of different DG 

types with various generation capabilities to 

minimize power losses in RDNs. Researchers have 

constantly proposed new methods to achieve better 

performance for RDNs. One of those efforts is the 

simultaneous integration of NR and optimal DGs 

placement. Recent studies on the integration of these 

two effective strategies have been done using 

metaheuristic methods. Shaheen et al. [17] 

developed an improved equilibrium optimization 

algorithm (IEOA) to deal with the optimal 

integration of NR with DGs. Different load 

conditions of 33- and 69-bus systems were utilized 

to test the IEOA method, and its superiority was 

confirmed. Onlam et al. [18] applied the adaptive 

shuffled frogs leaping algorithm to acquire optimal 

NR and DGs settings on several circumstances of 

33- and 69-bus RDNs to minimize system losses and 

enhance voltage profile.  

 Murty and Kumar [19] suggested NR and 

optimal renewable-based DGs placement 

considering load uncertainties. A hybrid fuzzy-bees 

approach was developed by Tolabi et al. [20] for NR 

with DG placement for reducing power losses, 

improving the feeder load balancing and voltage 

profile. In [21], an artificial bee colony was 

combined with a hybrid method of HSA and PSO to 

deal with the combined problem of NR with shunt 

capacitors and DGs allocation to optimize the power 

loss. In [22], a fuzzy multi-objective technique was 

utilized for handling NR. Afterwards, a heuristic 

approach was applied to obtain the optimal NR, 

which generated a solution based on the initial NR. 

In [23], an improved plant growth simulation 

method was proposed for NR with DGs presence for 

power loss reduction. Optimal DG locations were 

defined using sensitivity analysis. Bayat et al. [24] 

developed a heuristic approach for NR and DGs 

allocation to maximize loss reduction. In [25], levy 

flights embedded in sine–cosine algorithm to deal 

with NR and DGs allocation in 33-bus and 69-bus 

RDNs. The proposed problem considered power 

losses and voltage stability index objectives.  

 Some other typical metaheuristic methods 

have also been applied to handle the combination of 

NR and DGs allocation, such as HSA [26], adaptive 

CSA [27], FWA [28], big-bang crunch algorithm 

[29], [30], hybrid grey wolf optimizer and PSO 

(GWO-PSO) [31], electromagnetism-like 

mechanism (ELM) [32], firefly (FF) [33], and three-

dimensional group search optimization (3D-GSO) 

[34]. Based on the aforesaid literature survey, 

applying the metaheuristic algorithms to the 

integration of NR with DGs placement has several 

certain limitations. Most of the previous studies only 

focused on small- and medium-scale RDNs without 

considering large-scale RDNs. Moreover, 

integration of NR and DGs placement is a combined 

optimization problem, which poses a challenge to 

achieve optimal solutions due to its complexity. 

Therefore in this work use sequential learning based 

neural network method to overcome the issues of 

previous systems. 

 

II. PROPOSED METHODOLOGY 
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 In the context of large-scale grid 

connection of distributed energy, during the 

reconfiguration of the distribution network, the 

availability of distributed energy and the load of the 

distribution system may be inconsistent with the 

prediction due to the influence of environmental 

factors and human factors. If the distribution 

network reconfiguration is still carried out according 

to the expected offline optimization scheme, there 

may be reliability problems of voltage over-limits 

and economic problems of increased network loss in 

the actual reconfiguration process. Therefore, the 

reconfiguration plan formulated in advance can give 

some guidance to the dispatch operator, but it may 

not be directly used in the actual reconfiguration 

process. This work proposes a sequential  learning 

neural network approach to solving the electric 

distribution network reconfiguration. Based on the 

uncertainty of distributed energy output and network 

load in the distribution network, the online 

algorithm of distribution network reconfiguration 

realizes the second-level solution of distribution 

network reconfiguration, through day-ahead 

training of the neural network.  

2.1 Problem Formulation 

By rearranging the distribution system, this 

section aims to decrease power losses. The 

following equation expresses the reconfiguration's 

goal function. 

𝑀 ∈: 𝑃𝑙𝑜𝑠𝑠 = ∑ ⬚𝑁𝑏𝑟
𝑖 𝑅𝑖

𝑃𝑖
2+𝑄𝑖

2

𝑉𝑖
2   

Where 

Nbr = Total Number of Branches 

Ri = Resistance Value of Branch 

Vi = Voltage at the ith branch 

 Pi  = Active Power at ith branch 

Qi = Reactive power at ith branch. 

2.2 Voltage Constraint:  As seen in the equation 

below, the load bus voltages are limited by their 

lowest and maximum values. 

𝑉𝑖,𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖,𝑚𝑎𝑥  

Where 

 Vi,max  = (1.1 pu) 

Vi,min  = (0.9 pu) 

2.3 Current Constraint: The lower and higher limits 

of line currents are as follows: 

𝐼𝑖 ≤ 𝐼𝑖,𝑚𝑎𝑥  

Where 

 Ii and Ii,max =  current and the maximum current of 

ith branch, respectively 

2.4 Radial Topology Constraint: There must be no 

isolated nodes in distribution systems, and the 

system's architecture must be radial. The radial 

topology constraint looks like this: 

𝑁𝑛𝑜𝑑𝑒 − 𝑁𝑏𝑟 = 1 

Where 

Nnode = number of nodes in the system 

2.5 Working Function of Sequential Learning 

Neural Network 

A recently proposed artificial-intelligence-

based approach for handling complicated nonlinear 

combinatorial optimization issues is Sequential 

Learning Neural Network (SLNN). The SLNN 

technique divides the solution of the network 

reconfiguration problem into three parts. 

2.6 Propsoed Sequential Learning Neural Network 

Determining the various parameters 

associated with neural networks is not straight 

forward and finding the optimal configuration is a 

time and memory-consuming process. To reduce the 

time and memory, the SLNN algorithm is used with 

sequential learning. Since SLNN has a single hidden 

layer, the memory utilization will be less. Sequential 

learning is employed to reduce the memory space 

and also reduce the computation complexity. In 

sequential learning, the new hidden neurons will be 

added only if they impact the output determination. 

Also, the less contributed neuron will be removed.  

The parameters on the distribution network are used 

to train the SLNN. The architecture of the Sequential 

learning Neural Network is shown in Figure 1.  

 
Fig. 1. Architecture of SLNN 

The structure of SLNN is the same as that of Radial 

Bias Function (RBF) networks. Each hidden unit in 

the network has two parameters called a center (Xj) 

and a width (σj) associated with it. The activation 

function of the hidden units is Gaussian function and 

it is radially symmetric in the input space. Each 

hidden unit's output depends only on the radial 

distance between the input vector Xi and the center 
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parameter Ci for that hidden unit. Each hidden unit's 

response is scaled by its connecting weights Wj to 

the output units and then summed to produce the 

overall network output. The following Equations 

calculate the overall network output. 

𝐹𝑅𝐵𝐹 = ∑ 𝑊𝑗𝜑𝑗𝑗  , 𝑗 =

1 to n (number of hidden units)(1) 

𝜑𝑗 = 𝑒−|𝑋𝑗−𝐶𝑖|2 / 2𝜎𝑗
2(2) 

Where 

𝜑𝑗 =Response of the jth hidden unit 

𝑊𝑗 = Weight Connecting hidden unit j to output unit  

Xj =Center of jth hidden unit 

σj = width of jth hidden unit 

 

2.7 Algorithm of SLNN 

Step 1: Center Value is calculated using K-Means 

Clustering (discussed in following section ) 

Step 2: The width value is calculated using the P-

Nearest neighbor method (discussed in following 

section) 

Step 3: The RBF activation function 𝜑𝑗 is calculated 

for the training inputs using Equation (2) 

Step4: Sequential learning is applied as follows 

           4.1 Initially, no hidden neuron exists 

           4.2 initialization has been done with the 

following values n= 0, K=0 and 

                   h=1 

       Where 

 n = number of input patterns (500) 

          K = Number of hidden neurons (max of 10) 

h = learning cycle 

4.3 For each observation (Xn,yn),the overall network 

output is calculated using Equation 1 

4.4 The novelty of the data is verified using the 

variables en and 𝛽𝑚𝑎𝑥 . They are calculated as 

follows 

𝑒𝑛 = 𝑦𝑛 − 𝐹𝑅𝐵𝐹 ∨(3) 

𝛽𝑚𝑎𝑥 = 𝑀𝑎𝑥(𝜑𝑖)(4) 

             If en>0.1 and 𝛽𝑚𝑎𝑥 < 0.6 and K <=10 

  A new hidden unit is added 

(K=K+1) 

                Else 

                         The weight updation is done for all 

the hidden units as follows 

𝑊𝑗(𝑛𝑒𝑤) = 𝑊𝑗(𝑜𝑙𝑑) + 𝛼 ∗ 𝜑𝑗(5) 

                Where 

𝛼  = learning Rate Constant (0.1) 

 4.4 If all the training patterns are presented, then the 

number of learning cycle is incremented (h=h+1) 

and criteria for removing hidden units is verified 

𝜃𝑖 = [∑ 𝜑𝑗
𝑁
𝑛=1 (𝑥𝑛)] <  0.1   (6) 

If the above condition is satisfied, the 

hidden unit corresponding to this activation function 

contributes to the output. So it will be removed. 

Step 5: If the network indicates Root Mean squared 

error value is close to zero, the network is converged. 

Else it repeated from step 4.3 

2.8 K-means clustering center selection 

K-Means is an unsupervised learning 

algorithm that solves the well-known clustering 

problem. K-means procedure is a simple and easy 

way to classify a given data through a certain 

number of clusters (assuming k clusters). The main 

idea is to define the center of k, one for each cluster. 

This algorithm aims at minimizing an objective 

function known as the squared error function which 

is given by 

𝐽(𝑉) = ∑ ∑ (|𝑥𝑖 − 𝐶𝑗|)2𝐶𝑖
𝑗=1

𝐶
𝑖=1  (7) 

Where 

∨ 𝑥𝑖 − 𝑉𝑗 ∨ = Euclidean distance between xi and Vj. 

 C = number of cluster centers 

Ci = number of data points in ith cluster 

The algorithm of K-means clustering as follows 

2.9 K-Means Clustering Algorithm 

Let X = {X1, X2, X3… Xn} be the set of data points 

and C = {C1, C2, C3…Cn} be the set of centers. 

Step1: The ‘c’ cluster centers are randomly selected 

Step2:  From each datapoint and cluster center, the 

distance has been calculated. 

Step3: The data point is selected whose distance 

from the cluster center is the smallest of all cluster 

centers 

Step4: The new cluster center is recalculated using 

the following Equation 

𝑉𝑖 = (
1

𝐶𝑖
) ∑ 𝑥𝑖

𝐶𝑖
𝑗=1  (8) 

Step5:The distance within each data point is 

recalculated and the new cluster centers are obtained. 

Step6: If no data point is reassigned, then the 

clustering process is stopped. Else from step 3 is 

repeated. 

3.0 Determination of Width Parameters 

The next step is the determination of 

the width parameter of the basis functions σj. In this 

research, the Probabilistic -Nearest Neighbor (P- 

Nearest Neighbor) heuristic method is used to find 

the widths. Consider a given vector Xj(j=1,..C) and 

assume Xj1,Xj2,…XjP(1<=j1,j2,…jP<=C) are the P-

Nearest neighboringcenters. The width of the basis 

function σj is given by the RMS distance of the given 

cluster centerXjto the P-nearest neighboringcenters 

𝜎𝑗 = √((
1

𝑃
∑ |𝑋𝑗 − 𝑋𝑗𝑃

𝑃
𝑖=1 |2))(9) 
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Where the 𝑋𝑗 are the p-nearest 

neighbors to the centroid 𝑋𝑗𝑃. This ensures that the 

basis functions overlap to some degree and hence a 

relatively smooth representation of the distribution 

is obtained. Furthermore, the entire process is 

elucidated through a flowchart in Figure 2, outlining 

the comprehensive process. 

 
Fig. 2. Flow chart of proposed system 

 

Comparative Analysis  

This section discusses the comparative analysis 

results of different optimization methods. The 

impact of DG placement on active power loss index 

(APLI) and reactive power loss index (RPLI) can be 

assessed using following formulas. Optimal DG 

placement should result in higher loss indices. 

𝐴𝑃𝐿𝐼 =
𝑃𝐿𝑜𝑠𝑠−𝑃𝐿𝑂𝑠𝑠

𝐷𝐺

𝑃𝐿𝑜𝑠𝑠
× 100     (10) 

𝑅𝑃𝐿𝐼 =
𝑄𝐿𝑜𝑠𝑠−𝑄𝐿𝑂𝑠𝑠

𝐷𝐺

𝑄𝐿𝑜𝑠𝑠
× 100    (11) 

The Voltage stability index (VSI) gives the relative 

distance from the current operating point to the point 

of voltage collapse. Higher values of VSI ensure that 

the system is capable of carrying more loading 

without losing its stability. The VSI can be 

represented by  as follows 

𝑉𝑆𝐼 = 𝜆𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 − 𝜆𝑘   (12) 

Here, 𝜆𝑘 is the reference loading, which is assumed 

to be zero. 𝑉𝑆𝐼𝜆𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙is the loading at the point of 

voltage instability.The following tables discuss the 

numerical result analysis for different working 

conditions. 

The objective of the candidate load buses is 

to reduce the search space in the optimization 

procedure. Consider 2 nodes connected by a branch 

as apart in a radial distribution system shown in 

Fig.3, where the buses p and q are the sending and 

receiving end buses, respectively.  

 

 

 

 

 

 

 

 

 

Fig. 2. Representation of two nodes in a 

distribution system 

The active power loss index ( APLI) and reactive 

power loss index (RPLI)flows through a branch k 

from node p to node q can be calculated as 

𝐴𝑃𝐿𝐼 =
𝑃𝑒𝑓𝑓

𝑞
+ 𝑃𝐿𝑂𝑆𝑆𝑘   (13) 

𝑅𝑃𝐿𝐼 =
𝑄𝑒𝑓𝑓

𝑞
+ 𝑄𝐿𝑂𝑆𝑆𝑘     (14) 

Where, APLI and RPLI are the power flows through 

branch k, Peff/q and Qeff/q are the total effective 

active and reactive power loads beyond the node q, 

respectively. PLossk and QLossk are the active and 

reactive power losses through branch k, respectively. 

The current flowing through branch k from the node 

p to the node q can be calculated as: 

𝐼𝑘 =
𝑉𝑝<𝛿𝑝−𝑉𝑞<𝛿𝑞

𝑅𝑘+𝑗𝑋𝑘
  (15) 

𝑉𝑆𝐼 = 𝐼𝑘 ∗ (𝑅𝑘 + 𝑗𝑋𝑘)   (16) 

Where, Vp and Vq are the voltage magnitudes at 

nodes p and q, respectively. δp and δq are the voltage 

angles at nodes p and q, respectively. Rk and Xk are 

the resistance and reactance of branch k, respectively. 

The reliability of the system is given as  

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑅) = 1 −
𝐸𝑁𝑆

𝑃𝐷
   (17) 

Where  

R  = Reliability 

ENS = Energy Not supplied  

 PD = Total power demand. 

The ENS to the customers can be given as [30] 

Ik 

𝑃𝑒𝑓𝑓

𝑞

+
𝑗𝑄𝑒𝑓𝑓

𝑞
 

Pp + 
jQp 

Rk+jXk 

Bus P Bus q 

𝑉𝑝

< 𝛿  

𝑉𝑞

< 𝛿  
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𝐸𝑁𝑆 = 𝛼𝑑 ∑ 𝜆𝑘|𝐼𝑘𝑝| × 𝑉𝑟𝑎𝑡𝑒𝑑
𝑁𝑏𝑟
𝑘=1     (18) 

Where 

 Ikp  = Peak Load Branch Current 

Rk = Resistance 

Xk = Reactance 

lk  = Failure Rate for kth Branch or line 

Vrated  =  Rated Voltage of The System.  

α = Load Factor  

d = Repair Duration 

 

III. SIMULATION RESULTS AND 

DISCUSSION 

 

The IEEE 33 bus test system and a time-varying load 

are used to evaluate the efficacy of the 

recommended method. The power quality will be 

lowered if there is a large share of DG capacity. Here, 

a maximum of five DGs with a capacity of 200kW 

each are examined. In addition, a maximum of 10 

capacitors are taken into account. In the simulation 

parameters and load curve, the reactive loads are 

calculated using the equation Q=P*tan*(cos -1Φ), 

with the power factor of the load set at 0.85, in the 

simulation parameters and load curve. Figure 4 

depicts the schematic diagram for the IEEE-33 bus 

test system [Chidanandappa et al 2015]. 

 
Fig. 4. IEEE 33 Bus Line Diagram 

 

Table .1. Capacity and Simulation Parameters 

Bus Specification 

System Supply 

Voltage 

11kV 

Switches in Tie 

Line 

33 - 38 

Capacity of DG 200kW Each 

Capacitor 

Capacity 

[300 600 900 1200 1500 1800 

2100 2400 2700 3000]kVAR 

Type of Customer 

Residential Bus Number: 1 to 18 

Industrial Bus Number: 19 to 22 

Commercial Bus Number: 23 to 25 

Educational 

Institution 

Bus Number: 26 to 33 

Table 1 displays the simulation parameters and four 

types of loads: residential, industrial, commercial, 

and school. The load hours are separated into four 

groups, each of which contains roughly comparable 

load patterns over a set length of time. 

 
Fig. 5. SLNN Network Structure 

The SLNN Simulation Network structure is shown 

in figure 5.The exponential decaying of the distance 

criterion allows fewer basis functions with large 

widths. With an increasing number of observations, 

more basis functions with smaller widths are 

allocated to fine-tune the approximation 

 
Fig. 6.Load Curve of proposed system 

Figure 6 shows the simulation results of load curve 

response for different types (Residential, Industrial, 

Commercial and Educational Institute) of the 

customer.  The performance of the proposed SLNN 

approach is evaluated using the following cases. 

Case 1: Simultaneous Capacitor and DG Placement 

Case 2: Simultaneous Reconfiguration and DG 

Placement 

Case 3: Simultaneous Reconfiguration and 

Capacitor Placement 

Case 4: Simultaneous Reconfiguration, DG and 

Capacitor Placement 

CASE 1: Simultaneous Capacitor and DG 

Placement 
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Table. 2. Comparison of Base Case with 

Simultaneous Capacitor and DG Placement 

Parameters Base Case Simultaneous Ca-

pacitor and DG 

Placement –SLNN 

Tie Switch Num-

ber 

33 34 35 36 

37 

2   5  11  33  30 

Voltage range in 

Minimum (p.u) 

0.35895 0.94 

Voltage range in 

Maximum (p.u) 

1 1 

DG Location Nil 8  31  33   4  26 

DG Size(kW) Nil 732  845  380  749  

966 

Capacitor Loca-

tion 

Nil 2   9  14  20  33  11  

28   4  15  29 

Capacitor 

Size(kVAr) 

Nil 300 600 1200 1500 

2100 3000 2700 

1800 2400 900 

Active Power 

Loss(kW) 

26975.701

7 

2231.17 

Reactive Power 

Loss(kVAr) 

18145.373 1310.72 

Computation 

Time (Sec) 

0.7139 0.3897 

 
Fig. 7. Simultaneous Capacitor and DG Placement 

Table 2 discuss the performance analysis of 

Simultaneous Capacitors and DG Placement using 

the SLNN method with the base case of the IEEE 33 

bus system. When compared to the base situation, 

SLNN-based Simultaneous Capacitor and DG 

Placement deliver good results. The active power 

loss in the base scenario is 26975.7017kw and the 

reactive power loss is 18145.373kVAR, however the 

active power loss is 2231.17kW and the reactive 

power loss is 1310.72kVAR when employing GA 

based Simultaneous Capacitor and DG Placement. 

Figure 7 shows the voltage profile of per unit in 

proposed simultaneous capacitor and DG placement 

system. 

CASE 2: Simultaneous Reconfiguration and DG 

Placement 

Table. 3. Comparison of Base Case with 

Simultaneous Reconfiguration and DG Placement 

Parameters Base 

Case 

Simultaneous Reconfigu-

ration and DG Placement 

-SLNN 

Tie Switch Num-

ber 

33 34 

35 36 

37 

11  20  28  31   8 

Voltage range in 

Minimum (p.u) 

0.3589

5 

0.948 

Voltage range in 

Maximum (p.u) 

1 1 

DG Location Nil 25  18   4  33  17 

DG Size(kW) Nil 989  716  722  830  891 

Capacitor Loca-

tion 

Nil Nil 

Capacitor 

Size(kVAr) 

Nil Nil 

Active Power 

Loss(kW) 

26975.

7017 

2224.89 

Reactive Power 

Loss(kVAr) 

18145.

373 

1304.02 

Computation 

Time (Sec) 

0.7139 0.332 

Fig. 8. Simultaneous Reconfiguration and DG 

Placement 

Table 3 discuss the performance analysis of 

Simultaneous Reconfiguration and DG Placement 

using the SLNN method with the base case of the 

IEEE 33 bus system. When compared to the base 

situation, SLNN-based Simultaneous 

Reconfiguration and DG Placement deliver good 

results. The active power loss in the basic scenario 

is 26975.7017kW and the reactive power loss is 

18145.373kVAR, however the active power loss is 

2224.89kW and the reactive power loss is 

1304.02kVAR when employing SLNN based 

Simultaneous Reconfiguration and DG Placement. 

Figure 8 shows the voltage profile of per unit in 

proposed Simultaneous Reconfiguration and DG 

Placement system. 
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CASE 3: Simultaneous Reconfiguration and 

Capacitor Placement 

Table. 4. Comparison of Base Case with 

Simultaneous Reconfiguration and Capacitor 

Placement 

Parameters Base 

Case 

Simultaneous Reconfig-

uration and Capacitor 

Placement -SLNN 

Tie Switch 

Number 

33 34 

35 36 

37 

14   4  10  28  22 

Voltage range 

in Minimum 

(p.u) 

0.35895 0.97 

Voltage range 

in Maximum 

(p.u) 

1 1 

DG Location Nil Nil 

DG Size(kW) Nil Nil 

Capacitor Lo-

cation 

Nil 14  15  19  27  29  33   4  

13  30  16 

Capacitor 

Size(kVAr) 

Nil 2100  1200   600  3000  

1500  2400  3000  3000   

300  2100 

Active Power 

Loss(kW) 

26975.7

017 

2208.72 

Reactive Power 

Loss(kVAr) 

18145.3

73 

1288.7 

Computation 

Time (Sec) 

0.7139 0.319 

 
Fig. 9. Simultaneous Reconfiguration and 

Capacitor Placement 

Table 4 discuss the performance analysis of 

Simultaneous Reconfiguration and Capacitor 

Placement using the SLNN method with the base 

case of the IEEE 33 bus system. When compared to 

the base situation, SLNN-based Simultaneous 

Reconfiguration and Capacitor Placement deliver 

good results. The active power loss in the basic 

scenario is 26975.7017kW and the reactive power 

loss is 18145.373kVAR. However, the active power 

loss is 2208.072kW and the reactive power loss is 

1288.7kVAR when employing SLNN-based 

Simultaneous Reconfiguration and Capacitor 

Placement. Figure 9 shows the voltage profile of per 

unit in proposed Simultaneous Reconfiguration and 

Capacitor Placement system. 

CASE 4: Simultaneous Reconfiguration, DG and 

Capacitor Placement 

Table. 5. Comparison of Base Case with 

Simultaneous Reconfiguration, DG and Capacitor 

Placement 

Parameters Base 

Case 

Simultaneous Recon-

figuration, DG and Ca-

pacitor Placement -

SLNN 

Tie Switch Num-

ber 

33 34 

35 36 

37 

32   5  33  11  23 

Voltage range in 

Minimum (p.u) 

0.3589

5 

0.986 

Voltage range in 

Maximum (p.u) 

1 1 

DG Location Nil 14  33  21  24  18 

DG Size(kW) Nil 895  260  591  700  181 

Capacitor Loca-

tion 

Nil 2   4  13  27  33   9   3  

29   5  20 

Capacitor 

Size(kVAr) 

Nil 300  2100  2400  3000  

2700  1200   900  1800   

600  1500 

Active Power 

Loss(kW) 

26975.

7017 

2198.89 

Reactive Power 

Loss(kVAr) 

18145.

373 

1249.2 

Computation 

Time (Sec) 

0.7139 0.287 

 
Fig. 10. Voltage profile Simultaneous 

Reconfiguration, DG and Capacitor Placement 

Table 5 discuss the performance analysis of 

Simultaneous Reconfiguration, DG and Capacitor 

Placement using the SLNN method with the base 

case of the IEEE 33 bus system. When compared to 

the base situation, SLNN-based Simultaneous 

Reconfiguration, DG and Capacitor Placement 

deliver good results. The active power loss in the 

base scenario is 26975.7017kw and the reactive 

power loss is 18145.373kVAR. However the active 

power loss is 2198.89kW and the reactive power 

loss is 1249.20kVAR when employing SLNN-based 

Simultaneous Reconfiguration, DG, and Capacitor 
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Placement. Figure 10 shows the voltage profile of 

per unit in proposed Simultaneous Reconfiguration, 

DG and Capacitor Placement system. 

 
Fig. 11. Minimum voltage analysis for the different 

cases using SLNN 

 
Fig. 12. Active Power analysis for the different 

cases using SLNN 

 
Fig. 13. Reactive Power analysis for the different 

cases using SLNN 

Minimum voltage, active and reactive power loss 

analysis for the different working cases using SLNN 

is discussed by figures 11-13. In this analysis shwos 

propsoed SLNN obtianed good results 

Table. 6:  Fitness Function Of IEEE 33 BUS RDS 

For All Cases 

CASES  APLI  VolDI  RPLI  RL in 

%  

FITNESS 

FUNCTIO

N  

Case-1  0.81 0.063  0.81 97.01 0.878 

Case-2  0.327 0.0310 0.4178  97.89  0.578  

Case-3  0.319 0.0286 0.487  98.01  0.679  

Case-4  0.248 0.0192  0.378  99.02  0.680  

The table 6 discuss the performance analysis of 

APLI, VolDI, RPLI, fitness function and reliability 

in proposed system. In this comparison clearly 

shows the proposed system reliability is increased at 

97.02% in case 4. 

Table 7. Power Loss analysis 

Existing/Propso

ed work 

Optimization 

Method 

Power Loss(kw) 

Alam et.al [27] MINLP 72.95 

Prakash et.al 

[28] 

PSO 74.09 

Ready et.al [29] PSO 148.30 

 et.al [30] PSO 43.36 

Proposed 

Method 

SLNN 9.6 

In the comparison table 7, literature [35], [36], [37] 

and [38] presented optimal DG placement using 

MINLP Technique and PSO Technique of the IEEE 

33-bus RDS respectively. As compared with 

conventional methods the proposed SLNN have 

low power loss. Total power loss in all the feeder 

sections, PTLoss, can be found by adding up the 

losses in all line sections of the network. The power 

loss of a line section connecting buses between k 

and k + 1 after the reconfiguration of network is 

calculated as 

𝑃𝑇𝐿𝑂𝑆𝑆 =  ∑ 𝑃𝐿𝑂𝑆𝑆(𝑘, 𝐾 + 1))𝑁
𝑘=1   

(19) 
 

IV. CONCLUSION 
 

In this research work, a Sequential Learing Neural 

Network (SLNN) method is proposed for the 

network reconfiguration of a distribution network. 

This work presents the three objective functions: 

active power loss, DG installation cost, and 

closeness for the optimal network reconfiguration. 

The The conflicting nature of these objectives makes 

them best suitable for prosoed method. Training-sets 

for the SLNN are generated by varying the constant 

P-Q load models and carrying out the off-line 

network reconfiguration simulations. The developed 

SLNN model is based on the multilayer perceptron 

network and training is done by the back 

propagation algorithm. The trained SLNN models 

determine the optimum switching status of the 

dynamic switches along the feeders of the network, 

which thereby reduce real power loss by network 

reconfiguration The DG allocation is done by the 

sensitivity analysis of the buses which fulfill the 

power flow control demand in case of higher loading 

at the network. The proposed SLNN method is 
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compared with the MINLP and PSO method. The 

SLNN results provided better tools for effective 

network reconfiguration. Comprehensive numerical 

validation is performed on standard IEEE 33 Bus 

system which presents that the proposed algorithm 

are better suited for practical application and draws 

better convergence characteristics. 
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